文献综述 Open Access
Copyright ©The Author(s) 2003. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2003-06-15; 11(6): 799-802
在线出版日期: 2003-06-15. doi: 10.11569/wcjd.v11.i6.799
抗乙型肝炎病毒肝靶向药物制剂的研究进展
王九平, 白雪帆
王九平, 白雪帆, 中国人民解放军第四军医大学唐都医院全军感染病诊疗中心 陕西省西安市 710038
通讯作者: 王九平, 710038, 陕西省西安市, 中国人民解放军第四军医大学唐都医院全军感染病诊疗中心.
收稿日期: 2002-10-25
修回日期: 2002-12-15
接受日期: 2002-11-19
在线出版日期: 2003-06-15

乙型肝炎病毒感染严重危害人类健康, 全身抗病毒和调节免疫功能的治疗效果尚不理想, 近年来国内外开展肝靶向药物的研究, 即用某中具有特殊亲和力的载体把抗乙肝病毒药物运送到肝靶器官, 达到了小剂量、高效应, 低毒副性反应的目的, 靶向抗乙肝病毒药物可能成为肝炎治疗中确实有效的方法之一.

关键词: N/A

引文著录: 王九平, 白雪帆. 抗乙型肝炎病毒肝靶向药物制剂的研究进展. 世界华人消化杂志 2003; 11(6): 799-802
N/A
N/A
Correspondence to: N/A
Received: October 25, 2002
Revised: December 15, 2002
Accepted: November 19, 2002
Published online: June 15, 2003

N/A

Key Words: N/A


0 引言

乙型肝炎是由乙型肝炎病毒(hepatitis B virus, HBV)感染引起的一种严重危害人类健康的传染病[1-10]. 全世界大约有20亿人感染过HBV, 3.5亿携带HBV, 而持续HBV感染会导致肝硬化和原发性肝癌, 死亡率[11-17] 很高. 尽管国内外医学家采用全身抗病毒和调节免疫功能的方法, 但治疗效果尚不理想, 其主要原因可能是药物在HBV主要复制部位-肝脏中分布较少. 虽然可通过肝动脉或门静脉给药来提高药物在肝脏的分布, 但有一定的创伤. 针对这一问题, 近年来开展肝靶向药物(targeted drug system)抗乙肝病毒的研究, 即采用医学生物技术将治疗药物与靶向载体结合, 以使药物能被特异运送至靶器官与靶细胞, 较好地达到了小剂量、高效应, 低毒副性反应的目的. 因此, 通过靶向抗乙肝病毒药物可能成为肝炎治疗中确实有效的方法之一[18-29]. 现将肝靶向给药抗乙肝病毒的研究现状及应用前景作一综述.

1 主动靶向
1.1 肝细胞半乳糖受体介导的肝靶向药物

肝细胞半乳糖受体(hepatocyte galactose receptor, H-Gal-R)仅存在于脯乳动物的肝实质细胞膜上, 他能特异的识别和结合以非还原半乳糖或N-乙酰半乳糖为末端的糖蛋白, 该受体介导的胞吞作用的糖蛋白定向转运到胞内溶酶体进行代谢. 利用H-Gal-R介导的各种药物、酶或基因定向转运到肝细胞内发挥作用. Hashida etal[30] 实验证实, H-Gal-R介导系统对肝有较高的亲和性, 且肝吸收迅速.

干扰素(IFN)是目前HBV治疗的首选药[31-34], 但临床应用中存在用量大、毒副作用大、费用昂贵等缺点. 将以D-半乳糖为起始物合成2-亚氨基-2-甲氧基-1-硫代-β-D-半乳糖吡糖苷(IME-半乳糖苷)与INFα1相结合获得共轭物Gal-INFα1[30]. 研究表明: Gal-INFα1具有明显的趋肝性, INFα1效价为345901 kU/L, 而Gal-INFα1的效价为958668 kU/L, 后者为前者的2.27倍. 这一结果显示, 将半乳糖引入INFα1后, 不仅可提高INFα1在肝脏的分布, 而且也增强了INFα1的生物活性.

