Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastroenterol. Aug 14, 2025; 31(30): 109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Table 1 Scanning parameters of different computed tomography devices
Devices
Revolution aca (GE)
Ingenuity core 64 (Philips)
Revolution (GE)
Layer thickness (mm)555
Layer interval (mm)555
Tube voltage (kV)120120120
Tube current (mA)503050
Matrix512 × 512512 × 512512 × 512
Threshold of ROI (HU)100150120
Table 2 Slice-level prediction results for various deep learning model
Dataset
Model
Accuracy
AUC (95%CI)
Sensitivity
Specificity
TrainingResnet180.7710.841 (0.820-0.861)0.7010.814
ValidationResnet180.7570.777 (0.739-0.814)0.7050.777
TrainingVGG190.6950.770 (0.745-0.794)0.7080.688
ValidationVGG190.7900.749 (0.708-0.791)0.4720.911
TrainingDensenet1210.7500.845 (0.825-0.866)0.8090.714
ValidationDensenet1210.7040.645 (0.596-0.694)0.4370.805
Table 3 Evaluation results of different models on the 2.5-dimensional deep learning-based multi-instance learning method
Dataset
Model
Accuracy
AUC (95%CI)
Sensitivity
Specificity
TrainingExtraTrees0.8210.917 (0.874-0.961)0.7840.843
ValidationExtraTrees0.7760.861 (0.756-0.966)0.8820.732
TrainingLightGBM0.8210.880 (0.821-0.940)0.8240.819
ValidationLightGBM0.7930.877 (0.784-0.970)0.8820.756
TrainingMLP0.8360.914 (0.868-0.959)0.8240.843
ValidationMLP0.7760.841 (0.727-0.956)0.8820.732
Table 4 Predictive metrics of various signatures
Dataset
Signature
Accuracy
AUC (95%CI)
Sensitivity
Specificity
TrainingClinical0.5300.655 (0.559-0.751)0.8820.313
ValidationClinical0.5000.631 (0.470-0.793)0.8820.341
TrainingRadiomics0.6870.770 (0.691-0.849)0.7650.639
ValidationRadiomics0.6720.727 (0.597-0.857)0.8820.585
TrainingMIL0.8210.880 (0.821-0.940)0.8240.819
ValidationMIL0.7930.877 (0.784-0.970)0.8820.756