临床经验 Open Access
Copyright ©The Author(s) 2006. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2006-04-08; 14(10): 1004-1007
在线出版日期: 2006-04-08. doi: 10.11569/wcjd.v14.i10.1004
胃癌多基因甲基化状态分析
赵成海, 张宁, 卜献民, 李岩, 张海鹏
赵成海, 张宁, 张海鹏, 中国医科大学病理生理教研室 辽宁省沈阳市 110001
卜献民, 中国医科大学附属二院普通外科 辽宁省沈阳市 110004
李岩, 中国医科大学附属二院消化内科 辽宁省沈阳市 110004
通讯作者: 张海鹏, 110001, 沈阳市和平区北二马路92号, 中国医科大学病理生理教研室.zhanghp@hotmail.com
电话: 024-23256666-5291
收稿日期: 2006-02-13
修回日期: 2006-02-22
接受日期: 2006-03-07
在线出版日期: 2006-04-08

目的: 检测胃癌组织中p16, hMLH1, E-cadherin和RUNX3基因甲基化状态, 探讨多基因甲基化在胃癌发病中的作用.

方法: 采用饱和氯化钠法提取肿瘤组织、瘤旁组织及正常胃黏膜组织DNA.采用甲基化特异PCR对上述基因甲基化状态进行分析.

结果: 在正常胃黏膜组织中, 38.9%存在E-cadherin甲基化, 16.7%存在RUNX3甲基化, 没有发现p16和hMLH1甲基化;在癌旁组织中, p16、hMLH1、E-cadherin和RUNX3甲基化频率分别为8.3%, 4.2%, 54.2%和29.2%;在胃癌组织中, 上述基因甲基化频率分别为33.3%, 20.8%, 0.8%和54.2%.66.7%胃癌被检出存在2个或2个以上基因甲基化, 明显高于癌旁组织(37.5%, χ2=4.09, P<0.05)和正常胃黏膜组织(5.6%, χ2=15.94, P<0.01), 而癌旁组织则高于正常胃黏膜组织(χ2=4.16, P<0.05).5例胃癌没有检出任何一种基因甲基化.

结论: 多基因甲基化是部分胃癌发展过程中一种早期事件, 提示多基因甲基化在这部分胃癌的发病中起重要作用.

关键词: 胃癌; 甲基化; p16; hMLH1; E-cadherin; RUNX3

引文著录: 赵成海, 张宁, 卜献民, 李岩, 张海鹏. 胃癌多基因甲基化状态分析. 世界华人消化杂志 2006; 14(10): 1004-1007
Multiple genes methylation detection in gastric cancer
Cheng-Hai Zhao, Ning Zhang, Xian-Min Bu, Yan Li, Hai-Peng Zhang
Cheng-Hai Zhao, Ning Zhang, Hai-Peng Zhang, Department of Pathophysiology, China Medical University, Shenyang 110001, Liaoning Province, China
Xian-Min Bu, Department of General Surgery, the Second Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
Yan Li, Department of Gastroenterology, the Second Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
Correspondence to: Hai-Peng Zhang, Department of Pathophysiology, China Medical University, Beier Road, Heping District, Shenyang 110001, Liaoning Province, China. zhanghp@hotmail.com
Received: February 13, 2006
Revised: February 22, 2006
Accepted: March 7, 2006
Published online: April 8, 2006

AIM: To determine methylation state of p16, hMLH1, E-cadherin and RUNX3 and explore the role of these genes concurrent methylation in gastric cancer.

METHODS: DNA in gastric cancer, cancer-adjacent tissues and normal gastric mucosa was extracted by saturated NaCl method. Methylation state of these genes was detected by methylation-specific polymerase chain reaction (MSP).

RESULTS: Methylation of E-cadherin and RUNX3 was found in 38.9% and 16.7% normal gastric mucosa respectively. Methylation of p16 and hMLH1 was not present in any normal gastric mucosa. The methylation rate of p16, hMLH1, E-cadherin and RUNX3 is 8.3%, 4.2%, 54.2% and 29.2% in cancer-adjacent tissues and 33.3%, 20.8%, 70.8% and 54.2% in gastric cancer respectively. Two or more than two genes concurrent methylation was found in 66.7% gastric cancer, significantly higher than that in cancer-adjacent tissues(37.5%, χ2 = 4.09, P < 0.05)and that in normal gastric mucosa (5.6%, χ2 = 15.94, P < 0.01). And the rate in cancer-adjacent was higher than that in normal gastric mucosa(χ2 = 4.16, P < 0.05). In 5 gastric cancer cases ,methylation of these genes was not found at all.

CONCLUSION: Multiple genes concurrent methylation is an early event in gastric cancer. It suggests that multiple genes concurrent methylation plays an important role in some gastric cancers.