核苷类药物在抗乙型肝炎病毒药物中也占有相当重要的地位[35-37]. 但疗效不很理想, 主要是由于乙型肝炎病毒核心抗原存在于肝细胞内, 核苷类药物需进入肝细胞, 并经胸腺嘧啶核苷激酶催化三磷酸化后方显效. 而核苷类药物不易透过肝细胞, 且乙肝病毒感染的细胞缺少胸腺嘧啶核苷激酶, 宿主细胞磷酸化作用缓慢, 达不到抑制病毒复制的有效浓度. 大剂量给药可提高血药浓度, 但在血中未被磷酸化的药物可迅速经肾排泄而出现血尿和肾功能障碍等毒副作用. 为了提高核苷类药物治疗乙型肝炎的疗效并降低其毒性, 在国内外广泛开展H-Gal-R介导的肝靶向核苷类抗病毒药物的研究. 实验研究证明[38,39], 以乳糖化人血清白蛋白(L-HAS)为载体的阿糖腺苷-乳糖化人血清白蛋白(L-HAS-Ara-AMP)和无环鸟苷-乳糖化人血清白蛋白(L-HSA-ACV-A); 以NGA为载体的无环鸟苷-半乳糖基新糖白蛋白(NGA-ACV-A); 以CMD为载体的半乳糖化羧甲基葡聚糖-阿糖胞苷(Gal-CMD-Ara-C). 动物体内示踪表明交联物能迅速积聚于肝细胞, 并延长药物作用时间. 交联物在肝内与游离药物有相同的抑制病毒DNA合成的作用, 所需导向药物的剂量较游离药少5-10倍, 其毒副作用极低. 无环鸟苷(ACV)乳糖血清白蛋白(LSA)交联物可显著减少在肾脏的堆积. 小鼠经0.6 μg/g已经证明阿糖腺苷和单磷酸阿糖腺苷能抑制乙肝病毒(HBV)复制, 但剂量相关的神经肌肉疼痛综合征阻碍了该药的临床应用. 将单磷酸阿糖腺苷与含末端半乳糖残基的乳糖化血清清蛋白形成偶联物乳糖化清蛋白单磷酸阿糖腺苷(L-HSA-Ara-AMP), L-HSA是半乳糖末端糖蛋白, 通过受体介导可选择性进入肝脏, 提高了肝脏中单磷酸阿糖腺苷(Ara-AMP)的浓度, 而且还因良好的靶向性而降低了药物的使用剂量. Xie et al [40]采用麻鸭乙肝病毒动物模型, 用单磷酸阿糖腺苷(Ard-AMP)与半乳糖化血清白蛋白交联物(L-HSA-Ara-AMP)治疗10 d, 观察用药前后血清中鸭乙肝病毒(DHBV)DNA, DHBsAg, 肝组织病理学变化及药物的不良反应. 结果表明, L-HSA-Ara-AMP用药后能使血清DHBV DNA水平降低, 对血清DHBsAg作用相对缓慢, 治疗过程中未见L-HSA-Ara-AMP不良反应, 既降低Ara-AMP的使用剂量, 避免了Ara-AMP的不良反应, 又能抑制DHBVDNA的复制, 在体内达到了抗DHBV的作用 . Fiumme et al [41]临床上用Ara-AMP半乳酰化共轭物35 mg/kg治疗5例慢性乙型肝炎患者, 结果3例血清HBV-DNA消失, 另2例治疗期HBA-DNA水平明显下降, 而其药量比游离药物低3-6倍.

反义寡核苷酸(antisense oligodeoxynucleotides, ASODN)能有效抑制培养细胞中的乙型肝炎病毒基因的表达, 是值得研究的新型抗病毒药剂, 但ASODN的生物利用度和稳定性较差, 因此还需要积极寻找新的ASODN修饰方法, 从而增强ASODN 的生物利用度和稳定性. 郭军et al[42]以人工合成2种糖化多聚赖氨酸导向配体, 与互补HBVmRNA多聚腺苷酸的反义寡核苷酸 复合物结合, 体外肝细胞和小鼠体内实验显示, 两种导向配体-ASODN复合物可使2.2.15细胞荧光染色率达75.3%和83.8%, 而单纯ASODN组则为24.3%和1.8%. 冰冻切片观察荧光染色主要聚集在肝脏中. 说明导向配体无论在体内外均具有良好的导向ASODN进入肝细胞的功能. 另有实验证明半乳糖化白蛋白和半乳糖化多聚赖氨酸连接的ASODN也明显提高了抗乙肝病毒的活性 .

