Copyright
©The Author(s) 2025.
World J Gastroenterol. Jun 7, 2025; 31(21): 107601
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.107601
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.107601
Table 1 The data distribution for the classification of normal mucosa, erosions/erythema, ulcers, and polyps
Training set | Testing set | Total | |
Normal mucosa | 916 | 228 | 1144 |
Erosions/erythema | 272 | 68 | 340 |
Ulcers | 151 | 37 | 188 |
Polyps | 501 | 125 | 626 |
Total images | 1840 | 458 | 2298 |
Table 2 The hyperparameter values of the deep learning models
Type of hyper-parameter | DenseNet121 | VGG16 | ResNet50 | ViT |
Number of epochs | 100 | 100 | 100 | 300 |
Batch size | 32 | 32 | 32 | 16 |
Learning rate | 1 × 10-3 | 1 × 10-3 | 1 × 10-3 | 6 × 10-3 |
Weight decay | 4 × 10-4 | 4 × 10-4 | 4 × 10-4 | 4 × 10-4 |
momentum | 0.8 | 0.8 | 0.8 | 0.8 |
Optimizer | SGD | SGD | SGD | SGD |
Table 3 Baseline demographic and clinical characteristics of enrolled patients (n = 162), n (%)
Patient characteristics | Value |
Gender | |
Female | 56 (35) |
Male | 106 (65) |
Age (year), median (IQR) | 11.00 (9.00, 13.00) |
Chief complaint | |
Abdominal pain | 101 (62) |
Diarrhea | 31 (19) |
Anemia | 2 (1.2) |
Hematochezia | 18 (11) |
Vomiting | 13 (8.0) |
Fever | 8 (4.9) |
Oral ulceration | 4 (2.5) |
Mucocutaneous hyperpigmentation of the mouth and lips | 5 (3.1) |
Perianal abscess | 10 (6.2) |
Swallowed VCE by the patients | 137 (85) |
Placed VCE by endoscopy | 25 (15) |
Stomach transit time (minute), median (IQR) | 22 (5, 55) |
Small bowel transit time (minute), median (IQR) | 282 (217, 377) |
Number of lesions per patient | |
None | 69 (43) |
Single | 33 (20) |
Multiple | 60 (37) |
Diagnosis | |
Crohn disease | 36 (22) |
Ulcerative colitis | 2 (1.2) |
Suspected inflammatory bowel disease | 30 (19) |
Behcet disease | 2 (1.2) |
Disorder of gut-brain interaction | 31 (19) |
Polyps | 12 (7.4) |
Gastroenteritis | 35 (22) |
Others | 14 (8.6) |
Table 4 Accuracy of different deep learning models in detecting lesions of normal mucosa, ulcers, erosions/erythema, and polyps
Model | Overall accuracy (%) (95%CI) | Normal mucosa (%) (95%CI) | Ulcers (%) (95%CI) | Erosions/erythema (%) (95%CI) | Polyps (%) (95%CI) |
DenseNet121 | 90.6 (89.2-92.0) | 98.6 (96.0-100) | 83.3 (75.6-91.1) | 81.9 (74.2-89.6) | 100 (100-100) |
VGG16 | 88.3 (87.9-88.8) | 92.2 (89.7-94.6) | 91.6 (89.9-93.3) | 72.1 (63.6-80.6) | 75.0 (66.8-83.2) |
ResNet50 | 90.5 (89.9-91.1) | 98.1 (96.8-99.4) | 87.0 (82.3-91.7) | 77.3 (72.4-82.2) | 100 (100-100) |
ViT | 88.1 (86.7-89.6) | 93.2 (88.5-97.9) | 87.4 (77.6-97.3) | 73.0 (61.3-84.8) | 87.9 (76.3-99.5) |
Table 5 The overall performances of the deep learning models in the training set
Model | Accuracy (%) (95%CI) | Precision (%) (95%CI) | Recall (%) (95%CI) | F1-score (%) (95%CI) | AU-ROC (%) (95%CI) |
DenseNet121 | 90.6 (89.2-92.0) | 91.8 (89.6-94.0) | 91.0 (89.8-92.1) | 91.2 (89.4-92.9) | 93.7 (92.9-94.5) |
VGG16 | 88.3 (87.9-88.8) | 83.0 (80.7-85.3) | 82.8 (81.0-84.6) | 82.6 (81.9-83.3) | 89.2 (88.1-90.3) |
ResNet50 | 90.5 (89.9-91.2) | 92.5 (91.6-93.3) | 90.7 (90.0-91.3) | 91.3 (90.7-91.9) | 93.4 (93.1-93.8) |
ViT | 88.1 (86.7-89.6) | 84.4 (78.5-90.3) | 85.4 (81.0-89.7) | 84.6 (80.0-89.2) | 90.4 (88.1-92.7) |
Table 6 Pairwise comparisons of the models’ overall performances in the training set (P value)
Evaluated metrics | DenseNet121 vs VGG16 | DenseNet121 vs ResNet50 | DenseNet121 vs ViT | VGG16 vs ResNet50 | VGG16 vs ViT | ResNet50 vs ViT |
Accuracy | 0.004 | 0.999 | 0.002 | 0.006 | 0.978 | 0.003 |
Precision | 0.001 | 0.981 | 0.003 | 0.001 | 0.85 | 0.001 |
Recall | 0.001 | 0.995 | 0.002 | 0.001 | 0.212 | 0.003 |
F1-score | 0.001 | 0.999 | 0.001 | 0.001 | 0.421 | 0.001 |
AU-ROC | 0.001 | 0.984 | 0.001 | 0.001 | 0.304 | 0.002 |
Table 7 The overall performances of the deep learning models in the testing set
Model | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) | AU-ROC (%) |
DenseNet121 | 88.6 | 87.5 | 79.0 | 82.5 | 87.1 |
VGG16 | 85.5 | 87.0 | 73.3 | 77.3 | 83.6 |
ResNet50 | 89.7 | 87.8 | 81.0 | 83.8 | 88.5 |
ViT | 86.6 | 81.3 | 80.0 | 80.5 | 87.5 |
- Citation: Huang YH, Lin Q, Jin XY, Chou CY, Wei JJ, Xing J, Guo HM, Liu ZF, Lu Y. Classification of pediatric video capsule endoscopy images for small bowel abnormalities using deep learning models. World J Gastroenterol 2025; 31(21): 107601
- URL: https://www.wjgnet.com/1007-9327/full/v31/i21/107601.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i21.107601