文献综述 Open Access
Copyright ©The Author(s) 2006. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2006-12-08; 14(34): 3290-3293
在线出版日期: 2006-12-08. doi: 10.11569/wcjd.v14.i34.3290
二氢嘧啶脱氢酶在胃癌中的研究现状
鲁明骞, 徐光川
鲁明骞, 三峡大学第一临床医学院, 湖北省宜昌市中心人民医院肿瘤内科 湖北省宜昌市 443003
徐光川, 华南肿瘤学国家重点实验室, 中山大学肿瘤防治中心内科 广东省广州市 510060
通讯作者: 鲁明骞, 443003, 湖北省宜昌市夷陵路127号, 湖北省宜昌市中心人民医院肿瘤内科. Lumingqian001@163.com
收稿日期: 2006-09-08
修回日期: 2006-09-17
接受日期: 2006-09-25
在线出版日期: 2006-12-08

5-FU是治疗胃癌最基本的化疗药物之一, 二氢嘧啶脱氢酶(dihydropyrimidine dehydrogenase, DPD)是5-FU分解代谢的起始酶和限速酶, 在5-FU的治疗过程中起着重要的作用, 肿瘤组织中DPD表达上调可加速5-FU的分解, 使5-FU在形成细胞毒作用的核苷之前代谢成无抗癌活性的代谢产物, 减少了肿瘤部位的药物浓度, 降低了抗癌效果. 而外周血DPD含量增高, 导致5-FU在血浆中浓度的变化, 从而引起毒副反应的发生.

关键词: 二氢嘧啶脱氢酶; 胃癌; 化疗

引文著录: 鲁明骞, 徐光川. 二氢嘧啶脱氢酶在胃癌中的研究现状. 世界华人消化杂志 2006; 14(34): 3290-3293
N/A
N/A
Correspondence to: N/A
Received: September 8, 2006
Revised: September 17, 2006
Accepted: September 25, 2006
Published online: December 8, 2006

N/A

Key Words: N/A


0 引言

胃癌是最常见的恶性肿瘤之一, 虽然西方国家胃癌死亡率明显下降, 但我国仍呈上升趋势, 发病率占恶性肿瘤的第二位, 死亡率占第一位.手术是胃癌的首选治疗手段, 但由于早期诊断率较低, 约60%-70%的患者确诊时已表现为局部复发或远处转移, 因此化疗在胃癌治疗中越来越受到广泛重视. 5-氟尿嘧啶(5-FU)是治疗胃癌最基本的化疗药物之一, 近来研究发现, 二氢嘧啶脱氢酶(dihydropyrimidine dehydrogenase, DPD)与5-FU在胃癌治疗中的消除率、疗效和毒副反应密切相关.

1 DPD的分布

DPD广泛分布于各种正常组织, 以肝脏和外周血单核细胞(peripheral blood mononuclear cells, PBMC)中分布最多, 在肿瘤组织、炎性组织中也有分布[1]. 是由两个相同的亚基与一个相对分子质量为105 kDa的分子组成, 是一个高二聚体酶, 包括黄素腺嘌呤二核苷酸、黄素单核苷酸、铁1硫中心. 被定位于染色体1q22的基因(DPD)编码, 包括23个外显子, 可转录为一种含1025个氨基酸的蛋白. 他是5-FU代谢失活的限速酶, 5-FU吸收后约80%-90%在肝脏中不断代谢生成二氢氟尿嘧啶(FUH2), 进而在其他相关酶的作用下生成a-氟b-丙氨酸、尿素、氨和二氧化碳并排出体外, 使药物失去活性, 从而减少了药物蓄积, 降低了5-FU大量掺入到正常组织细胞中产生细胞毒作用.

2 DPD的检测方法

DPD的检测方法包括DPD活性的检测、DPD蛋白表达、DPD mRNA的表达. 这些检测方法又包括血液和组织DPD的检测.

2.1 血液DPD活性的检测

(1)直接法: 应用放射酶免法测定PBMC中DPD活性, 以每毫克蛋白每分钟能代谢5-FU生成皮摩尔的二氢尿嘧啶(H2U)表示, 单位: pmol/(min·mg). Etienne et al[2]检测了185例恶性肿瘤患者DPD活性, 95%可信区间为65-559 pmol/(min·mg), 中位数为222 pmol/(min·mg). DPD活性<100 pmol/(min·mg)的患者接受5-FU化疗时会出现毒性. (2)间接法: DPD可将血浆中的内源性尿嘧啶(U)降解为H2U, 因此, H2U/U比值可间接反应DPD的活性.