1.2 抗体介导的靶向药物

普通的靶向抗病毒药不能选择感染与非感染的细胞, 因此对正常的细胞可造成一定的损害, 在原发性肝癌的治疗中, 就是利用抗体的高度特异性, 用抗体将药物导向肿瘤细胞. 将博来霉素A6与抗人肝癌单抗H111偶联, 在体外, 对人肝癌细胞抑制率达90%; 在裸鼠, 对移植的人肝癌细胞抑制率为78%, 而等剂量游离A6的抑癌率仅为30%. H111A6对人肝癌的抑制作用明显高于游离A6. 为增强导向治疗的"弹头"杀伤效果, 胡晓华et al[43] 制备了同时携带131I和MMC的双弹头马抗人AFP抗体(131IAFPAb MMC), 对荷人肝癌裸鼠的定位显像, 131IAFPAb MMC有良好的定位作用, 抑癌率可达73.55%. 对22例配对的中晚期原发性肝癌的治疗显示: 治疗组有效率为63.2%, 明显高于对照组(31.8%); 治疗组1 a生存率(52.6%)也明显高于对照组(22.7%), 且无严重副作用. 由此可以推测, 若在交联物或在抗病毒药物上交联某一特异性的抗HBV 的抗体, 有可能将药物导向感染的细胞. 叶维法et al [44]以抗HBV单抗隆抗体[抗-HBs的F(ab')2片段]体[抗-HBs为载体交联干扰素, 并使用慢性乙型肝炎的治疗, 结果显示, HBeAg转阴率达79.4%, HBV-DNA转阴率达75%, 显著高于文献报告的普通干扰素的疗效, 且不良反应明显减轻.

2 被动靶向制剂
2.1 脂质体介导的靶向药物

脂质体(liposome) 是由脂质双分子层组成类似生物膜结构的封闭小囊, 药物包裹于囊室内无需化学键形成, 有利于保持药物活性. 脂质体对肝脏有良好的靶向性, 进入机体可迅速被肝内丰富的网状内皮系统吸收, 一旦脂质体到达靶组织, 可经多种途径发挥作用. 药物-脂质体进入细胞, 溶酶体破坏, 载体被溶酶体酶所分解, 药物将被释放入胞质, 发挥细胞毒作用. 另外, 脂质体与抗原决定簇相结合, 使脂质体内包含的药物在细胞表面高浓度地持续释放, 所释放的药物将通过被动扩散或细胞膜运输系统进入细胞. 脂质体还可作为免疫佐剂, 调节机体的免疫应答, 而制备脂质体的多种天然磷脂还是肝细胞保护剂, 所以, 脂质体包裹抗病毒药物在乙型肝炎的治疗中[45-48], 即可靶向抗病毒, 又有可以调节免疫和保护细胞功能.干扰素制成脂质体的体外试验证明其抗乙肝作用病毒为等量游离干扰素的10-1000倍. 陈启荣et al[49]作了脂质体介导反义寡核苷酸体外抗乙型肝炎病毒作用的研究, 以2, 2, 15细胞为靶细胞, 针对HBVS基因和PreC基因翻译起始区设计合成了16聚硫代反义寡核苷酸 , 脂质体促进转染. 用放射免疫测定法(RLA)测乙型肝炎病毒HBsAg和HBeAg含量. 结果显示: 脂质体介导PS-ASON在浓度1 μmol/L时特异性抑制90% HBsAg和92% HBeAg的产生, 同时未见对细胞的毒性作用. 脂质体介导反义寡核苷酸的抗病毒作用显著高于单独用ASON(P<0.01). 脂质体介导的ASON是一种很有潜力的抗HBV药物.

2.2 微球介导的肝靶向药物

微球(microspheres)是将药物分子分散或黏附于高分子物质载体中而形成的微粒分散系统. 其微粒大小不等, 一般为几个微米, 已知肝脏大量存在的网状内皮细胞能对血液中0.7-7 μm的颗粒产生内吞和融合作用. 将药物和载体(白蛋白、明胶、乙基纤维素、淀粉等)结合制成微球, 与脂质体比较具有稳定性好、载药量大、有肝靶向和缓慢释药的特点[50-52], 微球还具有促进抗原靶向抗原呈递细胞(APCs); 活化T及B细胞, 促进信号传递和淋巴细胞的增生活化; 诱导T及B细胞的免疫记忆[53-55]等作用, 因而备受人们的关注. 张志荣 et al [56]肝靶向万乃洛韦毫微粒的研究, 用乳化聚合法制备了万乃洛韦聚氰基丙烯酸正丁酯毫微粒, 对其形态、大小及其分布、体外释药特性、载药量、初步稳定性、动物体内的分布和体外肝细胞的摄取情况进行了研究. 结果表明: 对肝细胞具有通透性; 静注后15 min有74.5%集中在肝脏. 提示, 万乃洛韦毫微粒对于提高万乃洛韦对病毒性乙型肝炎的治疗效果和降低其对肾脏的毒性有意义.

