基础研究 Open Access
Copyright ©The Author(s) 2004. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2004-03-15; 12(3): 689-693
在线出版日期: 2004-03-15. doi: 10.11569/wcjd.v12.i3.689
肝硬化大鼠门静脉高压症不同手术方式对其肝脏的影响
徐新保, 蔡景修, 董家鸿, 何振平, 韩本立, 冷希圣
徐新保, 冷希圣, 北京大学人民医院肝胆外科中心 北京市 100044
蔡景修, 董家鸿, 何振平, 韩本立, 中国人民解放军第三军医大学西南肝胆外科医院 重庆市 400038
徐新保, 男, 1968-11-06生, 河南省延津县人, 汉族, 1989年第三军医大学本科毕业, 1994年第三军医大学全军肝胆外科中心硕士研究生毕业, 2000年第三军医大学西南肝胆外科医院博士毕业. 现正在北京大学人民医院肝胆外科中心 从事博士后工作. 主要从事肝硬化、门静脉高压症及肝癌的临床和实验研究.
通讯作者: 徐新保, 100044, 北京市西直门南大街11号, 北京大学人民医院肝胆外科中心. x_xb@163.net
电话: 010-68792703
收稿日期: 2003-10-10
修回日期: 2003-10-25
接受日期: 2003-11-13
在线出版日期: 2004-03-15

目的: 评价门奇断流术(PAD)、肠腔分流术(MCS)、远端脾腔分流术(DSCS)对门体分流率(PSS)、肝脏功能、线粒体功能和抗氧化能力的影响, 为合理选择手术方式提供理论依据.

方法: 用CCl4/乙醇诱导大鼠肝硬化门脉高压症模型, 观察了不同术式(MCS、DSCS、PAD)的死亡率及手术前后肝功能、门体分流率(PSS)、肝细胞线粒体功能和超微结构及肝组织SOD活性、巯基水平、LPO含量的变化, 并探讨了线粒体功能与抗氧化能力的内在关系.

结果: 肝硬化门脉高压时, PSS远高于正常, 肝细胞线粒体功能、抗氧化能力均下降; 肠腔分流(MCS)组术后肝细胞线粒体功能、抗氧化能力进一步下降且恢复慢; 选择性远端脾腔分流术(DSCS)组和门奇断流术(PAD)组的上述指标变化小且恢复较快, 其中DSCS组恢复更快且死亡率低.

结论: 选择性分流术(DSCS)可能是较理想的术式.

关键词: N/A

引文著录: 徐新保, 蔡景修, 董家鸿, 何振平, 韩本立, 冷希圣. 肝硬化大鼠门静脉高压症不同手术方式对其肝脏的影响. 世界华人消化杂志 2004; 12(3): 689-693
Effects of different operations on cirrhotic portal hypertensive liver in rats
Xin-Bao Xu, Jing-Xiu Cai, Jia-Hong Dong, Zhen-Ping He, Ben-Li Han, Xi-Sheng Leng
Xin-Bao Xu, Xi-Sheng Leng, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
Jing-Xiu Cai, Jia-Hong Dong, Zhen-Ping He, Ben-Li Han, Hepatobiliary Surgery Center, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
Correspondence to: Dr. Xin-Bao Xu, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China. x_xb@163.net
Received: October 10, 2003
Revised: October 25, 2003
Accepted: November 13, 2003
Published online: March 15, 2004

AIM: To evaluate respectively the effects of portaazygous disconnection (PAD), mesocaval shunt (MCS) and distal splenocaval shunt (DSCS) on the portasytemic shunting (PSS), hepatic function (HF), hepatic mitochondrial respiratory function (HMRF) and its ultrastructure, anti-oxidation ability (HAOA) and lipoperoxide (LPO), so as to provide theoretical basis to select a suitable operation.

METHODS: Using the cirrhotic portal hypertensive model induced by CCl4/ethanol in Wristar rats, we investigated PSS, HF, HMRF and its HAOA and LPO during three wks after MCS, DSCS and PAD.