2.2 组织中DPD活性的检测

可通过免疫组化和酶联免疫吸附实验来测定. Hotta et al[3]用ELISA法测定术前胃癌患者组织中的胸苷磷酸化酶(TP)与DPD含量, 可为后期选择治疗提供指导意义.

2.3 DPD蛋白表达

用DPD mAb进行免疫组化来检测细胞内DPD的表达. Ishikawa et al[4]采用此方法测定DPD活性范围为3.6-99.8 pmol/(min·mg), 但肿瘤组织与非肿瘤组织中的活性无差异.

2.4 DPD mRNA的表达

应用逆转录聚合酶链反应(RT-PCR)来测定DPD mRNA水平. Ishikawa et al[4]采用此方法测定胃癌组织中的DPD mRNA水平范围为0.014-7.22 pmol/(min·mg), 低DPD mRNA水平预示肿瘤对5-FU更敏感. Yoshinare et al[5]研究认为DPD酶活性及mRNA表达与肿瘤对5-FU化疗敏感性密切相关. 另外, 有人通过测定尿液中尿嘧啶含量来预测DPD活性, 作为预测和预防5-FU毒副反应的一种方法[6-7].

3 DPD缺失的分子机制

近年DPD活性与DPD等位基因变化之间的研究日益增多, 认为DPD缺失可能与DPD等位基因变化有关. Wei et al[8]1996年首次发现二氢嘧啶脱氢酶基因(DPYD) 165 bp片段丢失会导致5-FU产生毒副反应, 其中14号外显子处的G→A突变是导致DPD活性低下从而产生细胞毒性的根本原因. 295-298delTCAT, 1897delC, T85C, C703T, G2657A, G2983T等基因突变也与DPD活性降低或缺失有关, 但A1627G和G2194A位点的基因突变并不引起DPD活性的降低和5-FU产生细胞毒性作用[9]. 此外, DPD外显子14缺失突变的携带者, 在使用5-FU治疗时, 发生致命性骨髓抑制的风险也显著增加[10].

