文献综述 Open Access
Copyright ©The Author(s) 2004. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2004-09-15; 12(9): 2181-2183
在线出版日期: 2004-09-15. doi: 10.11569/wcjd.v12.i9.2181
一氧化氮与坏死性小肠结肠炎
芦惠, 薛辛东
芦惠, 薛辛东, 中国医科大学附属第二医院儿科 辽宁省沈阳市 110004
通讯作者: 芦惠, 110004, 辽宁省沈阳市和平区三好街36号, 中国医科大学附属第二医院儿科. luhui6699@sina.com
电话: 024-23930619
收稿日期: 2004-06-19
修回日期: 2004-07-09
接受日期: 2004-07-22
在线出版日期: 2004-09-15

一氧化氮(NO)是具有多重效应的自由基信使分子, 在炎症、免疫反应及细胞凋亡等方面起重要作用. 现对一氧化氮在坏死性小肠结肠炎发病中的作用机制做一综述, 为临床更好地防治坏死性小肠结肠炎, 改善预后提供借鉴.

关键词: N/A

引文著录: 芦惠, 薛辛东. 一氧化氮与坏死性小肠结肠炎. 世界华人消化杂志 2004; 12(9): 2181-2183
N/A
N/A
Correspondence to: N/A
Received: June 19, 2004
Revised: July 9, 2004
Accepted: July 22, 2004
Published online: September 15, 2004

N/A

Key Words: N/A


0 引言

坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿期最常见和最严重的疾病之一. 早产、配方乳喂养、感染及缺氧[1-4]等诸多因素可导致此病. 由于肺表面活性物质的应用及医务人员综合素质的提高, 许多小早产儿得以存活, 但过去30年NEC的发病率并未下降[2-4], 原因是其发病机制尚不十分清楚. 1980年代以来, 随着分子生物学的迅速发展, 人类对NEC发病机制进行深入研究, 发现一氧化氮(nitric oxide, NO)与NEC的发生发展密切相关[3-5].

1 一氧化氮结构及活化

NO是具有多重效应的自由基信使分子, 是以L-精氨酸(L-Arg)为底物, 在还原型辅酶II(NADPH)、黄素单核苷酸(FMN)、黄素腺嘌呤二核苷酸(FAD)及四氢喋呤(BH4)等因子辅助下, 由一氧化氮合酶(nitric oxide synthase, NOS)催化生成. NOS作为NO的标志酶, 已被证实是一种NADPH-黄递酶, 他广泛存在于胃肠道非肾上腺素能非胆碱能(nonadrenergic-noncholinergic, NANC)神经元胞体、纤维及末梢内, 受刺激时产生NO.

据NOS的生物学特性及编码基因, 将其分为2类3型. 神经型(I型)nNOS和内皮型(III型)eNOS属于结构型或原生型NOS(cNOS), 为Ca2+或钙调蛋白依赖型, 可能仅在胞质钙离子浓度增高时产生NO, 反应迅速而短暂. nNOS主要分布于小肠壁的神经丛及神经纤维, 肌间神经丛分布较多, 黏膜下神经丛分布相对较少[6]. 根据cDNA5'端剪接体的不同, nNOS又可分为nNOSa(颗粒型)和nNOSb(胞质型), 小肠中nNOSa主要为胞质型[6]. eNOS主要分布于血管内皮及黏膜固有层细胞中, 在胃肠道平滑肌细胞内也存在eNOS.

巨噬细胞型(II型)属于诱生型NOS(iNOS), 为Ca2+非依赖型, 主要分布于巨噬细胞、肥大细胞、纤维母细胞等免疫细胞和组织细胞中. 内皮细胞和神经细胞等含有原生酶的细胞也能产生iNOS. 生理情况下iNOS基因不表达, 而在LPS、IL-1β、TNF-α、INF等刺激下产生NO, 持续时间较长, 可能与某些病理生理反应有关[7]. 左旋精氨酸类似物如NG-硝基-L-精氨酸甲酯(L-NAME), NG-硝基-L-精氨酸(L-NNA), NG-单甲基-L-精氨酸(L-NMMA)和N-亚胺基乙基-L-鸟氨酸(L-NIO)等为NOS抑制剂. 有研究表明, 小肠中90%以上是nNOS; 正常肠上皮滤泡细胞也存在iNOS, 但他不足NOS总活性的10%, 而eNOS在肠道中几乎测不出[8].

