述评 Open Access
Copyright ©The Author(s) 2005. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2005-08-15; 13(15): 1801-1803
在线出版日期: 2005-08-15. doi: 10.11569/wcjd.v13.i15.1801
重视瘦素在肝纤维化领域中的研究
李定国, 刘清华
李定国, 刘清华, 上海第二医科大学附属新华医院消化科 上海市 200092
李定国, 男, 1946-9-6生, 上海市人, 汉族, 博士、教授、博士生导师, 现任上海第二医科大学附属新华医院内科学教研室主任、消化内科主任, 上海第二医科大学消化疾病第三研究室主任、临床流行病学研究中心主任, 主要从事慢性肝病的基础及临床研究工作.
通讯作者: 李定国, 200092, 上海市杨浦区控江路1665号, 上海第二医科大学附属新华医院消化内科. dingguo_li@hotmail.com
电话: 021-65790000 传真: 021-55055127
收稿日期: 2005-03-31
修回日期: 2005-04-04
接受日期: 2005-04-09
在线出版日期: 2005-08-15

瘦素(leptin)是一种由肥胖基因编码的分泌型蛋白质, 具有广泛的生物学效应. 近年来的研究显示, 瘦素与肝纤维化形成之间有密切联系. 在慢性病毒性肝炎、酒精性肝硬化、原发性胆汁性肝硬化等患者中均可见血清瘦素水平异常. 目前国内外研究主要集中于瘦素与活化肝星状细胞(HSC)间的关系、瘦素对细胞因子分泌的调控, 以及瘦素对肝纤维化胶原产生及降解的影响. 本文从流行病学入手, 阐述瘦素促进肝纤维化形成的证据, 以探讨瘦素参与肝纤维化的作用机制, 强调瘦素在该领域中的研究已初见端倪, 必须引起我们足够的重视.

关键词: 瘦素; 肝纤维化

引文著录: 李定国, 刘清华. 重视瘦素在肝纤维化领域中的研究. 世界华人消化杂志 2005; 13(15): 1801-1803
N/A
N/A
Correspondence to: N/A
Received: March 31, 2005
Revised: April 4, 2005
Accepted: April 9, 2005
Published online: August 15, 2005

N/A

Key Words: N/A


0 引言

瘦素(leptin)的命名源于希腊文"leptos", 是指肥胖(obese, ob)基因编码的分泌性蛋白质, 由167个氨基酸组成[1]. 自1994年Zhang et al[2]首次成功定位克隆小鼠ob基因及人类同源序列以来, 对瘦素的研究已由单纯的食欲控制和能量消耗[3-4], 扩展到包括免疫应答、胰岛素分泌、血管内皮发生和损伤愈合等全身各个病理生理过程[5-13]. 最近, 一系列临床及基础研究还显示瘦素可能参与肝纤维化形成, 相关机制的研究正逐步展开.

1 流行病学资料

有统计资料显示: 肥胖人群肝硬化发病率是普通人群的6倍, 而且肥胖是多种慢性肝病(如丙型肝炎、酒精性肝病、非酒精性脂肪性肝病等)肝纤维化发展的重要危险因子[14-23], 提示作为肥胖调控蛋-瘦素, 可能与肝纤维化形成存在某种必然联系.

目前, 有关临床流行病学资料有以下一些特点: (1)慢性肝病患者血清瘦素水平明显异常; (2)血清瘦素水平与慢性肝病的严重程度有关. 但是, 可能受到所选人群、肝病病因及严重程度、机体脂肪含量评估方法等因素影响, 上述特点各家报道结论相佐.

2 瘦素促进肝纤维化形成的直接证据

2001年, Ikejima et al[24]首次证实瘦素在肝纤维化形成中起促进作用. 他们发现在四氯化碳(carbon tetrachloride, CCl4)或硫代乙酰胺(thioacetamide, TAA)诱导的C57Bl/6雄性小鼠急、慢性肝损伤模型中, 一定浓度外源性瘦素能明显上调a1(Ⅰ)前胶原基因表达, 促进促纤维化因-转化生长因子-b1(transforming growth factor-b1, TGF-b1)以及肝星状细胞(hepatic stellate cell, HSC)活化标志-a-平滑肌肌动蛋白(a-smooth muscle actin, a-SMA)表达.

