Minireviews
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jun 28, 2025; 31(24): 108508
Published online Jun 28, 2025. doi: 10.3748/wjg.v31.i24.108508
Table 1 Summary of key artificial intelligence applications in portal hypertension and esophagogastric varices management
Applications
Techniques/methods
Research data/performance metrics
Diagnostic tools
Liver and spleen ultrasound elastographyUltrasound elastographyLSM and SSM values correlated with HVPG
CT/MRI imaging analysisCT, MRI, deep learning, radiomicsrHVPG model performance (AUC value), virtual HVPG validation, morphological assessment of varices
Deep learning models (DCNN)Deep learningModel AUC value (e.g., 0.9), sensitivity, specificity
Prognostic models
HVPG prediction modelMachine learning, CT radiomicsaHVPG model AUC value (e.g., 0.80)
Variceal bleeding risk predictionDeep learningModel AUC value (internal: 0.782, external: 0.789), calibration and decision curve analysis
Treatment selection aids
Endoscopic virtual ruler (ENDOAGGEL)Deep learningAccuracy for detecting EV and GV (97.00% and 92.00%)
TIPS post-OHE prediction modelMachine learningModel accuracy in predicting OHE, comparison with traditional models