4 DPD与临床

DPD活性与患者的人种、性别、年龄、肿瘤部位、分期、分化、病理类型无关[11]. 但也有学者研究认为, 肿瘤分化程度与DPD表达水平有关, 未分化型肿瘤组织比分化型显著高表达(P<0.05), 有统计学意义[12-13]. Yoshida et al[14]采用免疫组化法测定23例肠癌和7例胃癌患者肿瘤组织和正常组织中DPD活性和TP水平, DPD活性在肠癌肿瘤组织中显著减少(P<0.01), 但胸腺嘧啶核苷酸合成酶(TS)却显著增加(P<0.01), 在胃癌中却没有差异, 各有3例(42.9%)患者高表达. Nakayama et al[15]采用ELISA法测定111例恶性肿瘤患者TP和DPD的表达水平, 却得出了完全相反的结论, 其中30例胃癌和81例肠癌, DPD在胃癌组织中与正常组织相比高表达, 在肠癌中表达水平完全相同, DPD在胃癌中的表达水平远高于肠癌组织. Nozawa et al[16]使用免疫组化法测定胃癌患者DPD的表达水平, 发现DPD指数与肿瘤进展及其他临床病理因素均无关. Ichikawa et al[13]用PCR技术测定DPD在肿瘤组织中的表达与临床病理因素也无关. DPD是5-FU分解代谢的起始酶和限速酶, DPD活性的高低与5-FU被清除的速度和量密切相关, 导致5-FU在血浆中浓度的变化, 从而引起毒副反应的发生. 但Di et al[17]研究认为DPD活性与5-FU的严重毒性反应却无关. DPD决定了5-FU代谢速度, DPD表达上调可加速5-FU在肿瘤组织中的分解, 会使5-FU在形成细胞毒作用的核苷之前代谢成无抗癌活性的代谢产物5-氟-b-丙氨酸, 减少了肿瘤部位的药物浓度, 降低了抗癌效果, 进一步引起耐药性的发生. Terashima et al[18-20]使用放免法测定140例胃癌患者DPD活性, 发现其水平与人体对5-FU反应的敏感性相关, 是其非常重要的预测因素, DPD活性越低, 肿瘤对5-FU越敏感. 在胃癌中, DPD活性低的肿瘤对5-FU更敏感, TP/DPD比值越高, 5-FU化疗效果越好[21]. Takiguchi et al[22]研究25例胃癌术后接受化疗的患者, 48%(12/25)对化疗有效(包括完全缓解和部分缓解). DPD活性检测6例为DPD高活性, 19例为低活性. 分析6例DPD高活性患者均属无效者, DPD低活性组中有12例对化疗有效. Kubota用DPD mRNA来预测肿瘤5-FU的敏感性[23]. DPD与预后的关系Napieralski et al[24]用PCR定量分析了7种与治疗相关性基因: TS, DPD, TP与DDP相关基因: ERCC1, ERCC4, KU80, GADD45A, 研究在进展性胃癌新辅助化疗中各个基因单独表达和联合表达与临床的关系, 结果显示, 高DPD水平常与患者治疗无反应和总生存有关. Nishna et al[25]研究TP/DPD在转移性胃癌中的临床意义时, 发现高比值组与低比值组的中位生存时间分别为300 d和183 d, 有统计学意义(P<0.05). DPD缺失会引起5-FU产生毒性. Gamelin et al[26]根据H2U/U值来调整5-FU的剂量, 从而减少毒副反应的发生, 实现个体化用药. 有学者根据TP/DPD值来预测5'-脱氧5-氟胞苷(5'-DFUR)和卡倍他滨的疗效[25]. DPD抑制剂的研究目前较成熟, 因为内脏中DPD活性越高, 导致5-FU在体内快速代谢, 减少了肿瘤组织对药物的吸收和非线性药代动力学[27]. Eniluracil可100%的灭活DPD, 从而可减少5-FU的用量[28]. S-1是5-氯-2, 4二氢嘧啶(CDHP)、替加氟(FT)和乳清酸钾(OXO)以0.4:1:1比例的复合制剂, 其中CDHP是DPD的抑制剂, 从而维持血中和肿瘤内的5-FU持续浓度[29]. Shimizu et al[30]用S-1一线治疗61例胃硬癌患者, 在DPD阳性组和阴性组中的反应率为45.5%, 10%(P<0.01), 但中位生存为364 d和406 d, 无统计学意义(P = 0.626). Usuki et al[31]研究了DIF(DPD inhibitory fluoropyrimidines)疗效与DPD关系, 在可评价的27例胃癌患者中, 高DPD活性患者有效率为17%(2/12), 低活性者为33%(5/15). 在低DPD活性患者中, 非DIF药物疗效为无变化(NC)17%(16例), 其余表现为进展(PD); 优氟啶(UFT)疗效全部5例患者均为PD; 而S-1的有效率为44%(7/16), NC为25%(4/16). 在高DPD活性患者中, 非DIF(3例)和UFT(3例)的疗效均为PD, 而S-1的缓解(PR)为33%(2/6), NC及以上疗效为67%(4/6), 故推荐使用S-1而非优氟啶.

DPD与5-FU化疗毒性与敏感性的研究越来越深入, 这将为肿瘤的个体化治疗提供一种较好的理论依据, 他将指导临床合理选择用药和合适的用药剂量. 同时, 开发新一代DPD抑制剂将提高化疗效果, 减少毒副反应和耐药性的发生.

评论
背景资料

二氢嘧啶脱氢酶是5-FU分解代谢的起始酶和限速酶, 在5-FU的治疗过程中起着重要的作用, 研究发现, 二氢嘧啶脱氢酶与5-FU在胃癌治疗中的消除率、疗效和毒副反应密切相关.

同行评价

本文综述了二氢嘧啶脱氢酶与胃癌的关系, 有一定的科学性、可读性, 但综述内容需要进一步补充和调整.