此后, 多个研究小组先后观察到在瘦素先天缺乏的ob/ob小鼠中, 由CCl4、TAA或曼氏血吸虫诱导的肝组织纤维化反应明显低于野生型小鼠, 肝组织中的a1(Ⅰ)前胶原、TGF-b1基因表达明显受到抑制; 给予ob/ob小鼠注射外源性瘦素使其回复生理水平, 则肝组织纤维化程度与野生型小鼠相当[25-27], 有力地印证瘦素是肝纤维化发生发展的促进因子.

3 作用机制探讨

瘦素的生物学效应是由瘦素受体(leptin receptor, ob-R)介导的. ob-R为单跨膜细胞表面受体, 目前已发现的有全长型(ob-Rb)及不同剪接(ob-Ra、c、d、f、e)等至少6种形式, 其中ob-Rb是主要的功能性受体. 瘦素与靶细胞表面ob-Rb结合后, 通过激活Janus激酶/信号转导与转录激活因子(janus kinase/signal transducer and activator of transcription, JAK/STAT)途径调控靶基因转录, 也可经分裂素活化蛋白激酶(mitogen-activated protein kinase, MAPK)和磷酸肌醇3激酶(phosphatidylinositol 3-kinase, PI3-K)等通路传递信号[28-37].

早期研究显示活化的HSC能表达瘦素, 然而在HSC仅作为瘦素的来源抑或是瘦素自分泌/旁分泌直接效应细胞这一问题上仍存在分歧. Ikejima et al[38-39]在进行瘦素促肝纤维化作用机制及相关细胞学基础研究时发现:HSC表达的是ob-Ra, 非功能性ob-Rb; 外源性瘦素(100 nmol/L)不能促进HSC的STAT3磷酸化与a1(Ⅰ)前胶原基因表达; 从Zucker大鼠(fa/fa大鼠, 因ob-R基因突变而对瘦素抵抗)和正常大鼠分离的HSC在体外以相同的方式活化, 结合肝窦内皮细胞(sinusoidal endothelial cell, SEC)、库普弗细胞(Kupffer cell, KC)表面均表达ob-Rb, 对外源性瘦素表现为以TGF-b1高表达为特点的应答反应, 推测HSC是瘦素的来源而不是直接效应细胞. 然而, Saxena et al[40-41]认为鉴于正常大鼠HSC及其细胞株均能表达ob-Rb; 在外源性瘦素刺激下, HSC的a2(Ⅰ)前胶原基因及STAT3磷酸化增加; 在JAK2阻滞剂AG490阻断ob-Rb磷酸化后, 瘦素诱导的HSC增殖受到抑制, 提示瘦素直接作用于HSC促进肝纤维化发生.

HSC活化受细胞信号网络系统的调控, 其中TGF-b1起关键性作用. Tang et al[42-43]发现: 外源性瘦素(100 nM)能促进人HSC细胞株表达TGF-b1Ⅱ型受体; 与TGF-b1同时作用于细胞株时, 将使TGF-b1促胶原合成的效应放大至单独作用时的3.5倍, 显示瘦素致肝纤维化机制与TGF-b1密切相关, 二者具有协同作用.

总之, 瘦素与肝纤维化的研究已初见端倪, 必须引起我们重视. 但是, 由于国内外的研究尚处于起步阶段, 要解答"瘦素在肝纤维化形成中的作用到底有多大", 有赖于对其作用机制进行深入研究. 我们认为今后的研究方向有两个方面: (1)开展大规模、多病因、多层次的流行病学调查, 在设计时应摒弃性别、体重、肥胖、糖尿病、肾功能不全等混杂因子的干扰; (2)开展瘦素与细胞信号网络系统的基础研究, 在研究中可采用基因敲除、小RNA干扰等技术控制相互间的影响. 因此, 探明瘦素与肝纤维化的确切关系, 有望揭示肝纤维化机制新的切入点, 对肝纤维化防治具有重要的临床和理论价值.