2 NO对肠道的生理效应
2.1 对肠道分泌、黏膜通透性及血流的影响

肠液及上皮细胞液的分泌是宿主抵御病原微生物、毒素和胆盐等刺激, 维持黏膜屏障完整性的重要因素. NO通过活化可溶性鸟苷酸环化酶(soluble guanylate cyclase, SGC)促进肠分泌[9]; 在肠道铁转运中, NO能改变细胞通透性和屏障功能, 从而调节微血管的通透性[10]. 另外, NO是有效的血管舒张剂, 在各种病因引起的肠损伤中, NO能增加黏膜血流, 维持适宜灌注, 从而缓冲酸性刺激、稀释毒素、促进黏膜的修复和再生[7,11].

2.2 细胞效应

NO的细胞效应主要表现在对中性粒细胞、肥大细胞和巨噬细胞的作用中: NO能抑制中性粒细胞[12]及内皮细胞[13]黏附分子的表达, 从而减少白细胞的黏附和动员; 研究发现, NOS抑制剂可促进肥大细胞脱颗粒, 可见NO通过抑制肥大细胞活性发挥抑炎效应[14]; NO亦可下调巨噬细胞源性细胞因子的产生[15]; 巨噬细胞iNOS诱导产生的NO是肠黏膜防御素的重要组成部分, 可抵御肠腔病原体的侵袭[16].

3 NO在NEC发病中的作用机制

cNOS催化生成的NO主要发挥神经递质和第二信使的作用: NO合成后立即释放, 以扩散方式到达靶细胞, 与SGC结合, 通过改变其空间构型提高酶活性, 使胃肠道黏膜细胞内cGMP生成增多, 继而激活cGMP蛋白激酶的钙泵功能, 降低胞内游离钙水平, 参与细胞间信息传递, 发挥生理效应. 正常情况下, cNOS处于自身活化状态, 能产生少量NO. 用非特异性NOS抑制剂L-NAME预处理, 抑制大鼠NO的生成, 可促进毛细血管渗出和中性粒细胞浸润, 加重血小板活化因子引起的肠损伤[17]. 表明内源性NO是维持肠道生理功能及肠道抗损伤的关键因素[3,7,17]. Qu et al[8]预先用特异性iNOS抑制剂S-异甲基硫脲、NO供体3-吗啉-斯得酮亚胺(3-morpholinosydnonimine)治疗, 发现肠道中cNOS活性与组织损伤程度呈负相关; 只有在cNOS具备较高活性时, iNOS抑制剂才能减轻血小板活化因子引起的损伤; 而NO供体可明显减轻血小板活化因子引起的肠损伤. 提示cNOS和iNOS在肠损伤中的作用不同.

正常情况下iNOS以无活性形式存在, 在炎症等病理条件下, LPS和IFN-γ或IFN-b、IFN-α共同作用, 通过二聚体化和磷酸化迅速被激活, 产生大量NO. 由iNOS产生的NO, 其作用仍存有争议. 尽管大量证据显示, 源自iNOS的NO具有促炎和致损伤作用[4,5,18]. 但也有研究表明: iNOS敲除小鼠通过促进中性粒细胞浸润, 反而加重肠损伤和炎症反应[19]. 应激时肾上腺素能神经兴奋, 肾上腺素分泌增加, 同时NANC神经受到抑制, 导致主要分布于NANC神经中的iNOS活性降低, 由其产生的NO也随之减少, 引起平滑肌收缩, 这可能是导致肠道运动障碍和黏膜受损的重要原因[20]. 提示在某些情况下iNOS可能具有防御功能. 因此, 一般认为其作用效果取决于NO的量: 小量NO具有生理和防御功能, 大量NO则具有促炎和致损伤作用[21].

