基础研究 Open Access
Copyright ©The Author(s) 2004. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2004-03-15; 12(3): 635-638
在线出版日期: 2004-03-15. doi: 10.11569/wcjd.v12.i3.635
先天性巨结肠症RET和EDNRB基因的突变
魏明发, 王果, 朱珉, 易斌, 王小林, 韩杰, 史慧芬
魏明发, 王果, 朱珉, 易斌, 王小林, 韩杰, 史慧芬, 华中科技大学同济医学院同济医院小儿外科 湖北省武汉市 430030
魏明发, 男, 1951-07-09生, 湖北省京山人, 汉族, 教授, 主任医师, 硕士生导师. 主要从事小儿普外及消化道畸形的研究.
基金项目: 国家自然科学基金资助项目, No. 39670746; 卫生部科学基金(卫科教规划《1998》第55号)资助, No. 55.
通讯作者: 魏明发, 430030, 湖北省武汉市, 华中科技大学同济医学院同济医院小儿外科. mfwei@tjh.tjmu.edu.cn
电话: 027-83663405 传真: 027-83646605
收稿日期: 2003-06-06
修回日期: 2003-07-05
接受日期: 2003-07-30
在线出版日期: 2004-03-15

目的: 了解中国人群先天性巨结肠症(HD)发病与RET基因, EDNRB基因突变的关系, 及同一患者是否两个基因同时突变的状况.

方法: 随机将HD患者分2组, 即检测RET/EDNRB组(A组)56例及EDNRB组(B组)40例, 同时设二个相同数量对照组(C组). 每人采集外周静脉血2 -3 mL经盐析法提取DNA后, 应用聚合酶链反应-单链构象多态性分析(PCR-SSCP)方法, 对RET基因20个外显子中的第6, 13, 15, 17外显子(E6, 13, 15, 17)和EDNRB基因7个外显子中的第4, 5, 6外显子(E4, 5, 6)进行基因突变的检测, 将突变样品进行自动测序分析.

结果: A组中2例散发性患者的E13, E17扩增片段在SSCP分析时有泳动变位, 并经DNA自动测序仪检测为基因多态, CTG→CTT, Leu769→Leu, 散发性突变频率为4%(2/48); 2例家族性患者的E15扩增片段在SSCP分析有泳动变位, DNA测序1例为错义突变Lys889→Thr, 另1例为两个同义突变GTGAAGAGGAGCCA→GTTAAGAGGAGTCA分别在V906和S909密码子上, 家族性突变频率为25%(2/8); 1例散发性短段型患者EDNRB基因E5在SSCP分析时有泳动变位未能测序; B组中1例散发性短段性患者EDNRB基因的E4在SSCP分析有泳动变位, 经DNA测序证实在核苷酸位点831, 密码277上G→A的置换, Leu277→Leu为同义突变, 突变频率为2.7%(1/37), 家族性3例患者未检测出突变. C组未检出RET, EDNRB基因的突变. 家族性患者与散发性患者RET突变结果经统计学处理x2 = 4.95, P<0.05, OR = 8, 95%CI: 1.28-49.87.

结论: 中国人群的先天性巨结肠症发生确实与RET和EDNRB基因突变有关, 家族性HD患者RET基因突变达25%, 散发性HD患者主要以EDNRB基因突变为主, 无1例患者有RET和EDNRB两个基因同时突变. 同时显示有家族史比没有家族史发生HD的危险性大8倍, 其可信限在95%.

关键词: N/A

引文著录: 魏明发, 王果, 朱珉, 易斌, 王小林, 韩杰, 史慧芬. 先天性巨结肠症RET和EDNRB基因的突变. 世界华人消化杂志 2004; 12(3): 635-638
Mutation of RET oncogene and endo-thelin B receptor gene in Hirschpru-ng's disease
Ming-Fa Wei, Guo Wang, Min Zhu, Bin YI, Xiao-Lin Wang, Jie Han, Hui-Fen Shi
Ming-Fa Wei, Guo Wang, Min Zhu, Xiao-Lin Wang, Jie Han, Hui-Fen Shi, Bin Yi, Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
Supported by: the National Natural Science Foundation of China, No. 39670746 and the Science Foundation of Ministry of Health, No. 55.
Correspondence to: Dr Ming-Fa Wei, Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China. mfwei@tjh.tjmu.edu.cn.
Received: June 6, 2003
Revised: July 5, 2003
Accepted: July 30, 2003
Published online: March 15, 2004

AIM: To clarify the relationship between the mutation of RET and EDNRB genes and Chinese patients with Hirschspr-ung's disease (HD), and to investigate whether the two genes mutation concurred in the disease.

