Copyright
©The Author(s) 2025.
World J Gastroenterol. May 21, 2025; 31(19): 105283
Published online May 21, 2025. doi: 10.3748/wjg.v31.i19.105283
Published online May 21, 2025. doi: 10.3748/wjg.v31.i19.105283
Table 1 Baseline characteristics of patients with and without anastomotic leakage, n (%)
NAL (n = 1732) | AL (n = 86) | P value | |
Sex = male | 1055 (60.9) | 64 (74.4) | 0.016 |
Tobacco or alcohol | < 0.001 | ||
No | 1256 (72.5) | 46 (53.5) | |
Tobacco | 258 (14.9) | 18 (20.9) | |
Alcohol | 25 (1.4) | 1 (1.2) | |
All | 193 (11.1) | 21 (24.4) | |
T stage | < 0.001 | ||
T1 | 192 (11.1) | 2 (2.3) | |
T2 | 453 (26.2) | 17 (19.8) | |
T3 | 995 (57.4) | 43 (50.0) | |
T4 | 92 (5.3) | 24 (27.9) | |
N stage | 0.025 | ||
N0 | 291 (16.8) | 12 (14.0) | |
N1 | 1260 (72.7) | 57 (66.3) | |
N2 | 181 (10.5) | 17 (19.8) | |
Histological type | < 0.001 | ||
Adenocarcinoma | 36 (2.1) | 0 (0.0) | |
Adenosquamouscarcinoma | 0 (0.0) | 6 (7.0) | |
Others | 1663 (96.0) | 80 (93.0) | |
Multi | 1 (0.1) | 0 (0.0) | |
Neuroendocrine | 17 (1.0) | 0 (0.0) | |
Stromal | 15 (0.9) | 0 (0.0) | |
Family = yes | 32 (1.8) | 10 (11.6) | < 0.001 |
CD34 = yes | 647 (37.4) | 67 (77.9) | < 0.001 |
FOBT = M1 | 1276 (73.7) | 64 (74.4) | 0.978 |
Location = others | 76 (4.4) | 2 (2.3) | 0.517 |
Age = high | 871 (50.3) | 39 (45.3) | 0.433 |
Neoadjuvant = yes | 142 (8.2) | 57 (66.3) | < 0.001 |
Table 2 Evaluation indicators in testing set of 10 machine learning models
Model | Accuracy | Sensitivity/PPV | Specificity/NPV | F1 |
Logistic.R | 0.916 | 0.98 | 0.912 | 0.521 |
SVM.R | 0.873 | 0.76 | 0.879 | 0.355 |
GBM.R | 0.901 | 0.96 | 0.898 | 0.471 |
NeuralNetwork.R | 0.89 | 0.98 | 0.885 | 0.455 |
RandomForest.R | 0.974 | 0.56 | 0.994 | 0.667 |
XGBoost.R | 0.925 | 0.92 | 0.927 | 0.708 |
KNN.R | 0.919 | 0.88 | 0.921 | 0.5 |
Adaboost.R | 0.903 | 0.8 | 0.908 | 0.43 |
LightGBM.R | 0.916 | 0.92 | 0.915 | 0.5 |
CatBoost.R | 0.906 | 0.96 | 0.904 | 0.485 |
Logistic.S | 0.914 | 0.98 | 0.91 | 0.515 |
SVM.S | 0.952 | 0.92 | 0.954 | 0.639 |
GBM.S | 0.956 | 0.96 | 0.956 | 0.667 |
NeuralNetwork.S | 0.958 | 0.96 | 0.958 | 0.676 |
RandomForest.S | 0.95 | 0.76 | 0.96 | 0.585 |
XGBoost.S | 0.939 | 0.96 | 0.938 | 0.593 |
KNN.S | 0.952 | 0.84 | 0.958 | 0.618 |
Adaboost.S | 0.804 | 0.92 | 0.798 | 0.301 |
LightGBM.S | 0.927 | 0.96 | 0.925 | 0.545 |
CatBoost.S | 0.943 | 0.96 | 0.942 | 0.608 |
- Citation: Kang BY, Qiao YH, Zhu J, Hu BL, Zhang ZC, Li JP, Pei YJ. Serum calcium-based interpretable machine learning model for predicting anastomotic leakage after rectal cancer resection: A multi-center study. World J Gastroenterol 2025; 31(19): 105283
- URL: https://www.wjgnet.com/1007-9327/full/v31/i19/105283.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i19.105283