iNOS催化生成的NO参与介导免疫反应并具有细胞毒作用. 过量NO可影响多种免疫活性物质的合成、分泌, 如TNF、INF-g、IL-1和IL-2等. 他们大多起局部作用, 部分起全身作用, 能够激活和放大免疫/炎症反应, 形成瀑布效应, 加重炎症和组织损伤; NO的细胞毒作用机制是通过生成过氧亚硝基阴离子(ONOO-) 和N2O3介导的间接作用, 因此在杀伤微生物和肿瘤细胞的同时, 对周围正常组织亦有损伤作用. (1)NO与O2- 反应生成ONOO-, 进一步分解为OH泛蚇O2- , ONOO- 可有效氧化蛋白质巯基、铁/硫中心, 硝基化蛋白质酪氨酸残基, 使蛋白质或酶失活, 并抑制呼吸链酶, 破坏线粒体结构, 使DNA链断裂, 启动脂质过氧化, 导致细胞和组织损伤[22-24]. (2)N2O3与巯基反应, 生成S-亚硝基硫醇(S-nitrosothiol), 可抑制某些蛋白质或酶的活性, 影响细胞代谢, 导致细胞死亡[25].

总之, NO是一种重要的黏膜炎症递质, 其作用取决于来源细胞、活性氧的协同作用及炎症进展程度. 临床研究显示出NEC患儿血浆L-Arg浓度[26]和肠组织NO水平发生改变[23], 许多新生动物模型亦证实NO在NEC发病机制中的重要作用[4,5,18], 并不断探求治疗NEC的新方法, 如应用特异性或非特异性NOS抑制剂S-异甲基硫脲或L-NAME [8,17]、抑炎因子IL-10[27]及L-Arg[28]、促红细胞生成素[29]等来抑制iNOS活性或改变NO浓度, 从而减轻肠损伤程度. 但所有这些均无法圆满解释为何NEC是新生儿特有的疾病. 宿主胃肠道防御机能不成熟, 肠系膜血流自身调节功能不完善, 可能是新生儿, 特别是早产儿易患NEC的内在因素[3,30]. 因此, 新生儿NEC的发病机制有待深入探讨和研究, 为人类更好防治NEC提供理论依据.