METHODS: Patients with HD were divided into RET/EDNRB group (group A, 56 cases) and ENDRB group (group B, 40 cases) at random. Healthy children were use as controls (group C, 56 and 40 cases). Genomic DNA was obtained from peripheral blood, then the exons 6, 13, 15 and 17 of RET gene and the exons 4, 5 and 6 of EDNRB gene were analyzed for gene mutation. The mutation products were automatically sequenced.

RESULTS: In group A, two heterozygous mutations at exons 17 and 13 were discovered in 2 sporadic HD patients. Direct DNA sequence analysis identified gene polymorphisms, which showed CTG→CTT, and Leu769→Leu. The sporadic mutation rate was 4% (2/48). Two heterozygous mutations were discovered in 2 familial HD patients at exon 15. DNA sequence analysis displayed a missense mutation Lys889→Thr in one patient and two silent mutation at codons V906 and S909 in another (GTGAAGAGGAGCCA→GTTAAGAGGAGTCA). The familial mutation rate was 25% (2/8). One heterozygous mutation of EDNRB gene at exon 5 in a sporadic short segmental patient failed to sequence. In group B, one heterozygous mutation was discovered in a sporadic short segmental patient. DNA sequence showed a G to A transversion at nucleotide 831, which resulted in a silent mutation Leu 277→Leu. The mutation rate was 2.7%(1/37). No mutation was detected in three familial HD patients. In group C, RET and EDNRB genes were identified no mutation. The difference of the RET gene mutation between the familial and sporadic patients by statistical analysis was x2 = 4.95 (P < 0.05), odds ratio (OR) = 8; 95%CI = 1.28-49.87.

CONCLUSION: The mutation of RET and EDNRB genes reliably has correlated with the pathogenesis of HD. The RET gene mutation rate in familial HD patients is 25% and majority of sporadic cases have mutation in EDNRB gene. No HD patient has the two genes mutation at the same time. The risk of familial patients to get HD is 8 times higher than that of sporadic patients, and the confidence interval is 95%.

Key Words: N/A


0 引言

先天性巨结肠症(Hirschsprung s disease HD)病因仍未完全清楚[1-2] , 但某些基因的突变可表现为临床上可见的先天性巨结肠症. 受体型酪氨酸激酶基因(receptor tyrosine kinases gene), 也称RET原癌基因(RET proto-oncogene)突变被认为是致家族性和散发性HD比例最高的, 其次是内皮素B受体基因(endothelin B receptorgene, EDNRB), 而胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor, GDNF)作为RET的一种配体, 其突变发生较少而且可能并不足够引起HD的临床症状, EDNRB的配体EDN3极少突变, NTN作为RET的另一配体突变更为罕见[3-5]. 我们收集了我院自1998年以来经临床和病理确诊的HD患儿96例, 并用PCR-SSCP技术和DNA测序对RET和EDNRB基因同时检测, 探讨HD患儿的RET和EDNRB基因的突变以及HD患儿有否存在2个基因同时突变如下.

1 材料和方法
1.1 材料

同时检测RET和EDNRB组(A组): 56例, 男45例, 女11例, 年龄2月-14岁, 其中散发性48例, 家族性8例, 为7个小家系. 全组中常见型41例, 短段型15例, 术后病理检查证实无神经节细胞肠段均在乙状结肠以远. 单项检测EDNRB组(B组): 40例, 男31例, 女9例, 年龄4月-12岁, 其中散发性37例, 家族性3例. 全组中长段型8例, 常见型11例, 短段型21例. 健康对照组(C组): 分别以相同例数作对照(A 56例, B40例), 无便秘病史. 全部患者均有典型的HD临床表现, 并经钡灌肠、直肠肛管测压和直肠黏膜乙酰胆碱酯酶(AchE)组织化学等检查为HD, 并在术后病理检查证实. 对照组为与HD无关和无便秘史者. PCR引物: A组和B组引物序列依据文献[6-7], 由中国科学院微生物研究所基因工程中心、Beckman公司和Sigma公司合成提供(表1, 2).