吴晓蓉et al[57]将疫苗包裹在可生物降解的微球中, 制成一种极有潜力的新型疫苗载体系统.采用聚-DL-乳酸-聚乙二醇共聚物(PELA)为材料, 包裹乙型肝炎表面抗原(HBsAg), 制成缓释微球疫苗, 以皮下注射或口服的方式免疫balb/c小鼠, 研究其免疫原性. 同时以乙肝常规铝佐剂疫苗免疫两剂作为对照. 结果表明, 皮下注射单剂微球疫苗后, 在 14 wk, 小鼠血清IgG滴度可达到与铝佐剂疫苗组相当的水平, 维持较高的滴度; 此外, 口服微球疫苗组诱导的血清IgG滴度较低, 但其SIgA明显高于对照组和皮下注射微球疫苗组, 可见, 口服微球疫苗可诱导更高水平的黏膜抗体反应. PELA微球作为疫苗载体系统是可行的, 采用可生物降解的聚合物制备缓释的微球疫苗具有潜在的优势, 初步试验表明单剂乙肝微球疫苗皮下注射可达到与多剂注射常规疫苗相似的免疫保护水平.

总之, 不同途径介导的抗乙肝病毒药物靶向制剂具有不同的特点, 不同的选择性, 有些药物也已进入临床研究阶段, 但要用于临床还有一些问题亟待解决. 如脂质体对某些药物包封率低, 药物易于渗漏, 脂质也易被氧化, 稳定性差等. 理想的脂质体应具备以下条件: (1)保持较长的循环半衰期; (2)耦联方法应该有效、简单、快速并适用于人体; (3)抗体的存在不应干扰药物的装载及释放; (4)脂质体药物应保留他们在体内的靶识别作用, 能够以足够的剂量与靶细胞结合并释放药物, 使其治疗功效高于单独用药或无导向器的脂质体药物. 抗体介导给药虽然能进一步选择感染与非感染细胞, 但仍存在的许多问题: (1)稳定性差, 如对pH值变化敏感, 对热不稳定, 提纯过程中易变性等; (2)特异性较低, 易于正常细胞交叉反应, 产生抗抗体等. 尽管肝靶向药物还存在着许多问题, 随着靶向制剂理论进一步阐明, 肝靶向药物仍有广阔的临床应用前景.