1.  Jilling T, Lu J, Jackson M, Caplan MS. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis. Pediatr Res. 2004;55:622-629.  [PubMed]  [DOI]
2.  Kafetzis DA, Skevaki C, Costalos C. Neonatal necrotizing enterocolitis: an overview. Curr Opin Infect Dis. 2003;16:349-355.  [PubMed]  [DOI]
3.  Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol. 2003;6:6-23.  [PubMed]  [DOI]
4.  Di Lorenzo M, Krantis A. Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation. Pediatr Surg Int. 2002;18:624-629.  [PubMed]  [DOI]
5.  Di Lorenzo M, Krantis A. Altered nitric oxide production in the premature gut may increase susceptibility to intestinal damage in necrotizing enterocolitis. J Pediatr Surg. 2001;36:700-705.  [PubMed]  [DOI]
6.  陈 延民, 段 柏林. 小肠内NOS分布及NO作用研究进展. 解剖科学进展. 2002;8:268-270.  [PubMed]  [DOI]
7.  Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med. 2000;109:150-158.  [PubMed]  [DOI]
8.  Qu XW, Rozenfeld RA, Huang W, Sun X, Tan XD, Hsueh W. Roles of nitric oxide synthases in platelet-activating factor-induced intestinal necrosis in rats. Crit Care Med. 1999;27:356-364.  [PubMed]  [DOI]
9.  Tamai H, Gaginella TS. Direct evidence for nitric oxide stimulation of electrolyte secretion in the rat colon. Free Radic Res Commun. 1993;19:229-239.  [PubMed]  [DOI]
10.  Luo CC, Chen HM, Chiu CH, Lin JN, Chen JC. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model. Biol Neonate. 2001;80:60-63.  [PubMed]  [DOI]
11.  Kitchen PA, Walters JR. Molecular and cellular biology of small-bowel mucosa. Curr Opin Gastroenterol. 2001;17:104-109.  [PubMed]  [DOI]
12.  Banick PD, Chen Q, Xu YA, Thom SR. Nitric oxide inhibits neutrophil beta 2 integrin function by inhibiting membrane-associated cyclic GMP synthesis. J Cell Physiol. 1997;172:12-24.  [PubMed]  [DOI]
13.  Davenpeck KL, Gauthier TW, Lefer AM. Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology. 1994;107:1050-1058.  [PubMed]  [DOI]
14.  Kanwar S, Wallace JL, Befus D, Kubes P. Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol. 1994;266:G222-G229.  [PubMed]  [DOI]
15.  Obermeier F, Gross V, Schölmerich J, Falk W. Interleukin-1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide. J Leukoc Biol. 1999;66:829-836.  [PubMed]  [DOI]
16.  Gobert AP, Mersey BD, Cheng Y, Blumberg DR, Newton JC, Wilson KT. Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J Immunol. 2002;168:6002-6006.  [PubMed]  [DOI]
17.  MacKendrick W, Caplan M, Hsueh W. Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat. Pediatr Res. 1993;34:222-228.  [PubMed]  [DOI]
18.  Nadler EP, Dickinson E, Knisely A, Zhang XR, Boyle P, Beer-Stolz D, Watkins SC, Ford HR. Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis. J Surg Res. 2000;92:71-77.  [PubMed]  [DOI]
19.  McCafferty DM, Mudgett JS, Swain MG, Kubes P. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology. 1997;112:1022-1027.  [PubMed]  [DOI]
20.  Takahashi A, Tomomasa T, Kaneko H, Watanabe T, Tabata M, Morikawa H, Tsuchida Y, Kuwano H. Intestinal motility in an in vivo rat model of intestinal ischemia-reperfusion with special reference to the effects of nitric oxide on the motility changes. J Pediatr Gastroenterol Nutr. 2001;33:283-288.  [PubMed]  [DOI]
21.  Mishima S, Xu D, Lu Q, Deitch EA. The relationships among nitric oxide production, bacterial translocation, and intestinal injury after endotoxin challenge in vivo. J Trauma. 1998;44:175-182.  [PubMed]  [DOI]
22.  Potoka DA, Nadler EP, Upperman JS, Ford HR. Role of nitric oxide and peroxynitrite in gut barrier failure. World J Surg. 2002;26:806-811.  [PubMed]  [DOI]
23.  Ford H, Watkins S, Reblock K, Rowe M. The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg. 1997;32:275-282.  [PubMed]  [DOI]
24.  Chan KL, Hui CW, Chan KW, Fung PC, Wo JY, Tipoe G, Tam PK. Revisiting ischemia and reperfusion injury as a possible cause of necrotizing enterocolitis: Role of nitric oxide and superoxide dismutase. J Pediatr Surg. 2002;37:828-834.  [PubMed]  [DOI]
25.  孙 素群, 许 霖水. 一氧化氮间接作用机制的研究进展. 生理科学进展. 2002;33:167-169.  [PubMed]  [DOI]
26.  Zamora SA, Amin HJ, McMillan DD, Kubes P, Fick GH, Bützner JD, Parsons HG, Scott RB. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr. 1997;131:226-232.  [PubMed]  [DOI]
27.  Kling KM, Kirby L, Kwan KY, Kim F, McFadden DW. Interleukin-10 inhibits inducible nitric oxide synthase in an animal model of necrotizing enterocolitis. Int J Surg Investig. 1999;1:337-342.  [PubMed]  [DOI]
28.  Akisu M, Ozmen D, Baka M, Habif S, Yalaz M, Arslanoglu S, Kultursay N, Bayindir O. Protective effect of dietary supplementation with L-arginine and L-carnitine on hypoxia/reoxygenation-induced necrotizing enterocolitis in young mice. Biol Neonate. 2002;81:260-265.  [PubMed]  [DOI]
29.  Kumral A, Baskin H, Duman N, Yilmaz O, Tatli M, Ozer E, Gökmen N, Genc S, Ozkan H. Erythropoietin protects against necrotizing enterocolitis of newborn rats by the inhibiting nitric oxide formation. Biol Neonate. 2003;84:325-329.  [PubMed]  [DOI]
30.  Chan KL, Ho JC, Chan KW, Tam PK. A study of gut immunity to enteral endotoxin in rats of different ages: a possible cause for necrotizing enterocolitis. J Pediatr Surg. 2002;37:1435-1440.  [PubMed]  [DOI]