表1 RET外显子6, 13, 15, 17 PCR用引物序列.
RET基因外显子PCR引物序列
exon65'-GGCTGGTTCTCAACCGGAAC-3'
5'-GGCTCGCCGATTTGCCCAG-3'
exon135'-AGGCCTCTCTGTCTGAACTTGG-3'
5'-AGCCCTGTTCTCCCTCTTTC-3'
exon155'-GACTCGTGCTATTTTTCCTC-3'
5'-TATCTTTCCTAGGCTTCCCA-3'
exon175'-TCACTGGTCCTTTCACTCTCT-3'
5'-ATCTGTGTGCATTCCCTC-3'
表2 EDNRB 4, 5, 6外显子PCR用引物序列.
EDNRB基因外显子PCR引物序列
exon45'-ATCCCTATAGTTTTACAAGACAGC-3'
5'-ATTTTCTTACCTGCTTTAGGTG-3'
exon55'-ATTTCAGAGACGGGAAGTGGCC-3'
5'-CCTTTCTTACCTCAAAGTTCA-3'
exon65'-TTTGTTGCAGCTTTCTGTTG-3'
5'-AGTCTCTTACCTTAAAGCAG-3'
1.2 方法

每例均采集外周血3 mL, 盐析法提取DNA[6-7]. PCR扩增: (1)A组反应体系25 L, 包括模板约50-100 ng, 50 mmol/L KCl, 10 mmol/L Tris/HCl pH8.4), 1.5 mmol/L MgCl2, 引物各0.25 mol/L, dNTP各100 mol/L和Tag DNA聚含酶1 U. 扩增条件: 反应体系95 ℃ 5 min变性后, 94 ℃ 30 s, 56 ℃ 30 s, 70 ℃ 1 min循环30次, 最后72 ℃延伸10 min. 所得产物经20 g/L琼脂糖凝胶电泳检测. (2)B组反应体系50 L, 模板200 ng, 10碽uffer 5 L, 1.5 mmol/L MgCl2, 0.25 mol/L引物, dNTP各100 mol/L, Taq DNA聚合酶1U. 扩增条件: 94 ℃ 5 min变性后, 94 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 45 s循环35次, 72 ℃延伸10 min, 所得产物2%凝胶电泳检测; (3)C组与相对应组条件相同. SSCP分析: 采用49: 1非变性聚丙烯酰胺凝胶, 浓度为50 g/L, 80 g/L或100 g/L, 含甘油50 mL/L或100 mL/L, 在4 ℃, 10 ℃或20 ℃下电泳, 然后进行银染方法显色观察[6-7]. 纯化的PCR产物经DNA自动测序仪进行测序.

2 结果
2.1 RET基因突变

A组中有2例家族性患者和2例散发性患者的RET基因扩增片段行SSCP分析时发现泳动变位, 分别发生在15, 15, 13, 17外显子. 2例发生15外显子泳动变位的家族性患者经测序证实为1例发生错义突变, 889密码子处赖氨酸被苏氨酸替换(AAG→ACC, Lys889→Thr, 图1); 1例在V906, S909密码子处分别存在(GTGAAGAGGAGCCA→GTTAAGAGGAGTCA两个碱基置换, 导致两个同义突变, 图2), 家族性患者突变率为25%(2/8); 发生在散发性患者的13号外显子泳动变位经测序证实为基因多态(CTG→CTT, Leu769→Leu, 图3), 散发性患者突变率为4%(2/48).