电编:李琪 编辑:王晓瑜

1.  Guimbaud R, Guichard S, Dusseau C, Bertrand V, Aparicio T, Lochon I, Chatelut E, Couturier D, Bugat R, Chaussade S. Dihydropyrimidine dehydrogenase activity in normal, inflammatory and tumour tissues of colon and liver in humans. Cancer Chemother Pharmacol. 2000;45:477-482.  [PubMed]  [DOI]
2.  Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, Renee N, Schneider M, Demard F, Milano G. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol. 1994;12:2248-2253.  [PubMed]  [DOI]
3.  Hotta T, Taniguchi K, Kobayashi Y, Johata K, Sahara M, Naka T, Watanabe T, Ochiai M, Tanimura H, Tsubota YT. Preoperative endoscopic analysis of thymidine phosphorylase and dihydropyrimidine dehydrogenase in gastrointestinal cancer. Oncol Rep. 2004;11:1233-1239.  [PubMed]  [DOI]
4.  Ishikawa Y, Kubota T, Otani Y, Watanabe M, Teramoto T, Kumai K, Takechi T, Okabe H, Fukushima M, Kitajima M. Thymidylate synthetase and dihydropyrimidine dehydrogenase levels in gastric cancer. Anticancer Res. 1999;19:5635-5640.  [PubMed]  [DOI]
5.  Yoshinare K, Kubota T, Watanabe M, Wada N, Nishibori H, Hasegawa H, Kitajima M, Takechi T, Fukushima M. Gene expression in colorectal cancer and in vitro chemosensitivity to 5-fluorouracil: a study of 88 surgical specimens. Cancer Sci. 2003;94:633-638.  [PubMed]  [DOI]
6.  Morimoto S, Shono Y, Tsuji T, Makihara K, Kawato N, Hachino Y, Mishima H, Tsujinaka T, Tabuse K. Support of TS-1, 5-FU preparation containing potent DPD inhibitor by determination of urinary uracil/serum 5-FU clearance. Gan To Kagaku Ryoho. 2003;30:2083-2089.  [PubMed]  [DOI]
7.  Kobayashi K, Sumi S, Kidouchi K, Mizuno I, Mohri N, Fukui T, Akamo Y, Takeyama H, Manabe T. A case of gastric cancer with decreased dihydropyrimidine dehydrogenase activity. Gan To Kagaku Ryoho. 1998;25:1217-1219.  [PubMed]  [DOI]
8.  Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest. 1996;98:610-615.  [PubMed]  [DOI]
9.  Wei X, Elizondo G, Sapone A, McLeod HL, Raunio H, Fernandez-Salguero P, Gonzalez FJ. Characterization of the human dihydropyrimidine dehydrogenase gene. Genomics. 1998;51:391-400.  [PubMed]  [DOI]
10.  Raida M, Schwabe W, Hausler P, Van Kuilenburg AB, Van Gennip AH, Behnke D, Hoffken K. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5'-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)- related toxicity compared with controls. Clin Cancer Res. 2001;7:2832-2839.  [PubMed]  [DOI]
11.  McLeod HL, Sludden J, Murray GI, Keenan RA, Davidson AI, Park K, Koruth M, Cassidy J. Characterization of dihydropyrimidine dehydrogenase in human colorectal tumours. Br J Cancer. 1998;77:461-465.  [PubMed]  [DOI]
12.  Nakata B, Muguruma K, Yamagata S, Yukimoto K, Maeda K, Nishiguchi Y, Ohira M, Kato Y, Hirakawa K. Differences in dihydropyrimidine dehydrogenase activities between gastric and colorectal cancer. Dig Dis Sci. 2004;49:60-64.  [PubMed]  [DOI]
13.  Ichikawa W, Takahashi T, Suto K, Nihei Z, Shirota Y, Shimizu M, Sasaki Y, Hirayama R. Thymidylate synthase and dihydropyrimidine dehydrogenase gene expression in relation to differentiation of gastric cancer. Int J Cancer. 2004;112:967-973.  [PubMed]  [DOI]
14.  Yoshida T, Shimooki O, Baba Y, Abe T, Sugai T, Nakamura S. Assessment of dihydropyrimidine dehydrogenase and thymidylate synthase expression in gastric carcinoma and colonic carcinoma. Gan To Kagaku Ryoho. 2005;32:183-187.  [PubMed]  [DOI]
15.  Nakayama Y, Inoue Y, Nagashima N, Katsuki T, Matsumoto K, Kadowaki K, Shibao K, Tsurudome Y, Hirata K, Sako T. Expression levels of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) in patients with gastrointestinal cancer. Anticancer Res. 2005;25:3755-3761.  [PubMed]  [DOI]
16.  Nozawa H, Tsukui H, Nishida K, Yakumaru K, Nagawa H, Sekikawa T. Dihydropyrimidine dehydrogenase expression in preoperative biopsy and surgically resected specimens of gastric carcinoma. Cancer Chemother Pharmacol. 2002;49:267-273.  [PubMed]  [DOI]