1.  Zhao LS, Qin S, Zhou TY, Tang H, Liu L, Lei BJ. DNA-based vaccination induces humoral and cellular immune responses against hepatitis B virus surface antigen in mice without activation of c-myc. World J Gastroenterol. 2000;6:239-243.  [PubMed]  [DOI]
2.  Chen XS, Wang GJ, Cai X, Yu HY, Hu YP. Inhibition of hepatitis B virus by oxymatrine in vivo. World J Gastroenterol. 2001;7:49-52.  [PubMed]  [DOI]
3.  Yotsuyanagi H, Hino K, Tomita E, Toyoda J, Yasuda K, Iino S. Precore and core promoter mutations, hepatitis B virus DNA levels and progressive liver injury in chronic hepatitis B. J Hepatol. 2002;37:355.  [PubMed]  [DOI]
4.  Miranda J, Cabezas C. Hepatitis B among health workers. Rev Gastroenterol Peru. 2001;21:128-135.  [PubMed]  [DOI]
5.  Hu YP, Hu WJ, Zheng WC, Li JX, Dai DS, Wang XM, Zhang SZ, Yu HY, Sun W, Hao GR. Establishment of transgenic mouse harboring hepatitis B virus (adr subtype) genomes. World J Gastroenterol. 2001;7:111-114.  [PubMed]  [DOI]
6.  Amarapurkar D, Das HS. Chronic liver disease in diabetes mellitus. Trop Gastroenterol. 2002;23:3-5.  [PubMed]  [DOI]
7.  Goldmann DA. Blood-borne pathogens and nosocomial infections. J Aller Clin Immunol. 2002;110:S021-26.  [PubMed]  [DOI]
8.  Zheng WC, Qi GR. tRNA-embedded hammerhead ribozymes mediate destruction of HBV (Subtype adr) in vitro. Shengwu Huaxue Yu Shengwu Wuli Xuebao. 1998;30:432-438.  [PubMed]  [DOI]
9.  Kakimi K, Isogawa M, Chung J, Sette A, Chisari FV. Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections. J Virol. 2002;76:8609-8620.  [PubMed]  [DOI]
10.  Dikici B, Bosnak M, Bosnak V, Dagli A, Ece A, Yagci RV, Haspolat K. Combination therapy for children with chronic hepatitis B virus infection. J Gastroenterol Hepatol. 2002;17:1087-1091.  [PubMed]  [DOI]
11.  Ding X, Mizokami M, Yao G, Xu B, Orito E, Ueda R, Nakanishi M. Hepatitis B virus genotype distribution among chronic hepatitis B virus carriers in Shanghai, China. Intervirology. 2001;44:43-47.  [PubMed]  [DOI]
12.  Assy N, Paizi M, Gaitini D, Baruch Y, Spira G. Clinical implication of VEGF serum levels in cirrhotic patients with or without portal hypertension. World J Gastroenterol. 1999;5:296-300.  [PubMed]  [DOI]
13.  Merican I, Guan R, Amarapuka D, Alexander MJ, Chutaputti A, Chien RN, Hasnian SS, Leung N, Lesmana L, Phiet PH. Chronic hepatitis B virus infection in Asian countries. J Gastroenterol Hepatol. 2000;15:1356-1361.  [PubMed]  [DOI]
14.  Notas G, Xidakis C, Valatas V, Kouroumalis A, Kouroumalis E. Levels of circulating endothelin-1 and nitrates/nitrites in patients with virus-related hepatocellular carcinoma. J Viral Hepat. 2001;8:63-69.  [PubMed]  [DOI]
15.  Seki S, Sakaguchi H, Kitada T, Tamori A, Takeda T, Kawada N, Habu D, Nakatani K, Nishiguchi S, Shiomi S. Outcomes of dysplastic nodules in human cirrhotic liver: a clinicopathological study. Clin Cancer Res. 2000;6:3469-3473.  [PubMed]  [DOI]
16.  Kubicka S, Rudolph KL, Hanke M, Tietze MK, Tillmann HL, Trautwein C, Manns M. Hepatocellular carcinoma in Germany: a retrospective epidemiological study from a low-endemic area. Liver. 2000;20:312-318.  [PubMed]  [DOI]
17.  Brechot C, Gozuacik D, Murakami Y, Paterlini-Brechot P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol. 2000;10:211-231.  [PubMed]  [DOI]
18.  Di Stefano G, Busi C, Camerino A, Nardo B, Fiume L. Enhanced liver blood concentrations of adenine arabinoside accomplished by lactosaminated poly-L-lysine coupling: implications for regional chemotherapy of hepatic micrometastases. Biochem Pharmacol. 2000;1:301-304.  [PubMed]  [DOI]
19.  Wong ET, Chew YP, Lee LA, Lee CG. Therapeutic strategies for hepatitis B virus-associated hepatocellular carcinoma. Curr Drug Targets. 2002;3:369-378.  [PubMed]  [DOI]