RESULTS: After MCS, the PSS were further increased, HF, HMRF and HAOA were significantly decreased, and LPO increased. Hepatic mitochondrial ultrastructure showed severely damaged. Only a little improvement was found on the third wk. After DSCS and PAD, above mentioned indexes were less influenced, and they were restored a little more quickly in DSCS groups than that in PAD groups. During the first postoperative wk, the PAD group showed the highest mortality.

CONCLUSION: DSCS may be a desirable operation among the three kinds of operation.

Key Words: N/A


0 引言

肝硬化时, 机体能量代谢发生异常[1], 主要表现为脂肪供能显著增加而糖供能相应减少. 能量代谢的微观机制表现为线粒体结构的异常和功能的显著下降[2-9]: 线粒体蛋白含量下降; Ⅳ态呼吸率升高[5], 呼吸控制比下降, 合成ATP能力降低, 导致肝细胞能荷下降; 电子传递链活性下降; 氧耗量下降可达40%以上; 葡萄糖合成(按每个线粒体的体积计算)可减少60%以上. 肝硬化门脉高压症也伴有肝脏抗氧化机制受损, 表现为肝组织谷光甘肽(GSH)含量、GSH-Px (谷光甘肽过氧化物酶)活性[10]和超氧化物歧化酶(SOD)活性[11]均下降. 同时, 自由基损伤加重, 肝组织脂质过氧化物(LPO)明显高于正常人[12-13]. 但也有报道LPO变化不明显者[14].

目前, 外科手术仍然是治疗肝硬化门脉高压症的重要手段[15-17]. 据认为, 线粒体损害会使机体产生对胰岛素的抵抗[18]. 肝脏线粒体结构和功能的正常有赖于门脉有效血流量及门脉血中的胰岛素等肝营养因子[19-21]. 因为胰岛素等营养因子能够部分纠正硬化肝脏异常的基因表达[22], 改善营养物质的吸收[23-24], 部分减轻肝硬化的程度[25]. 已知门体分流能引起和加重能量物质代谢障碍[26-30], 这可能与肝脏线粒体结构和功能遭到进一步破坏有一定关系. 我们研究大鼠肝硬化门脉高压症及不同手术方式对其门体分流率、肝脏功能、线粒体功能和抗氧化能力的影响, 并探讨了肝脏线粒体功能与抗氧化能力之间的内在联系, 旨在从多方面综合评价各种手术方式的治疗价值, 为临床上合理选择手术方式提供理论依据.

1 材料和方法
1.1 材料

采用CC14/乙醇诱导Wistar大鼠形成肝硬化门脉高压模型[31]. 模型制成后正常饲养3 wk, 再分为3组, 在腹腔麻醉下(10 g/L戊巴比妥钠30 mg/kg), 分别行肠腔侧侧分流术(MCS)、选择性远端脾腔分流术(DSCS)[32]和门奇断流术(PAD). 手术完成前后各测门压力1次. 每组观察术前及术后1、2、3 wk共3个时相点, 每组每个时相点保证8-10只鼠.

1.2 方法

测谷丙转氨酶(ALT)、总蛋白(TP)、白蛋白(ALB)、球蛋白(G)和白/球比值(A/G); 肝脏线粒体呼吸功能检测II态呼吸速率(S3)和IV态呼吸速率(S4), 计算呼吸控制率(RCR= S3/S4)和磷氧比(P/O)[33]; 肝组织ATP含量采用荧光素酶法测定[34]; 门体分流率(PSS)测定采用放射微球法[35]; 肝组织总巯基(T-SH)、非蛋白巯基(NP-SH)和蛋白巯基(P-SH)采用光谱法测定[36]; 肝组织超氧化物歧化酶(SOD)采用光谱法测定[37]; 肝组织脂质过氧化物(LPO)含量采用荧光分光光度计法测定[38]; 肝组织学检查: 光镜及透射电镜检查.

统计学处理 以mean±SD表示. 进行方差分析检验、直线相关与回归分析, 以P<0.05为显著性界限.