17.  Di Paolo A, Danesi R, Falcone A, Cionini L, Vannozzi F, Masi G, Allegrini G, Mini E, Bocci G, Conte PF. Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann Oncol. 2001;12:1301-1306.  [PubMed]  [DOI]
18.  Terashima M, Irinoda T, Fujiwara H, Nakaya T, Takagane A, Abe K, Yonezawa H, Oyama K, Inaba T, Saito K. Roles of thymidylate synthase and dihydropyrimidine dehydrogenase in tumor progression and sensitivity to 5-fluorouracil in human gastric cancer. Anticancer Res. 2002;22:761-768.  [PubMed]  [DOI]
19.  Terashima M, Fujiwara H, Takagane A, Abe K, Irinoda T, Nakaya T, Yonezawa H, Oyama K, Saito K, Kanzaki N. Prediction of sensitivity to fluoropyrimidines by metabolic and target enzyme activities in gastric cancer. Gastric Cancer. 2003;6 Suppl 1:71-81.  [PubMed]  [DOI]
20.  Terashima M, Fujiwara H, Takagane A, Abe K, Araya M, Irinoda T, Yonezawa H, Nakaya T, Oyama K, Takahashi M. Role of thymidine phosphorylase and dihydropyrimidine dehydrogenase in tumour progression and sensitivity to doxifluridine in gastric cancer patients. Eur J Cancer. 2002;38:2375-2381.  [PubMed]  [DOI]
21.  Inada T, Ogata Y, Kubota T, Tomikawa M, Yamamoto S, Andoh J, Ozawa I, Hishinuma S, Shimizu H, Kotake K. 5-fluorouracil sensitivity and dihydropyrimidine dehydrogenase activity in advanced gastric cancer. Anticancer Res. 2000;20:2457-2462.  [PubMed]  [DOI]
22.  Takiguchi N, Koda K, Ooshima H, Oda K, Suzuki H, Ishii R, Miyazaki M. Dihydropyrimidine dehydrogenase-related enzymes predict efficacy and adverse reactions of UFT1+cisplatin neoadjuvant chemotherapy for gastric cancer. Anticancer Drugs. 2002;13:411-416.  [PubMed]  [DOI]
23.  Kubota T. Recent advance in gastric cancer chemotherapy. Gan To Kagaku Ryoho. 2000;27:2043-2047.  [PubMed]  [DOI]
24.  Napieralski R, Ott K, Kremer M, Specht K, Vogelsang H, Becker K, Muller M, Lordick F, Fink U, Rudiger Siewert J. Combined GADD45A and thymidine phosphorylase expression levels predict response and survival of neoadjuvant-treated gastric cancer patients. Clin Cancer Res. 2005;11:3025-3031.  [PubMed]  [DOI]
25.  Nishina T, Hyodo I, Miyaike J, Inaba T, Suzuki S, Shiratori Y. The ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase in tumour tissues of patients with metastatic gastric cancer is predictive of the clinical response to 5'-deoxy-5-fluorouridine. Eur J Cancer. 2004;40:1566-1571.  [PubMed]  [DOI]
26.  Gamelin E, Boisdron-Celle M, Guerin-Meyer V, Delva R, Lortholary A, Genevieve F, Larra F, Ifrah N, Robert J. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: A potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol. 1999;17:1105.  [PubMed]  [DOI]
27.  Schoffski P. The modulated oral fluoropyrimidine prodrug S-1, and its use in gastrointestinal cancer and other solid tumors. Anticancer Drugs. 2004;15:85-106.  [PubMed]  [DOI]
28.  Ahmed FY, Johnston SJ, Cassidy J, O'Kelly T, Binnie N, Murray GI, van Gennip AH, Abeling NG, Knight S, McLeod HL. Eniluracil treatment completely inactivates dihydropyrimidine dehydrogenase in colorectal tumors. J Clin Oncol. 1999;17:2439-2445.  [PubMed]  [DOI]
29.  Meropol NJ, Niedzwiecki D, Hollis D, Schilsky RL, Mayer RJ. Phase II study of oral eniluracil, 5-fluorouracil, and leucovorin in patients with advanced colorectal carcinoma. Cancer. 2001;91:1256-1263.  [PubMed]  [DOI]
30.  Shimizu T, Yamada Y, Yasui H, Shirao K, Fukuoka M. Clinical application of immunoreactivity of dihydropyrimidine dehydrogenase (DPD) in gastric scirrhous carcinoma treated with S-1, a new DPD inhibitory fluoropyrimidine. Anticancer Res. 2005;25:2997-3001.  [PubMed]  [DOI]
31.  Usuki H, Ishimura K, Yachida S, Hagiike M, Okano K, Izuishi K, Karasawa Y, Goda F, Maeta H. Dihydropyrimidine dehydrogenase (DPD) activity in gastric cancer tissue and effect of DPD inhibitory fluoropyrimidines. Gastric Cancer. 2003;6 Suppl 1:66-70.  [PubMed]  [DOI]