20.  Lau GK, He ML, Fong DY, Bartholomeusz A, Au WY, Lie AK, Locarnini S, Liang R. Preemptive use of lamivudine reduces hepatitis B exacerbation after allogeneic hematopoietic cell transplantation. Hepatology. 2002;36:702-709.  [PubMed]  [DOI]
21.  Julyan PJ, Seymour LW, Ferry DR, Daryani S, Boivin CM, Doran J, David M, Anderson D, Christodoulou C, Young AM. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J Control Release. 1999;57:281-290.  [PubMed]  [DOI]
22.  Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ. Cancer research campaign phase I/II clinical trials committee. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20:1668-1676.  [PubMed]  [DOI]
23.  Hopewel JW, Duncan R, Wilding D, Chakrabarti K. Preclinical evaluation of the cardiotoxicity of PK2: a novel HPMA copolymer-doxorubicin-galactosamine conjugate antitumour agent. Hum Exp Toxicol. 2001;20:461-470.  [PubMed]  [DOI]
24.  Sliedregt LA, Rensen PC, Rump ET, van Santbrink PJ, Bijsterbosch MK, Valentijn AR, van der Marel GA, van Boom JH, van Berkel TJ, Biessen EA. Design and synthesis of novel amphiphilic dendritic galactosides for selective targeting of liposomes to the hepatic asialoglycoprotein receptor. J Med Chem. 1999;42:609-618.  [PubMed]  [DOI]
25.  Di Campli C, Wu J, Zern MA. Targeting of therapeutics to the liver: liposomes and viral vectors. Alcohol Clin Exp Res. 1999;23:950-954.  [PubMed]  [DOI]
26.  Di Campli C, Wu J, Gasbarrini A, Gasbarrini G, Zern MA. Gene therapy for human liver diseases. Eur J Gastroenterol Hepatol. 1999;11:421-429.  [PubMed]  [DOI]
27.  Malaguarnera M, Restuccia S, Ferlito L, Mazzoleni G, Giugno I, Pistone G. Antiviral drugs in chronic hepatitis B: review and meta-analysis. Int J Clin Pharmacol Ther. 2001;39:4-11.  [PubMed]  [DOI]
28.  Antiv Torresi J, Locarnini S. Iral chemotherapy for the treatment of hepatitis B virus infections. Gastroenterology. 2000;118:S83-103.  [PubMed]  [DOI]
29.  Takakura Y, Nishikawa M, Yamashita F, Hashida M. Development of gene drug delivery systems based on pharmacokinetic studies. Eur J Pharm Sci. 2001;13:71-76.  [PubMed]  [DOI]
30.  Hashida M, Nishikawa M, Yamashita F, Takakura Y. Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev. 2001;52:187-196.  [PubMed]  [DOI]
31.  Sliedregt LA, Rensen PC, Rump ET, van Santbrink PJ, Bijsterbosch MK, Valentijn AR, van der Marel GA, van Boom JH, van Berkel TJ, Biessen EA. Design and synthesis of novel amphiphilic dendritic galactosides for selective targeting of liposomes to the hepatic asialoglycoprotein receptor. J Med Chem. 1999;42:609-618.  [PubMed]  [DOI]
32.  Tupasi TE, Co VM, Clarin MS, Alesna ET, Divinagracia EM, Mangubat NV. Randomized, double-blind, placebo-controlled trial of oromucosal low-dose interferon following prednisone withdrawal for chronic hepatitis B infection in Filipino patients. Int J Infect Dis. 2002;6:37-41.  [PubMed]  [DOI]
33.  Zampino R, Marrone A, Cirillo G, del Giudice EM, Utili R, Karayiannis P, Liang TJ, Ruggiero G. Sequential analysis of hepatitis B virus core promoter and precore regions in cancer survivor patients with chronic hepatitis B before, during and after interferon treatment. J Viral Hepat. 2002;9:183-188.  [PubMed]  [DOI]
34.  Wu LK, Liu H, Xue PL, Lu ZG, Du KF. Influence of a triplex superimposed treatment on HBV replication and mutation during treating chronic hepatitis B. Zhonghua Shiyan He Linchuang Bingduxue Zazhi. 2001;15:236-238.  [PubMed]  [DOI]
35.  Zoulim F. A preliminary benefit-risk assessment of Lamivudine for the treatment of chronic hepatitis B virus infection. Drug Saf. 2002;25:497-510.  [PubMed]  [DOI]
36.  Lok AS. Hepatitis B infection: Pathogenesis and management. J Hepatol. 2000;1:89-97.  [PubMed]  [DOI]