2 结果

模型制成后见肝脏缩小呈结节状. 光镜下见典型假小叶结构. 电镜下见狄氏间隙有大量成束排列的胶原纤维; 部分线粒体嵴紊乱, 但结构基本完整; 未见或极少有糖原颗粒. 自由门脉压力(FPP): 硬化组(CL)显著高于正常组(NL)(1.45±0.08 kPa vs 0.77±0.04 kPa, P<0.01). MCS组术后超微结构改变明显, 可见肝脏部分线粒体肿胀、嵴排列紊乱、断裂或消失、空泡化甚至崩解、髓鞘样结构形成, 个别核染色质边集、核膜溶解, DSCS组、PAD组术后肝组织超微结构与CL组相比较变化不明显.

2.1 肝代谢指标

肝硬化门脉高压时, PSS远高于正常, 肝细胞线粒体功能和抗氧化能力下降; 肠腔分流(MCS)术后肝细胞线粒体功能、抗氧化能力进一步下降且恢复慢; 选择性远端脾腔分流术(DSCS)组和门奇断流术(PAD)组的上述指标变化小且恢复较快, 其中DSCS组恢复更快且死亡率低. 详见表1-7.

表1 SD大鼠肝硬化手术后FPP的变化(n = 10, mean±SD, kPa).
手术MCSDSCSPAD
1.46±0.071.45±0.051.45±0.06
1.10±0.03b1.41±0.041.43±0.05
表2 SD大鼠肝硬化手术死亡情况(n = 10,%).
术式n术中1 wk2 wk3 wk1-3 wk合计
MCS585 8.62 3.41 1.72 3.45 8.610 17.2
DSCS521 1.9a1 1.91 1.90 0.02 3.83 5.8a
PAD720 0.0a17 23.6bd4 5.62 2.823 31.9bd23 31.9bd
表3 SD鼠肝硬化手术后PSS的变化(n = 8,%).
术式术前
术后(wk)
NLCL123
MCS75.0±7.6b81.8±7.0b86.7±5.9bc
DSCS0.9±0.316.3±3.510.2±2.9ad11.6±2.7d15.1±3.3dc
PAD9.3±2.7ad10.0±2.8d13.9±3.1dc
表4 SD大鼠肝硬化手术后肝功能的变化(n = 10).
分组ALT(Iu/L)TP(g/L)ALB(g/l)G (g/L)A/G
NL12±6b72.6±3.3a35.6±2.5b37.0±2.50.97±0.13b
CL30±767.0±2.426.7±2.740.3±2.70.67±0.11
MCS153±9b59.2±4.2b20.5±3.3b38.7±3.30.53±0.10
DSCS131±8d63.3±3.424.2±2.739.2±3.10.62±0.10
PAD166±14bf58.1±3.6be22.0±2.3a36.1±2.80.61±0.09
MCS257±10b56.1±5.0b18.5±2.6b37.6±4.70.50±0.10a
DSCS231±7d64.2±3.6d25.0±2.2d39.2±3.20.64±0.09
PAD248±7bf60.4±2.9a23.3±2.5d37.1±3.10.63±0.10
MCS361±11b53.7±5.0b16.9±1.8b36.8±4.80.47±0.09a
DSCS331±7d64.8±3.2d25.5±2.5d39.3±3.40.66±0.10d
PAD331±7d64.2±3.5d25.3±2.7d38.9±3.10.66±0.10d
表5 SD大鼠肝硬化手术后肝脏线粒体功能的变化(n = 8).
分组S3 S4
RCRP/OATP(mol/g)
nmolO2/min/mg
NL125.03±13.4830.29±2.36b4.12±0.23b1.74±0.08b2.25±0.15b
CL115.05±3.8238.66±2.782.99±0.251.57±0.061.45±0.29
MCS1106.05±13.7755.00±4.98b1.93±0.23b1.25±0.05b0.38±0.10b
DSCS1118.65±0.3941.34±3.46d2.88±0.20d1.53±0.05d0.95±0.08bd
PAD1115.15±4.7046.66±3.93bd2.48±0.19bed1.34±0.11be0.93±0.09bd
MCS2111.86±4.7649.26±1.72b2.23±0.18b1.33±0.10b0.68±0.08b
DSCS2113.08±6.2738.56±1.67 d2.94±0.25d1.56±0.04d1.38±0.24d
PAD2113.94±4.9342.26±3.37d2.73±0.23d1.51±0.08d1.35±0.23d
MCS3113.14±6.0944.58±1.99b2.54±0.16b1.36±0.06b0.92±0.08b
DSCS3133.23±7.5338.48±1.47d2.95±0.24c1.56±0.05d1.43±0.29d
PAD3111.53±7.3438.50±2.10d2.91±0.26c1.57±0.15d1.42±0.28d
表6 SD大鼠肝硬化手术后肝组织巯基含量的变化(n = 8, mean±SD, mol/g).
组别T-SHNP-SHP-SH
NL28.20±2.25b8.29±0.69a19.92±2.67a
CL23.88±3.716.43±0.9217.42±2.45
MCS113.24±1.51b4.84±1.26a8.40±1.44b
DSCS121.14±2.14 bd6.56±0.40d14.58±2.23bd
PAD117.96±1.84 bdf4.31±0.85bf13.65±1.59bd
MCS217.50±1.80b5.26±1.6512.24±2.06b
DSCS223.40±2.69d5.95±1.6917.46±1.43d
PAD220.82±2.89 bde6.73±0.7414.08±1.08bf
MCS317.65±2.98b4.80±1.23a12.84±1.75b
DSCS323.63±2.59d6.34±1.2017.29±1.11d
PAD321.35±2.07 ade6.45±0.97c14.90±1.39be
表7 SD大鼠肝硬化手术后肝组织SOD活性和LPO含量的变化(u/mg) (n = 8, mean±SD).
指标术式术前
术后(wk)
NLCL123
MCS66.45±26.74b124.58±16.54b161.56±8.77b
SOD(u/mg)DSCS238.16±16.94b193.59±13.80135.06±11.48bd163.89±8.13bd191.22±11.54d
PAD135.71±12.28bd162.51±8.45bd191.70±10.93d
MCS0.39±1.45b5.78±0.31b4.44±0.35b
LPO(mmol/g)DSCS2.36±0.29b3.35±0.464.46±0.36bd3.44±0.42d3.37±0.43d
PAD4.54±0.39bd3.47±0.39d3.40±0.42d
2.2 手术组综合相关分析