图1
图1 家族性RET-exon15 PCR测序结果(箭头: 错义突变AAG→ACC).
图2
图2 家族性RET-exon15 PCR测序结果(箭头: 两个同义突变GTGAAGAGGAGCCA→GTTAAGAGGAGTCA).
图3
图3 散发性RET-exon13测序结果(箭头: 同义突变CTG→CTT).
2.2 EDNRB基因突变

A组中1例散发性短段型患者EDNRB的5号外显子检测出突变, SSCP电泳显示除正常两条单链条带外还可见1条突变带型;本组其他患者和对照组未测出突变; B组中仅1例散发性短段型患者经PCR-SSCP分析, 发现在EDNRB的4号外显子除正常的两条单链外尚可见1条突变异常带, 再经DNA测序证实核苷酸位点831, 密码子277上G→A的置换(Leu277-Leu, 图4). 该突变为同义突变, 该样品外显子5, 6无突变, 散发性患者突变率为2.7% (1/37), 其余36例散发性和3例家族性HD患者以及正常对照组未检测出突变. A加B组全部96例, 在对EDNRB基因检测中发现仅2例突变分别发生在外显子4和5, 突变率为2%(2/96), 而且该2例突率均为散发性病例, 占散发性病例的突变率为2.3%(2/85).

图4
图4 散发性EDNRB-exon4测序结果(箭头: 同义突变G→A).
2.3 RET和EDNRB基因同时突变

A组56例进行RET和EDNRB基因突变同时检测, 无同1例患者同时存在RET和EDNRB两个基因变异. A组家族性与非家族性RET基因突变卡方检验: x2 = 4.95, P<0.05, OR = 8, 95%CI = 1.28-49.87.

3 讨论

先天性巨结肠症(HD)的发生与多个基因有关, 提示了HD发生的遗传异质性[8-9]. 这些基因中的任何一个突变是在这种疾病的基因型的足够表达. 由于HD是一种复杂的多因素遗传病, 因而在多个基因中任一个突变的累积效果都有助于个体表型[4], 微环境因素对HD的发生也产生一定影响[10]. 本结果显示家族患者RET基因的突变率为25%, 散发性患者RET基因的突变率仅为4%: 家族性患者的EDNRB基因无突变, 散发性患者突变率也不高, 约2.3%: 全部患者中未发现RET和EDNRB基因同时突变的病例; 对照组中无RET和EDNRB基因突变. 这确切证实中国人群HD的发生与RET和EDNRB基因突变有关, 而且同时显示中国人群家族性HD的发生主要与RET基因有关, EDNRB基因突变主要发生在散发性短段型HD患者, 与国外报告一致[4].

国外研究显示, 家族性HD患者的RET基因突变高达50%以上, 散发性HD患者的RET基因突变也在10%-20%, 而EDNRB基因突变相对较低约占全部HD患者中的5%-15%[3-4]. 我们家族性HD患者RET基因突变达25%, 但比国外报告为低, 其原因可能首先是RET基因有20个外显子, 我们仅检测了其中突变率比较高的4个外显子, 如突变发生在其他外显子我们未能检测到; 对RDNRB基因来说也是一样, 其7个外显子我们也未能进行全部检测. 其次是在本研究的全部患者中长段型和全肠型表型少, 特别是检测RET基因56例中没有长段型表型患者, Fitze et al[4] 许多学者研究证实"长段型的基因突变率明显高于短段型表型", Tomiyama et al[11-12]报告16例全结肠HD患儿, 经检测发现11例RET或SOX10突变, 突变率高达68.8%, 而主要是RET突变(10/16), 这10例突变者中又以17外显子为多; 1例SOX10突变者同时合并有瓦尔敦堡综合征(Waardenburg-Shah syndrome, WS). HD患者检测出有SOX10基因突变者多合并有其他畸形, 如WS. 国内虽有散在MEN-Ⅱ病例报告, 但未见合并先天性巨结肠畸形[13-15].