37.  Little JW. Recent advances in the treatment of viral hepatitis. Gen Dent. 2000;48:672-679.  [PubMed]  [DOI]
38.  Di Stefano G, Lanza M, Busi C, Barbieri L, Fiume L. Conjugates of nucleoside analogs with lactosaminated human albumin to selectively increase the drug levels in liver blood: requirements for a regional chemotherapy. J Pharmacol Exp Ther. 2002;301:638-642.  [PubMed]  [DOI]
39.  Fiume L, Di Stefano G, Busi C, Mattioli A, Bonino F, Torrani-Cerenzia M, Verme G, Rapicetta M, Bertini M, Gervasi GB. Liver targeting of antiviral nucleoside analogues through the asialoglycoprotein receptor. J Viral Hepat. 1997;4:363-370.  [PubMed]  [DOI]
40.  Xie Q, Guo Q, Zhou XQ, Gu RY. Effect of adenine arabinosid-emonophosphate coupled tolactosaminated human serumalbumin on duck hepatitis B virus. Shijie Huaren Xiaohua Zazhi. 1999;7:125-126.  [PubMed]  [DOI]
41.  Fiumme L, Boinino F, Mattioli A. Inhibition of HBV replication by vidaratine monophosphate conjugated with lactosa minated serum albumin. Lancet. 1998;332:13.  [PubMed]  [DOI]
42.  郭 军, 周 永兴, 姚 志强, 王 升启, 温 守明, 王 保成. 半乳糖受体介导的反义硫代寡核苷酸肝细胞导向作用的体内外研究. 中华传染病杂志. 1997;15:16-19.  [PubMed]  [DOI]
43.  胡 晓华, 吴 英德, 周 德南. "双弹头"抗AFP抗体对肝癌导向综合治疗的实验和临床研究. 中华肿瘤临床. 1998;2:44-46.  [PubMed]  [DOI]
44.  叶 维法, 钟 振义. 肝炎学大典. 第1版. 天津科学技术出版社. 1995;946.  [PubMed]  [DOI]
45.  Lutsiak CM, Sosnowski DL, Wishart DS, Kwon GS, Samuel J. Use of a liposome antigen delivery system to alter immune responses in vivo. J Pharm Sci. 1998;87:1428-1432.  [PubMed]  [DOI]
46.  Gao Y, Luo D, Cai S. A study of hepatitis B virus(HBV) anti-genome and its inhibitory effect on HBV replication. Zhonghua Neike Zazhi. 2001;40:243-246.  [PubMed]  [DOI]
47.  Kim CK, Jeong EJ, Kim MH. Comparison of in vivo fate and immunogenicity of hepatitis B surface antigen incorporated in cationic and neutral liposomes. J Microencapsul. 2000;17:297-306.  [PubMed]  [DOI]
48.  Kalenik TN, Motavkina NS, Vorobv AA. Liposome-incorporated interferon. The design of liposomal interferon. Zh Mikrobiol Epidemiol Immunobiol. 1999;3:55-58.  [PubMed]  [DOI]
49.  陈 启荣, 邵 俊斌, 印 慧, 喻 诤琴. 脂质体介导反义寡核苷酸体外抗乙型肝炎病毒作用的研究. 武警医学. 2000;7:391-393.  [PubMed]  [DOI]
50.  Moynihan JS, Jones DH, Farrar GH, Howard CR. A novel microencapsulated peptide vaccine against hepatitis B. Vaccine. 2001;19:3292-3300.  [PubMed]  [DOI]
51.  Machluf M, Apte RN, Regev O, Cohen S. Enhancing the immunogenicity of liposomal hepatitis B surface antigen (HBsAg) by controlling its delivery from polymeric microspheres. J Pharm Sci. 2000;89:1550-1557.  [PubMed]  [DOI]
52.  Moynihan JS, D'Mello FI, Howard CR. 48-mer synthetic peptide analogue of the hepatitis B virus "a" determinant induces an anti-HBs antibody response after a single injection. J Med Virol. 2000;62:159-166.  [PubMed]  [DOI]
53.  Moynihan JS, Blair J, Coombes A, Dello F, Howard CR. Enhanced immunogenicity of a hepatitis B virus peptide vaccine using oligosaccharide ester derivative microparticles. Vaccine. 2002;20:1870-1876.  [PubMed]  [DOI]
54.  Defoort JP, Martin M, Casano B, Prato S, Camilla C, Fert V. Simultaneous detection of multiplex-amplified human immunodeficiency virus type 1 RNA, hepatitis C virus RNA, and hepatitis B virus DNA using a flow cytometer microsphere-based hybridization assay. J Clin Microbiol. 2000;38:1066-1071.  [PubMed]  [DOI]
55.  Shi L, Caulfield MJ, Chern RT, Wilson RA, Sanyal G, Volkin DB. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres. J Pharm Sci. 2002;91:1019-1035.  [PubMed]  [DOI]
56.  张 志荣, 何 勤. 肝靶向万乃洛韦毫微粒的研究. 药学学报. 1998;33:702-706.  [PubMed]  [DOI]
57.  吴 晓蓉, 贾 文祥, 刘 莉, 张 再蓉, 邝 玉, 李 孝红, 邓 先模. PELA微球乙型肝炎疫苗的免疫原性研究. 生命科学研究. 2000;2:167-172.  [PubMed]  [DOI]