将所有手术治疗的大鼠作为一个总体, 对上述指标进行分析, 结果发现: RCR与ATP、T-SH、SOD均呈显著正相关, r分别为0.76、0.81、0.72, P值均为0.0 000; ATP与T-SH、SOD呈显著正相关, r分别为0.77、0.77, P值均为0.0 000; T-SH与SOD呈显著正相关(r = 0.80, P = 0.0 000); LPO与RCR、ATP、T-SH及SOD均呈显著负相关, r分别为-0.53、-0.58、-0.67及-0.69, P值均为0.0 000.

3 讨论

据文献报道, CCl4诱导的肝硬化门脉高压症大鼠具备了人类肝硬化的绝大多数病理特征, 其能量代谢特点和抗氧化能力变化也类似于人类肝硬化[4-6,14,18-21]. 因此, 本实验采用该模型是合理的.

目前, 晚期肝硬化门脉高压症的外科治疗主要有断流术、分流术、TIPS (transjugular intrahepatic portosystemic shunt)和肝移植术. 在我国, 断流术和门体分流术依然是最主要的外科手术方式. 因此, 我们对常用的三种手术方式进行了比较全面的实验研究. PAD组术后死亡率显著高于MCS组和DSCS组, MCS组又显著高于DSCS组. PAD组术后1 wk内死亡较多主要与手术破坏了胃的神经支配和血供, 导致急性胃缺血、胃潴留、胃扩张和胃坏死有关, 当然与脾切除后免疫功能下降所致的感染也有关系[39]. MCS组死亡原因主要是门脉血流丧失过多所致的肝衰[26-30]. DSCS组死亡率最低, 这与他有效地保存了门脉血流量[32]和脾脏免疫功能有关. 各手术组术后3 wk时的PSS均显著高于1wk时的PSS, 这与新的侧枝循环形成及/吻合口扩大和断流(含DSCS时的脾胰断流)不彻底[40]有关.