HD为多基因遗传病[1-11], 其遗传度高达80%, 这说明虽然遗传因素和环境因素都起作用, 但遗传基础作用较大, 而环境因素在决定易患性(liability)变异和发病上作用较小. 现HD有10余种易患基因和侯选基因[16], 即易患基因RET, GDNF, EDNRB, EDN-3[17-21]和候选基因GDNFR-21, SOX10, ECE-1, Neurturin, Shc, Grb2, Grb10, HoxA4, HOXA9, ZFHX1B, IHH. 到目前为止[4-11,22-31], 在检测HD有关国内外文献的基因突变中主要为RET和EDNRB. 本研究也说明遗传因素在HD发病中起重要作用. 有家族史与无家族史在统计学上有显著性差异, 而且有家族史比没有家族史发生HD的危险性大8倍.

编辑: N/A

1.  Duan XL, Zhang XS, Li GW. Clinical relationship between EDN-3 gene, EDNRB gene and Hirschsprung's disease. World J Gastroenterol. 2003;9:2839-2842.  [PubMed]  [DOI]
2.  Sancandi M, Ceccherini I, Costa M, Fava M, Chen B, Wu Y, Hofstra R, Laurie T, Griffths M, Burge D. Incidence of RET mutations in patients with Hirschsprung's disease. J Pediatr Surg. 2000;35:139-142; discussion 142-143.  [PubMed]  [DOI]
3.  Gath R, Goessling A, Keller KM, Koletzko S, Coerdt W, Müntefering H, Wirth S, Hofstra RM, Mulligan L, Eng C. Analysis of the RET, GDNF, EDN3, and EDNRB genes in patients with intestinal neuronal dysplasia and Hirschsprung disease. Gut. 2001;48:671-675.  [PubMed]  [DOI]
4.  Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet. 2002;359:1200-1205.  [PubMed]  [DOI]
5.  Inoue K, Shimotake T, Iwai N. Mutational analysis of RET/GDNF/NTN genes in children with total colonic aganglionosis with small bowel involvement. Am J Med Genet. 2000;93:278-284.  [PubMed]  [DOI]
6.  许 娟, 魏 明发, 史 慧芬, 王 果, 李 辉, 黄 尚志. 先天性巨结肠RET基因突变的研究. 中华小儿外科杂志. 1999;20:7-8.  [PubMed]  [DOI]
7.  易 斌, 黄 珊, 魏 明发. 先天性巨结肠内皮素B受体基因的突变. 同济医科大学学报. 2000;29:28-29.  [PubMed]  [DOI]
8.  Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. J Pediatr Surg. 2000;35:1017-1025.  [PubMed]  [DOI]
9.  李 龙, Vincent L, Mai HS, 谭 广亨. Cdx1和Cdx2基因表达异常与先天性巨结肠性肠炎的关系. 中华小儿外科杂志. 2003;24:406-408.  [PubMed]  [DOI]
10.  赵 雅男, 聂 绍发, 魏 明发, 朱 桂宝. 先天性巨结肠症肠壁微环境改变的免疫组织化学研究. 中华小儿外科杂志. 2003;24:113-115.  [PubMed]  [DOI]
11.  Tomiyama H, Shimotake T, Ono S, Kimura O, Tokiwa K, Iwai N. Relationship between the type of RET/GDNF/NTN or SOX10 gene mutations and long-term results after surgery for total colonic aganglionosis with small bowel involvement. J Pediatr Surg. 2001;36:1685-1688.  [PubMed]  [DOI]
12.  Solari V, Ennis S, Yoneda A, Wong L, Messineo A, Höllwarth ME, Green A, Puri P. Mutation analysis of the RET gene in total intestinal aganglionosis by wave DNA fragment analysis system. J Pediatr Surg. 2003;38:497-501.  [PubMed]  [DOI]
13.  Pasini B, Rossi R, Ambrosio MR, Zatelli MC, Gullo M, Gobbo M, Collini P, Aiello A, Pansini G, Trasforini G. RET mutation profile and variable clinical manifestations in a family with multiple endocrine neoplasia type 2A and Hirschsprung's disease. Surgery. 2002;131:373-381.  [PubMed]  [DOI]
14.  Nakao A, Naomoto Y, Kataoka M, Haisa M, Kataoka K, Saitoh S, Fujiwara T, Yamatsuji T, Shigemitsu K, Umeoka T. A family of multiple endocrine neoplasia type 2A with the RET proto-oncogene mutation in codon 618 (Cys--&gt;Arg). Jpn J Clin Oncol. 2001;31:157-161.  [PubMed]  [DOI]