编辑:张海宁

1.  Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: a review. J Anim Sci. 1998;76:1405-1420.  [PubMed]  [DOI]
2.  Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425-432.  [PubMed]  [DOI]
3.  Clement K, Boutin P, Froguel P. Genetics of obesity. Am J Pharmacogenomics. 2002;2:177-187.  [PubMed]  [DOI]
4.  Boutin P, Froguel P. Genetics of human obesity. Best Pract Res Clin Endocrinol Metab. 2001;15:391-404.  [PubMed]  [DOI]
5.  Considine RV. Human leptin: an adipocyte hormone with weight-regulatory and endocrine functions. Semin Vasc Med. 2005;5:15-24.  [PubMed]  [DOI]
6.  Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol. 2005;174:6820-6828.  [PubMed]  [DOI]
7.  Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J Surg Res. 2005;126:121-129.  [PubMed]  [DOI]
8.  Tasdelen A, Algin C, Ates E, Kiper H, Inal M, Sahin F. Effect of leptin on healing of colonic anastomoses in rats. Hepatogastroenterology. 2004;51:994-997.  [PubMed]  [DOI]
9.  Peelman F, Iserentant H, Eyckerman S, Zabeau L, Tavernier J. Leptin, immune responses and autoimmune disease. Perspectives on the use of leptin antagonists. Curr Pharm Des. 2005;11:539-548.  [PubMed]  [DOI]
10.  Matarese G, Sanna V, Fontana S, Zappacosta S. Leptin as a novel therapeutic target for immune intervention. Curr Drug Targets Inflamm Allergy. 2002;1:13-22.  [PubMed]  [DOI]
11.  Sánchez-Margalet V, Martín-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol. 2003;133:11-19.  [PubMed]  [DOI]
12.  Sharma AM, Chetty VT. Obesity, hypertension and insulin resistance. Acta Diabetol. 2005;42 Suppl 1:S3-S8.  [PubMed]  [DOI]
13.  Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes. 2004;53 Suppl 1:S152-S158.  [PubMed]  [DOI]
14.  Ben-Ari Z, Schafer Z, Sulkes J, Manhaim V, Tur-Kaspa R, Fainaru M. Alterations in serum leptin in chronic liver disease. Dig Dis Sci. 2002;47:183-189.  [PubMed]  [DOI]
15.  Onodera K, Kato A, Suzuki K. Serum leptin concentrations in liver cirrhosis: relationship to the severity of liver dysfunction and their characteristic diurnal profiles. Hepatol Res. 2001;21:205-212.  [PubMed]  [DOI]
16.  Campillo B, Sherman E, Richardet JP, Bories PN. Serum leptin levels in alcoholic liver cirrhosis: relationship with gender, nutritional status, liver function and energy metabolism. Eur J Clin Nutr. 2001;55:980-988.  [PubMed]  [DOI]
17.  Nakamuta M, Tada S, Uchimura K, Enjoji M, Kinukawa N, Iwamoto H, Sugimoto R, Shimada M, Ohashi M, Sugimachi K. Serum leptin levels in patients with nonalcoholic chronic liver disease. Hepatogastroenterology. 2001;48:527-532.  [PubMed]  [DOI]
18.  Greco AV, Mingrone G, Favuzzi A, Capristo E, Gniuli D, Addolorato G, Brunani A, Cavagnin F, Gasbarrini G. Serum leptin levels in post-hepatitis liver cirrhosis. J Hepatol. 2000;33:38-42.  [PubMed]  [DOI]
19.  Testa R, Franceschini R, Giannini E, Cataldi A, Botta F, Fasoli A, Tenerelli P, Rolandi E, Barreca T. Serum leptin levels in patients with viral chronic hepatitis or liver cirrhosis. J Hepatol. 2000;33:33-37.  [PubMed]  [DOI]
20.  Angulo P, Alba LM, Petrovic LM, Adams LA, Lindor KD, Jensen MD. Leptin, insulin resistance, and liver fibrosis in human nonalcoholic fatty liver disease. J Hepatol. 2004;41:943-949.  [PubMed]  [DOI]
21.  Piche T, Vandenbos F, Abakar-Mahamat A, Vanbiervliet G, Barjoan EM, Calle G, Giudicelli J, Ferrua B, Laffont C, Benzaken S. The severity of liver fibrosis is associated with high leptin levels in chronic hepatitis C. J Viral Hepat. 2004;11:91-96.  [PubMed]  [DOI]
22.  Crespo J, Rivero M, Fábrega E, Cayón A, Amado JA, García-Unzeta MT, Pons-Romero F. Plasma leptin and TNF-alpha levels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig Dis Sci. 2002;47:1604-1610.  [PubMed]  [DOI]