Key Words: Gastric cancer; Methylation; HMLH1; P16; E-cadherin; RUNX3


0 引言

抑癌基因启动子内CpG岛出现异常甲基化常导致其表达丧失或减少, 从而诱导肿瘤发生. 作为一种临床常见肿瘤, 部分胃癌的发病机制亦与此有关. 早期的研究多集中在孤立的单一基因上[1-3], 随着更多基因异常甲基化不断被报道出来, 提示胃癌中存在多种基因甲基化现象. 在此, 我们同时对基因p16, hMLH1, E-cadherin和RUNX3在胃癌中的甲基化状态进行研究, 以探讨多基因甲基化在胃癌发病机制中的作用.

1 材料和方法
1.1 材料

胃癌及相应的癌旁组织各24例, 胃正常组织18例, 均来自于中国医科大学附属第一及第二医院. 癌旁组织在肿瘤中心5 cm以外获取. 标本获取后即冷冻于液氮之中, 并保存在-80 ℃条件下备用. 采用HE染色确定肿瘤标本主要由肿瘤组织构成, 有肿瘤细胞浸润的癌旁组织和有炎性反应的胃正常组织标本均被排除于研究之外.

1.2 方法

采用饱和氯化钠法提取肿瘤组织、瘤旁组织及正常胃黏膜组织DNA. 采用GENMED基因甲基化检测试剂盒(上海杰美公司)对p16, hMLH1, E-cadherin和RUNX3进行甲基化特异性PCR(MSP)检测. 实验步骤主要包括转化实验(将未甲基化的胞嘧啶转变成尿嘧啶)和甲基化特异性PCR两个步骤, 具体参见其产品说明书. 各基因MSP分析引物序列: p16: 5'-TTATTAGAGGGTGGGGCGGATVGC-3'(正义), 5'-GACCCCGAACCGCGACCGTAA-3'(反义); hMLH1: 5'-TATATCGTTCGTAGTATTCGTGT-3'(正义), 5'-TCCGACCCGAATAAACCCAA-3'(反义); E-cadherin: 5'-TTAGGTTAGAGGGTTATCGCGT-3'(正义), 5'-TAACTAAAAATTCACCTACCGAC-3'(反义); RUNX3: 5'-TTACGAGGGGCGGTCGTACGCGGG-3'(正义), 5'-AAAACGACCGACGCGAACGCCTCC-3'(反义).

统计学处理 采用χ2检验进行数据分析, P<0.05为差异显著.

2 结果

只有E-cadherin和RUNX3在正常胃组织中被检出存在甲基化现象, 分别为7例(38.9%)和3例(16.7%); 在癌旁组织中, p16, hMLH1, E-cadherin和RUNX3甲基化频率依次为8.3%, 4.2%, 54.2%和29.2%; 在胃癌组织中上述基因甲基化频率依次为33.3%, 20.8%, 70.8%和54.2%. 66.7%(16/24), 胃癌被检出存在2个或2个以上基因甲基化, 明显高于癌旁组织(9/24, 37.5%, χ2 = 4.09, P<0.05)和正常胃黏膜组织(1/18, 5.6%, χ2 = 15.94, P<0.01), 而癌旁组织则高于正常胃黏膜组织(χ2 = 4.16, P<0.05). 5例胃癌没有检出任何一种基因甲基化(表1).

表1 胃癌组织中多基因甲基化状态.
编号p16hMLH1E-cadherinRUNX3n
15
27
32
42
52
63
73
3 讨论

DNA甲基化作为一种生化修饰过程, 主要指在DNA甲基化转移酶(DNMT1, DNMT2, DNMT3)作用下, 胞嘧啶第五位碳原子上被加上一个甲基基团[4]. 通常情况下, DNA甲基化发生在CpG重复序列中. DNA甲基化常导致基因转录抑制, 其机制可能与以下两个因素有关: (1)胞嘧啶甲基化可能阻止转录因子与他们识别部位中的CpG序列结合; (2)这种转录抑制可能与两种蛋白质复合体(MeCP1和MeCP2)有关. 这两种蛋白质复合体能够特异性地与发生甲基化的CpG序列结合, 从而阻止转录因子与后者结合[5]. 近年来, 遗传表型改变在肿瘤发病机制中的作用日益受到重视. 抑癌基因启动子内CpG岛甲基化而导致该基因表达改变已成为肿瘤发病机制一条重要途径. 胃癌作为一种常见的肿瘤, 亦被发现存在抑癌基因启动子甲基化现象. 其中发现较早, 比较重要的基因有p16[6], hMLH1[7]及E-cadherin[8]. 作为一种CDK的抑制物, p16基因表达改变参与了多数肿瘤的发病过程. 但与其他肿瘤不同的是, 在胃癌中p16表达改变并不是由于基因突变或缺失引起[9], 而主要由于启动子甲基化导致[1,6]. 错配修复基因hMLH1生殖系突变在遗传性非息肉病性结直肠癌(HNPCC)发病中起到重要作用[10], 但类似于p16, 在胃癌组织中该基因的突变频率很低. 众多的研究显示, hMLH1启动子甲基化导致其表达改变及微卫星不稳定(MSI)现象是部分胃癌一个重要的特征[2,7]. E-cadherin则与前述两种基因不同, 其突变和甲基化在胃癌中都比较常见. 但其突变主要限于弥散型胃癌, 在其他组织类型的胃癌中则较为少见[11]. 此后一系列基因在胃癌组织中被探测出存在甲基化现象, 包括APC[12], MGMT[13], RUNX3[14], CHFR[15], HRK[16]等. 这些证据表明, 胃癌是一种易发甲基化的肿瘤, 多种基因甲基化参与了胃癌的发病过程. 因此单一基因的研究显然无法全面、准确地分析抑癌基因启动子甲基化在胃癌发病机制中的作用.