肝硬化本身就可引起线粒体结构和功能的显著下降[1-2,4-8]. 肝硬化门脉高压症时所伴发的自发性门体分流减少了肝脏有效血流量, 使肝脏对能量物质吸收障碍, 加重线粒体功能障碍[6,9,13,21,41-43], 因为门脉血中存在来自肠道和胰腺的激素及营养因子. 正常肝脏至少要接纳20%的从胰腺回流来的血液才能维持肝线粒体氧化磷酸化的最低需要[44]. 门静脉血流减少或外科性门体分流可导致正常肝糖原含量、cAMP和细胞色素P450含量降低, 引起线粒体功能下降[21,45-47], 引起或加重肝性脑病[48]. MCS组术后肝脏线粒体功能、ATP含量、巯基水平及SOD活性基本上均进一步显著下降, 肝功能恶化, LPO含量显著升高, 到术后3 wk上述指标仍未恢复. 而DSCS组、PAD组的上述指标变化较小, 至术后2 wk或3 wk大多恢复; 其中DSCS组恢复更快些. 各组的线粒体功能变化与其超微结构改变基本一致. 各手术组肝脏线粒体功能与肝组织ATP含量、SOD活性及巯基含量之间均呈显著正相关, 与LPO含量呈显著负相关. MCS组术后发生的上述变化与其向肝门脉血流的大量丧失有关. MCS组的PSS于术后陡然增加了近5倍, 致使肝脏有效血流量锐减, 硬变肝脏处于低灌流、甚至缺氧状态, 能量基质吸收减少, 进一步损害了其线粒体结构和功能; 同时激发肝脏氧自由基(OFR)生成增加, LPO升高; 由于合成减少和消耗增加, SOD活性和巯基水平下降. 由于上述变化, 细胞膜性结构进一步受损, 不能维持离子的正常运转, 导致细胞外Na+、Ca2+等离子大量流入细胞内, 线粒体内Ca2+也随之增加. Ca2+的超负荷引起线粒体肿胀, 以至于空化、崩解或形成髓鞘样结构. MCS术后肠系膜静脉系统压力下降, 可引起一些毒素吸收增加[49], 加上肝脏解毒功能下降, 这些毒素也可不同程度地破坏线粒体功能. MCS术后的高胆酸血症也可损害线粒体功能.

DSCS组和PAD组术后维护了向肝门脉血流灌注[28], 因此, 其线粒体功能和抗氧化能力受到了较小的影响. DSRS与其他非选择性分流相比, 能够较好地保护肝脏功能[50]. PAD组由于切除了脾脏, 硬变肝脏承担了更多的过滤、解毒及免疫等功能, 因此, 抗氧化能力恢复较SDCS组缓慢. MCS组术后向肝门脉血流灌注锐减, 肝功能、肝脏线粒体功能及抗氧化能力进步一下降, 术后3 wk各指标仍未恢复. DSCS组及PAD组的上述指标变化较小且恢复较快, 其中DSCS组恢复更快些. PAD组术后近期死亡率高. 上述分析说明DSCS可能是较理想的术式, 也说明选择性分流较好地维护了硬变肝脏的线粒体功能和抗氧化能力.