23.  Chitturi S, Farrell G, Frost L, Kriketos A, Lin R, Fung C, Liddle C, Samarasinghe D, George J. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36:403-409.  [PubMed]  [DOI]
24.  Ikejima K, Honda H, Yoshikawa M, Hirose M, Kitamura T, Takei Y, Sato N. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology. 2001;34:288-297.  [PubMed]  [DOI]
25.  Potter JJ, Mezey E. Leptin deficiency reduces but does not eliminate the development of hepatic fibrosis in mice infected with Schistosoma mansoni. Liver. 2002;22:173-177.  [PubMed]  [DOI]
26.  Honda H, Ikejima K, Hirose M, Yoshikawa M, Lang T, Enomoto N, Kitamura T, Takei Y, Sato N. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology. 2002;36:12-21.  [PubMed]  [DOI]
27.  Potter JJ, Rennie-Tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol. 2003;38:281-288.  [PubMed]  [DOI]
28.  Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res. 2004;59:287-304.  [PubMed]  [DOI]
29.  Bates SH, Myers MG Jr. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol Metab. 2003;14:447-452.  [PubMed]  [DOI]
30.  Ahima RS, Osei SY. Leptin signaling. Physiol Behav. 2004;81:223-241.  [PubMed]  [DOI]
31.  Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flier E, Myers MG Jr. LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes. 2004;53:3067-3073.  [PubMed]  [DOI]
32.  Craig J, Zhu H, Dyce PW, Petrik J, Li J. Leptin enhances oocyte nuclear and cytoplasmic maturation via the mitogen-activated protein kinase pathway. Endocrinology. 2004;145:5355-5363.  [PubMed]  [DOI]
33.  Shigemura N, Miura H, Kusakabe Y, Hino A, Ninomiya Y. Expression of leptin receptor (Ob-R) isoforms and signal transducers and activators of transcription (STATs) mRNAs in the mouse taste buds. Arch Histol Cytol. 2003;66:253-260.  [PubMed]  [DOI]
34.  Jin X, Fukuda N, Su J, Takagi H, Lai Y, Lin Z, Kanmatsuse K, Wang ZW, Unger RH. Effects of leptin on endothelial function with OB-Rb gene transfer in Zucker fatty rats. Atherosclerosis. 2003;169:225-233.  [PubMed]  [DOI]
35.  Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421:856-859.  [PubMed]  [DOI]
36.  Muraoka O, Xu B, Tsurumaki T, Akira S, Yamaguchi T, Higuchi H. Leptin-induced transactivation of NPY gene promoter mediated by JAK1, JAK2 and STAT3 in the neural cell lines. Neurochem Int. 2003;42:591-601.  [PubMed]  [DOI]
37.  Zhao Y, Sun R, You L, Gao C, Tian Z. Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem Biophys Res Commun. 2003;300:247-252.  [PubMed]  [DOI]
38.  Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang YJ, Lang T, Fukuda T, Yamashina S, Kitamura T. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002;122:1399-1410.  [PubMed]  [DOI]
39.  Ikejima K, Lang T, Zhang YJ, Yamashina S, Honda H, Yoshikawa M, Hirose M, Enomoto N, Kitamura T, Takei Y. Expression of leptin receptors in hepatic sinusoidal cells. Comp Hepatol. 2004;3 Suppl 1:S12.  [PubMed]  [DOI]
40.  Saxena NK, Titus MA, Ding X, Floyd J, Srinivasan S, Sitaraman SV, Anania FA. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J. 2004;18:1612-1614.  [PubMed]  [DOI]
41.  Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology. 2002;35:762-771.  [PubMed]  [DOI]
42.  Tang M, Potter JJ, Mezey E. Leptin enhances the effect of transforming growth factor beta in increasing type I collagen formation. Biochem Biophys Res Commun. 2002;297:906-911.  [PubMed]  [DOI]
43.  Tang M, Potter JJ, Mezey E. Activation of the human alpha1(I) collagen promoter by leptin is not mediated by transforming growth factor beta responsive elements. Biochem Biophys Res Commun. 2003;312:629-633.  [PubMed]  [DOI]