Minireviews
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jun 21, 2025; 31(23): 105076
Published online Jun 21, 2025. doi: 10.3748/wjg.v31.i23.105076
Table 1 Performance of machine learning models for diagnosis, risk stratification, and prognosis in esophageal diseases
Ref.
ML classifier
Disorder
Outcomes
Data type (n)
Performance
Validation (n)
Risk factor screening
Yan et al[70]SVMEVIdentify esophageal varices with high bleeding riskCT image (796), ChinaAUC = 0.74External validation (405)
Hong et al[77]EfficientNet/Grad-CAMEVAssess the risk of EV bleeding within 12 monthsEndoscopy (675), ChinaACC = 91%External validation (400)
Chen et al[76]DCNNsEVClassify the EV grade to identify patients at high risk of bleedingEndoscopy (10655), ChinaACC = 97%Independent validation (200)
Gao et al[44]LightGBMECScreen for carcinoma at the esophagogastric junctionQuestionnaire, cytology and endoscopy (17000), ChinaAUC = 0.96External validation (2901)
Iyer et al[41]TransformerECScreen for patients with BE and EC among healthy individualsClinical data (260000), United StatesAUC = 0.84Independent validation (10%)
Rosenfeld et al[25]Logistic regressionBEScreen for BE and alert patients who may need endoscopyQuestionnaire (1299), United KingdomAUC = 0.86Independent validation (523)
Fockens et al[54]EfficientNet/MobileNetV2/DeepLabV3 +BE, ECDetect and mark lesion sites of BE and ECEndoscopy (13000), NetherlandsSensitivity = 88%Independent validation (200)
Prognosis and survival analysis
Wang et al[75]DCNNsEVDetermine size, shape, color and bleeding signs of EV and GVEndoscopy (17000), ChinaACC = 93%External validation (11000)
Nopour[51]Random forestECPredict 5-year survival of patients with ECClinical data (1656), IranAUC = 0.76External validation (100)
Lu et al[53]Random forestECPredict 3-year and 5-year survival of patients with ECClinical data (2521), ChinaAUC = 0.77Independent validation (30%)
Knabe et al[56]VGG16ECIdentify BE, early EC, and advanced tumors (T1b sm2, T3, T4)Endoscopy (1020), GermanyACC = 73%Independent validation (199)
Personalized medication
Sasagawa et al[66]Decision treeECPredict chemotherapy response by immunogenomic featuresGenomic and transcriptomic data (121), JapanACC = 84%Independent validation (30%)
Chuwdhury et al[65]Random forestECPredict neoantigens by multi-omics featuresGenomic and transcriptomic data (805), ChinaAUC = 0.87Independent validation (211 peptides)
Zhu et al[49]XGBoostECAnalyses differences in G4RIL risk between proton and photon therapiesClinical data (746), United StatesAUC = 0.78Independent validation (247)
Chu et al[50]XGBoost and logistic regressionECPersonalized prediction of G4RIL based on CDS and four clinical risk factorsClinical data (860), United StatesAUC = 0.78Independent validation (20%)
Clinical phenotype classification
Li et al[26]ResNeXt50GERDClassify the Los Angeles grade of reflux esophagitisEndoscopy (3498), ChinaACC = 90.2%Independent validation (396)
Jia et al[59]Consensus clusteringECClassify EC into four clusters with BRCA1, PD-1, vascular invasion, and tumor stagesCT image (546), ChinaP = 0.035 External validation (546)
Chempak Kumar and Mubarak[57]Artificial bee colony/CNN/SVMBE, ESCC, EACDetect and analyze BE, EAC, and ESCCEndoscopy (1028), IndiaACC = 97%3-fold cross-validation
Takahashi et al[69]Hierarchical clusteringAchalasiaClassify achalasia into three clusters, according to Chicago classificationDemography, clinical data and endoscopy (1824), JapanAUC: 0.61-0.7 External validation (1824)
Carlson et al[68]Decision treeAchalasiaClassify achalasia and distinguish spastic from non-spastic typesHRM data (180), United StatesACC = 78%Independent validation (40)
Faghani et al[40]YOLOv5BEClassify BE into NDBE, LGD, and HGDHistology (542), United StatesACC = 81.3%Independent validation (70)
Clinical decision support system
Rogers et al[28]Decision treeGERDIdentify MNBI, and diagnose GERD based on MNBIpH-impedance data (325), United States and ItalyACC = 88.5%Independent validation (2049)
Wong et al[30]ResNet18GERDIdentify reflux events and calculate the PSPW indexpH-impedance data (106), ChinaACC = 87%Independent validation (10%)
Yen et al[36]VGG16/RFGERDAssess esophageal mucosal damageEndoscopy (496), ChinaACC = 92.5%Independent validation (32)
Zhou et al[31]S4 modelGERDIdentify reflux eventspH-impedance data (45), United StatesAUC = 0.87Independent validation (20)
Meng et al[46]XGBoostECDiagnose ESCC according to the relative abundance of salivary floraMicrobiome (8000), MultisourceACC = 89.9%5-fold cross-validation
Rubenstein et al[45]Logistic regression/decision tree/XGBoostECDistinguish early- and late-stage ECClinical data (11400000), United StatesAUC: 0.75-0.85Independent validation (2600000)
Yuan et al[43]YOLACTECDetect and segment lesions of patients with ECEndoscopic image (10000) and video (140), ChinaACC = 87%External validation (1141)
Thavanesan et al[47]Logistic regression, random forests, extreme gradient boosting and decision treeECMDT treatment decisions predict and curative ECClinical data (399), United KingdomAUC: 0.71-0.7910-fold cross-validation
Huang et al[48]Extremely randomized treesECIndividualized treatment decisions for elderly patients with inoperable ESCCClinical data, CT and endoscopy (189), ChinaAUC = 0.84Independent validation (20%)
Li et al[55]eUNetECSegment lesions in EC endoscopic imagesEndoscopy (2848), MultisourceDice = 0.89Independent validation (300)