基于一些结直肠癌的研究, 学者提出了CpG岛甲基化表型(CIMP)这一概念[17], 指出在部分结直肠癌中, 多基因甲基化是其发病的重要机制. 在我们所检测的4种基因中, 66.7%的患者存在两个或两个以上基因甲基化现象, 此结果提示CIMP亦可能是胃癌重要的发病途径之一. 值得注意的是, 在研究中我们同时发现有5例患者没有检出甲基化现象, 提示CIMP没有参与这部分胃癌的发病过程. 研究结果显示, 胃癌组织中多基因甲基化频率显著高于癌旁组织及正常胃黏膜组织, 而癌旁组织又高于正常胃黏膜组织, 提示基因甲基化是胃癌形成过程中的一个早期事件, 其对于胃癌的早期诊断具有重要意义. 当然, 要分析CIMP在胃癌发病机制中的作用, 需对更多基因进行研究和筛选. 同时对CIMP阳性胃癌的临床特征进行分析, 以探讨多基因甲基化研究在胃癌早期诊断、治疗及预后等方面的作用.

评论
背景资料

近年来, 遗传表型改变在胃癌发病机制中的作用日益受到重视. 众多研究发现, 抑癌基因启动子内出现甲基化导致该基因表达沉默是部分胃癌发病的重要途径之一.

创新盘点

本文探讨多种抑癌基因同时甲基化在胃癌发病中的作用. 结果提示胃癌发病是多种基因发生改变共同作用的结果.

电编:张敏 编辑:张海宁

1.  Shim YH, Kang GH, Ro JY. Correlation of p16 hypermethylation with p16 protein loss in sporadic gastric carcinomas. Lab Invest. 2000;80:689-695.  [PubMed]  [DOI]
2.  Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 1999;59:159-164.  [PubMed]  [DOI]
3.  Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000;26:16-17.  [PubMed]  [DOI]
4.  Ahmad I, Rao DN. Chemistry and biology of DNA methyltransferases. Crit Rev Biochem Mol Biol. 1996;31:361-380.  [PubMed]  [DOI]
5.  Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3:226-231.  [PubMed]  [DOI]
6.  Tsujie M, Yamamoto H, Tomita N, Sugita Y, Ohue M, Sakita I, Tamaki Y, Sekimoto M, Doki Y, Inoue M. Expression of tumor suppressor gene p16(INK4) products in primary gastric cancer. Oncology. 2000;58:126-136.  [PubMed]  [DOI]
7.  Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN. Hyperme-thylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 1999;59:1090-1095.  [PubMed]  [DOI]
8.  Machado JC, Oliveira C, Carvalho R, Soares P, Berx G, Caldas C, Seruca R, Carneiro F, Sobrinho-Simoes M. E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcino-ma. Oncogene. 2001;20:1525-1528.  [PubMed]  [DOI]
9.  Lee YY, Kang SH, Seo JY, Jung CW, Lee KU, Choe KJ, Kim BK, Kim NK, Koeffler HP, Bang YJ. Alterations of p16INK4A and p15INK4B genes in gastric carcinomas. Cancer. 1997;80:1889-1896.  [PubMed]  [DOI]
10.  Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368:258-261.  [PubMed]  [DOI]
11.  Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 1994;54:3845-3852.  [PubMed]  [DOI]
12.  Tsuchiya T, Tamura G, Sato K, Endoh Y, Sakata K, Jin Z, Motoyama T, Usuba O, Kimura W, Nishizuka S. Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia. Oncogene. 2000;19:3642-3646.  [PubMed]  [DOI]
13.  Oue N, Shigeishi H, Kuniyasu H, Yokozaki H, Kuraoka K, Ito R, Yasui W. Promoter hypermethy-lation of MGMT is associated with protein loss in gastric carcinoma. Int J Cancer. 2001;93:805-809.  [PubMed]  [DOI]
14.  Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002;109:113-124.  [PubMed]  [DOI]
15.  Satoh A, Toyota M, Itoh F, Sasaki Y, Suzuki H, Ogi K, Kikuchi T, Mita H, Yamashita T, Kojima T. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res. 2003;63:8606-8613.  [PubMed]  [DOI]
16.  Obata T, Toyota M, Satoh A, Sasaki Y, Ogi K, Akino K, Suzuki H, Murai M, Kikuchi T, Mita H. Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. Clin Cancer Res. 2003;9:6410-6418.  [PubMed]  [DOI]
17.  Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator pheno-type in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681-8686.  [PubMed]  [DOI]