Copyright
©The Author(s) 2025.
World J Gastroenterol. Aug 14, 2025; 31(30): 109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Table 1 Scanning parameters of different computed tomography devices
Devices | Revolution aca (GE) | Ingenuity core 64 (Philips) | Revolution (GE) |
Layer thickness (mm) | 5 | 5 | 5 |
Layer interval (mm) | 5 | 5 | 5 |
Tube voltage (kV) | 120 | 120 | 120 |
Tube current (mA) | 50 | 30 | 50 |
Matrix | 512 × 512 | 512 × 512 | 512 × 512 |
Threshold of ROI (HU) | 100 | 150 | 120 |
Table 2 Slice-level prediction results for various deep learning model
Dataset | Model | Accuracy | AUC (95%CI) | Sensitivity | Specificity |
Training | Resnet18 | 0.771 | 0.841 (0.820-0.861) | 0.701 | 0.814 |
Validation | Resnet18 | 0.757 | 0.777 (0.739-0.814) | 0.705 | 0.777 |
Training | VGG19 | 0.695 | 0.770 (0.745-0.794) | 0.708 | 0.688 |
Validation | VGG19 | 0.790 | 0.749 (0.708-0.791) | 0.472 | 0.911 |
Training | Densenet121 | 0.750 | 0.845 (0.825-0.866) | 0.809 | 0.714 |
Validation | Densenet121 | 0.704 | 0.645 (0.596-0.694) | 0.437 | 0.805 |
Table 3 Evaluation results of different models on the 2.5-dimensional deep learning-based multi-instance learning method
Dataset | Model | Accuracy | AUC (95%CI) | Sensitivity | Specificity |
Training | ExtraTrees | 0.821 | 0.917 (0.874-0.961) | 0.784 | 0.843 |
Validation | ExtraTrees | 0.776 | 0.861 (0.756-0.966) | 0.882 | 0.732 |
Training | LightGBM | 0.821 | 0.880 (0.821-0.940) | 0.824 | 0.819 |
Validation | LightGBM | 0.793 | 0.877 (0.784-0.970) | 0.882 | 0.756 |
Training | MLP | 0.836 | 0.914 (0.868-0.959) | 0.824 | 0.843 |
Validation | MLP | 0.776 | 0.841 (0.727-0.956) | 0.882 | 0.732 |
Table 4 Predictive metrics of various signatures
Dataset | Signature | Accuracy | AUC (95%CI) | Sensitivity | Specificity |
Training | Clinical | 0.530 | 0.655 (0.559-0.751) | 0.882 | 0.313 |
Validation | Clinical | 0.500 | 0.631 (0.470-0.793) | 0.882 | 0.341 |
Training | Radiomics | 0.687 | 0.770 (0.691-0.849) | 0.765 | 0.639 |
Validation | Radiomics | 0.672 | 0.727 (0.597-0.857) | 0.882 | 0.585 |
Training | MIL | 0.821 | 0.880 (0.821-0.940) | 0.824 | 0.819 |
Validation | MIL | 0.793 | 0.877 (0.784-0.970) | 0.882 | 0.756 |
- Citation: Cen YY, Nong HY, Huang XX, Lu XX, Pu CH, Huang LH, Zheng XJ, Pan ZL, Huang Y, Ding K, Huang DY. Computed tomography-based deep learning and multi-instance learning for predicting microvascular invasion and prognosis in hepatocellular carcinoma. World J Gastroenterol 2025; 31(30): 109186
- URL: https://www.wjgnet.com/1007-9327/full/v31/i30/109186.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i30.109186