编辑: N/A

1.  Tajika M, Kato M, Mohri H, Miwa Y, Kato T, Ohnishi H, Moriwaki H. Prognostic value of energy metabolism in patients with viral liver cirrhosis. Nutrition. 2002;18:229-234.  [PubMed]  [DOI]
2.  Perseghin G, Mazzaferro V, Benedini S, Pulvirenti A, Coppa J, Regalia E, Luzi L. Resting energy expenditure in diabetic and nondiabetic patients with liver cirrhosis: relation with insulin sensitivity and effect of liver transplantation and immunosuppressive therapy. Am J Clin Nutr. 2002;76:541-548.  [PubMed]  [DOI]
3.  Poon RT, Fan ST. Clinical implications of altered energy metabolism in patients with cirrhosis. Nutrition. 2002;18:283-284.  [PubMed]  [DOI]
4.  Cheng XD, Jiang XC, Liu YB, Peng CH, Xu B, Peng SY. Effect of ischemic preconditioning on P-selectin expression in hepatocytes of rats with cirrhotic ischemia-reperfusion injury. World J Gastroenterol. 2003;9:2289-2292.  [PubMed]  [DOI]
5.  Lei DX, Peng CH, Peng SY, Jiang XC, Wu YL, Shen HW. Safe upper limit of intermittent hepatic inflow occlusion for liver resection in cirrhotic rats. World J Gastroenterol. 2001;7:713-717.  [PubMed]  [DOI]
6.  Mann DV, Lam WW, Hjelm NM, So NM, Yeung DK, Metreweli C, Lau WY. Human liver regeneration: hepatic energy economy is less efficient when the organ is diseased. Hepatology. 2001;34:557-565.  [PubMed]  [DOI]
7.  Froomes PR, Ghabrial H, Morgan DJ, Angus PW. The effect of oxygen supplementation on the arterial ketone body ratio in human cirrhosis. Digestion. 2002;66:257-261.  [PubMed]  [DOI]
8.  Spahr L, Negro F, Leandro G, Marinescu O, Goodman KJ, Rubbia-Brandt L, Jordan M, Hadengue A. Impaired hepatic mitochondrial oxidation using the 13C-methionine breath test in patients with macrovesicular steatosis and patients with cirrhosis. Med Sci Monit. 2003;9:CR6-C11.  [PubMed]  [DOI]
9.  Tappy L, Schneiter P, Chioléro R, Bettschart V, Gillet M. Effects of a glucose meal on energy metabolism in patients with cirrhosis before and after liver transplantation. Arch Surg. 2001;136:80-84.  [PubMed]  [DOI]
10.  Lu G, Shimizu I, Cui X, Itonaga M, Tamaki K, Fukuno H, Inoue H, Honda H, Ito S. Interferon-alpha enhances biological defense activities against oxidative stress in cultured rat hepatocytes and hepatic stellate cells. J Med Invest. 2002;49:172-181.  [PubMed]  [DOI]
11.  Guo MZ, Li XS, Shen DM, Guan XQ, Xu HR, Gao J. [Effect of Rhein on the development of hepatic fibrosis in rats]. Zhonghua Gan Zang Bing Za Zhi. 2003;11:26-29.  [PubMed]  [DOI]
12.  Fiorelli G, De Feo TM, Duca L, Tavazzi D, Nava I, Fargion S, Cappellini MD. Red blood cell antioxidant and iron status in alcoholic and nonalcoholic cirrhosis. Eur J Clin Invest. 2002;32 Suppl 1:21-27.  [PubMed]  [DOI]
13.  Liu DY, Peng ZH, Qiu GQ, Zhou CZ. Expression of telomerase activity and oxidative stress in human hepatocellular carcinoma with cirrhosis. World J Gastroenterol. 2003;9:1859-1862.  [PubMed]  [DOI]
14.  González-Reimers E, López-Lirola A, Olivera RM, Santolaria-Fernández F, Galindo-Martín L, Abreu-González P, Sánchez-Sanchez JJ, Martínez-Riera A. Effects of protein deficiency on liver trace elements and antioxidant activity in carbon tetrachloride-induced liver cirrhosis. Biol Trace Elem Res. 2003;93:127-140.  [PubMed]  [DOI]
15.  Matsumoto A, Izumiya T, Takimoto K, Inokuchi H. Management of acute gastric variceal bleeding. Aliment Pharmacol Ther. 2003;18:1173-1174.  [PubMed]  [DOI]
16.  Patch D, Dagher L. Acute variceal bleeding: general management. World J Gastroenterol. 2001;7:466-475.  [PubMed]  [DOI]