15.  Nishikawa M, Murakumo Y, Imai T, Kawai K, Nagaya M, Funahashi H, Nakao A, Takahashi M. Cys611Ser mutation in RET proto-oncogene in a kindred with medullary thyroid carcinoma and Hirschsprung's disease. Eur J Hum Genet. 2003;11:364-368.  [PubMed]  [DOI]
16.  段 降龙, 张 宪生. 先天性巨结肠症的分子遗传学研究进展. 中华小儿外科杂志. 2002;23:360362.  [PubMed]  [DOI]
17.  Fitze G, Cramer J, Serra A, Schreiber M, Roesner D, Schackert HK. Within-gene interaction between c.135 G/A genotypes and RET proto-oncogene germline mutations in HSCR families. Eur J Pediatr Surg. 2003;13:152-157.  [PubMed]  [DOI]
18.  Borrego S, Wright FA, Fernández RM, Williams N, López-Alonso M, Davuluri R, Antiñolo G, Eng C. A founding locus within the RET proto-oncogene may account for a large proportion of apparently sporadic Hirschsprung disease and a subset of cases of sporadic medullary thyroid carcinoma. Am J Hum Genet. 2003;72:88-100.  [PubMed]  [DOI]
19.  Li JC, Ding SP, Song Y, Li MJ. Mutation of RET gene in Chinese patients with Hirschsprung's disease. World J Gastroenterol. 2002;8:1108-1111.  [PubMed]  [DOI]
20.  Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet. 2002;32:237-244.  [PubMed]  [DOI]
21.  Griseri P, Pesce B, Patrone G, Osinga J, Puppo F, Sancandi M, Hofstra R, Romeo G, Ravazzolo R, Devoto M. A rare haplotype of the RET proto-oncogene is a risk-modifying allele in hirschsprung disease. Am J Hum Genet. 2002;71:969-974.  [PubMed]  [DOI]
22.  Pusch CM, Sasiadek MM, Blin N. Hirschsprung, RET-SOX and beyond: the challenge of examining non-mendelian traits (Review). Int J Mol Med. 2002;10:367-370.  [PubMed]  [DOI]
23.  Lui VC, Samy ET, Sham MH, Mulligan LM, Tam PK. Glial cell line-derived neurotrophic factor family receptors are abnormally expressed in aganglionic bowel of a subpopulation of patients with Hirschsprung's disease. Lab Invest. 2002;82:703-712.  [PubMed]  [DOI]
24.  Borghini S, Bocciardi R, Bonardi G, Matera I, Santamaria G, Ravazzolo R, Ceccherini I. Hirschsprung associated GDNF mutations do not prevent RET activation. Eur J Hum Genet. 2002;10:183-187.  [PubMed]  [DOI]
25.  Inoue K, Shilo K, Boerkoel CF, Crowe C, Sawady J, Lupski JR, Agamanolis DP. Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann Neurol. 2002;52:836-842.  [PubMed]  [DOI]
26.  Paratore C, Eichenberger C, Suter U, Sommer L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 2002;11:3075-3085.  [PubMed]  [DOI]
27.  Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet. 2003;72:465-470.  [PubMed]  [DOI]
28.  Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H, Mutoh N, Yamanaka T, Mushiake K. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet. 2001;27:369-370.  [PubMed]  [DOI]
29.  Garcia-Barceló MM, Lee WS, Sham MH, Lui VC, Tam PK. Is there a role for the IHH gene in Hirschsprung's disease? Neurogastroenterol Motil. 2003;15:663-668.  [PubMed]  [DOI]
30.  Méchine-Neuville A, Lefebvre O, Bellocq JP, Kedinger M, Simon-Assmann P. [Increased expression of HOXA9 gene in Hirschsprung disease]. Gastroenterol Clin Biol. 2002;26:1110-1117.  [PubMed]  [DOI]
31.  Crone SA, Negro A, Trumpp A, Giovannini M, Lee KF. Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron. 2003;37:29-40.  [PubMed]  [DOI]