17.  冷 希圣. 门静脉高压症发病机制的研究现状. 世界华人消化杂志. 1999;7:369-371.  [PubMed]  [DOI]
18.  Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140-1142.  [PubMed]  [DOI]
19.  Vyzantiadis T, Theodoridou S, Giouleme O, Harsoulis P, Evgenidis N, Vyzantiadis A. Serum concentrations of insulin-like growth factor-I (IGF-I) in patients with liver cirrhosis. Hepatogastroenterology. 2003;50:814-816.  [PubMed]  [DOI]
20.  Wang XZ, Chen ZX, Zhang LJ, Chen YX, Li D, Chen FL, Huang YH. Expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor and its intervention by interleukin-10 in experimental hepatic fibrosis. World J Gastroenterol. 2003;9:1287-1291.  [PubMed]  [DOI]
21.  Glanemann M, Vollmar B, Nussler AK, Schaefer T, Neuhaus P, Menger MD. Ischemic preconditioning protects from hepatic ischemia/reperfusion-injury by preservation of microcirculation and mitochondrial redox-state. J Hepatol. 2003;38:59-66.  [PubMed]  [DOI]
22.  Mirpuri E, García-Trevijano ER, Castilla-Cortazar I, Berasain C, Quiroga J, Rodriguez-Ortigosa C, Mato JM, Prieto J, Avila MA. Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. Int J Biochem Cell Biol. 2002;34:242-252.  [PubMed]  [DOI]
23.  Pérez R, Castilla-Cortázar I, Núñez M, Prado A, Mirpuri E, García M, González Barón S, Picardi A. IGF-I does not improve fat malabsorption in cirrhotic rats. J Physiol Biochem. 2001;57:59-60.  [PubMed]  [DOI]
24.  Fan ZR, Yang DH, Cui J, Qin HR, Huang CC. Expression of insulin like growth factor II and its receptor in hepatocellular carcinogenesis. World J Gastroenterol. 2001;7:285-288.  [PubMed]  [DOI]
25.  Muguerza B, Castilla-Cortázar I, García M, Quiroga J, Santidrián S, Prieto J. Antifibrogenic effect in vivo of low doses of insulin-like growth factor-I in cirrhotic rats. Biochim Biophys Acta. 2001;1536:185-195.  [PubMed]  [DOI]
26.  Gandhi CR, Murase N, Subbotin VM, Uemura T, Nalesnik M, Demetris AJ, Fung JJ, Starzl TE. Portacaval shunt causes apoptosis and liver atrophy in rats despite increases in endogenous levels of major hepatic growth factors. J Hepatol. 2002;37:340-348.  [PubMed]  [DOI]
27.  张 曙光, 阮 长乐, 于 振海, 李 光新, 李 荔, 刘 爱莲. 门静脉高压症的不同手术方式对门静脉系统血流动力学的影响. 中华普通外科杂志. 2002;17:143-145.  [PubMed]  [DOI]
28.  Chalasani N, Gorski JC, Patel NH, Hall SD, Galinsky RE. Hepatic and intestinal cytochrome P450 3A activity in cirrhosis: effects of transjugular intrahepatic portosystemic shunts. Hepatology. 2001;34:1103-1108.  [PubMed]  [DOI]
29.  Geier A, Gartung C, Dietrich CG, Wasmuth HE, Reinartz P, Matern S. Side effects of budesonide in liver cirrhosis due to chronic autoimmune hepatitis: influence of hepatic metabolism versus portosystemic shunts on a patient complicated with HCC. World J Gastroenterol. 2003;9:2681-2685.  [PubMed]  [DOI]
30.  张 雷达, 董 家鸿, 李 昆. 门静脉转流下缺血对阻塞性黄疸大鼠肝脏能量代谢的影响. 第三军医大学学报. 2002;24:93-95.  [PubMed]  [DOI]
31.  Wu XL, Zeng WZ, Wang PL, Lei CT, Jiang MD, Chen XB, Zhang Y, Xu H, Wang Z. Effect of compound rhodiola sachalinensis A Bor on CCl4-induced liver fibrosis in rats and its probable molecular mechanisms. World J Gastroenterol. 2003;9:1559-1562.  [PubMed]  [DOI]
32.  董 家鸿, 刘 吉奎, 蔡 景修. 选择性远端脾腔分流术的评价. 中国实用外科杂志. 2002;22:212-214.  [PubMed]  [DOI]
33.  Brandão ML, Roselino JE, Piccinato CE, Cherri J. Mitochondrial alterations in skeletal muscle submitted to total ischemia. J Surg Res. 2003;110:235-240.  [PubMed]  [DOI]
34.  Cheng XD, Jiang XC, Liu YB, Peng CH, Xu B, Peng SY. Effect of ischemic preconditioning on P-selectin expression in hepatocytes of rats with cirrhotic ischemia-reperfusion injury. World J Gastroenterol. 2003;9:2289-2292.  [PubMed]  [DOI]
35.  Matheson PJ, Hurt RT, Mittel OF, Wilson MA, Spain DA, Garrison RN. Immune-enhancing enteral diet increases blood flow and proinflammatory cytokines in the rat ileum. J Surg Res. 2003;110:360-370.  [PubMed]  [DOI]
36.  Singh K, Ahluwalia P. Studies on the effect of monosodium glutamate [MSG] administration on some antioxidant enzymes in the arterial tissue of adult male mice. J Nutr Sci Vitaminol (Tokyo). 2003;49:145-148.  [PubMed]  [DOI]
37.  Du WD, Yuan ZR, Sun J, Tang JX, Cheng AQ, Shen DM, Huang CJ, Song XH, Yu XF, Zheng SB. Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J Gastroenterol. 2003;9:2565-2569.  [PubMed]  [DOI]
38.  Park BK, Chung JB, Lee JH, Suh JH, Park SW, Song SY, Kim H, Kim KH, Kang JK. Role of oxygen free radicals in patients with acute pancreatitis. World J Gastroenterol. 2003;9:2266-2269.  [PubMed]  [DOI]
39.  Zhang H, Chen J, Kaiser GM, Mapudengo O, Zhang J, Exton MS, Song E. The value of partial splenic autotransplantation in patients with portal hypertension: a prospective randomized study. Arch Surg. 2002;137:89-93.  [PubMed]  [DOI]
40.  Mercado MA, Orozco H, Ramírez-Cisneros FJ, Hinojosa CA, Plata JJ, Alvarez-Tostado J. Diminished morbidity and mortality in portal hypertension surgery: relocation in the therapeutic armamentarium. J Gastrointest Surg. 2001;5:499-502.  [PubMed]  [DOI]
41.  Glanemann M, Vollmar B, Nussler AK, Schaefer T, Neuhaus P, Menger MD. Ischemic preconditioning protects from hepatic ischemia/reperfusion-injury by preservation of microcirculation and mitochondrial redox-state. J Hepatol. 2003;38:59-66.  [PubMed]  [DOI]
42.  Taylor RM, Bjarnason I, Cheeseman P, Davenport M, Baker AJ, Mieli-Vergani G, Dhawan A. Intestinal permeability and absorptive capacity in children with portal hypertension. Scand J Gastroenterol. 2002;37:807-811.  [PubMed]  [DOI]
43.  Wheeler MD, Katuna M, Smutney OM, Froh M, Dikalova A, Mason RP, Samulski RJ, Thurman RG. Comparison of the effect of adenoviral delivery of three superoxide dismutase genes against hepatic ischemia-reperfusion injury. Hum Gene Ther. 2001;12:2167-2177.  [PubMed]  [DOI]
44.  Yamaoka Y, Sato M, Kimura K, Takasan H, Ozawa K. Role of portal venous blood supply from the pancreas in maintaining hepatic functional reserve. Appraisal of Warren's shunt operation. Arch Surg. 1978;113:981-985.  [PubMed]  [DOI]
45.  Dasarathy S, Mullen KD, Conjeevaram HS, Kaminsky-Russ K, Wills LA, McCullough AJ. Preservation of portal pressure improves growth and metabolic profile in the male portacaval-shunted rat. Dig Dis Sci. 2002;47:1936-1942.  [PubMed]  [DOI]
46.  Iwase M, Ogata H, Tashiro K, Tsuji H, Yoshinari M. Portal blood flow and glucose tolerance or peripheral insulin and glucagon concentrations in patients with liver cirrhosis. Pancreas. 2002;24:109-110.  [PubMed]  [DOI]
47.  Yang LQ, Li SJ, Cao YF, Man XB, Yu WF, Wang HY, Wu MC. Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases. World J Gastroenterol. 2003;9:359-363.  [PubMed]  [DOI]
48.  Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VL. GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res. 2002;68:730-737.  [PubMed]  [DOI]
49.  Schepke M, Sauerbruch T. Transjugular portosystemic stent shunt in treatment of liver diseases. World J Gastroenterol. 2001;7:170-174.  [PubMed]  [DOI]
50.  Wong LL, Lorenzo C, Limm WM, Wong LM. Splenorenal shunt: an ideal procedure in the Pacific. Arch Surg. 2002;137:1125-1129, discussion 1130.  [PubMed]  [DOI]