1
|
Ficici C, Telatar Z, Erogul O, Kocak O. Temporal Lobe Epilepsy Focus Detection Based on the Correlation Between Brain MR Images and EEG Recordings with a Decision Tree. Diagnostics (Basel) 2024; 14:2509. [PMID: 39594175 PMCID: PMC11592879 DOI: 10.3390/diagnostics14222509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, a medical decision support system is presented to assist physicians in epileptic focus detection by correlating MRI and EEG data of temporal lobe epilepsy patients. METHODS By exploiting the asymmetry in the hippocampus in MRI images and using voxel-based morphometry analysis, gray matter reduction in the temporal and limbic lobes is detected, and epileptic focus prediction is realized. In addition, an epileptic focus is also determined by calculating the asymmetry score from EEG channels. Finally, epileptic focus detection was performed by associating MRI and EEG data with a decision tree. RESULTS The results obtained from the proposed algorithm provide 100% overlap with the physician's finding on the EEG data. CONCLUSIONS MRI and EEG correlation in epileptic focus detection was improved compared with physicians. The proposed algorithm can be used as a medical decision support system for epilepsy diagnosis, treatment, and surgery planning.
Collapse
Affiliation(s)
- Cansel Ficici
- Department of Electrical and Electronics Engineering, Ankara University, 06830 Ankara, Turkey
| | - Ziya Telatar
- Department of Biomedical Engineering, Başkent University, 06790 Ankara, Turkey; (Z.T.); (O.K.)
| | - Osman Erogul
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey;
| | - Onur Kocak
- Department of Biomedical Engineering, Başkent University, 06790 Ankara, Turkey; (Z.T.); (O.K.)
| |
Collapse
|
2
|
Wang J, Sun M, Huang W. Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models. Int J Neural Syst 2024; 34:2450047. [PMID: 38864575 DOI: 10.1142/s0129065724500473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.
Collapse
Affiliation(s)
- Jiale Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Mengxue Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
3
|
Nazari MJ, Shalbafan M, Eissazade N, Khalilian E, Vahabi Z, Masjedi N, Ghidary SS, Saadat M, Sadegh-Zadeh SA. A machine learning approach for differentiating bipolar disorder type II and borderline personality disorder using electroencephalography and cognitive abnormalities. PLoS One 2024; 19:e0303699. [PMID: 38905185 PMCID: PMC11192371 DOI: 10.1371/journal.pone.0303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/29/2024] [Indexed: 06/23/2024] Open
Abstract
This study addresses the challenge of differentiating between bipolar disorder II (BD II) and borderline personality disorder (BPD), which is complicated by overlapping symptoms. To overcome this, a multimodal machine learning approach was employed, incorporating both electroencephalography (EEG) patterns and cognitive abnormalities for enhanced classification. Data were collected from 45 participants, including 20 with BD II and 25 with BPD. Analysis involved utilizing EEG signals and cognitive tests, specifically the Wisconsin Card Sorting Test and Integrated Cognitive Assessment. The k-nearest neighbors (KNN) algorithm achieved a balanced accuracy of 93%, with EEG features proving to be crucial, while cognitive features had a lesser impact. Despite the strengths, such as diverse model usage, it's important to note limitations, including a small sample size and reliance on DSM diagnoses. The study suggests that future research should explore multimodal data integration and employ advanced techniques to improve classification accuracy and gain a better understanding of the neurobiological distinctions between BD II and BPD.
Collapse
Affiliation(s)
- Mohammad-Javad Nazari
- Computer Science and Mathematics Department, Amirkabir University of Technology, Tehran, Iran
| | - Mohammadreza Shalbafan
- Department of Psychiatry, Psychosocial Health Research Institute (PHRI), Mental Health Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Sciences Studies, Brain and Cognition Clinic, Tehran, Iran
| | - Negin Eissazade
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Khalilian
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Neuropsychiatry Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Masjedi
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shiry Ghidary
- Computer Science and Mathematics Department, Amirkabir University of Technology, Tehran, Iran
| | - Mozafar Saadat
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
4
|
Chaibi S, Mahjoub C, Ayadi W, Kachouri A. Epileptic EEG patterns recognition through machine learning techniques and relevant time-frequency features. BIOMED ENG-BIOMED TE 2024; 69:111-123. [PMID: 37899292 DOI: 10.1515/bmt-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES The present study is designed to explore the process of epileptic patterns' automatic detection, specifically, epileptic spikes and high-frequency oscillations (HFOs), via a selection of machine learning (ML) techniques. The primary motivation for conducting such a research lies mainly in the need to investigate the long-term electroencephalography (EEG) recordings' visual examination process, often considered as a time-consuming and potentially error-prone procedure, requiring a great deal of mental focus and highly experimented neurologists. On attempting to resolve such a challenge, a number of state-of-the-art ML algorithms have been evaluated and compare in terms of performance, to pinpoint the most effective algorithm fit for accurately extracting epileptic EEG patterns. CONTENT Based on intracranial as well as simulated EEG data, the attained findings turn out to reveal that the randomforest (RF) method proved to be the most consistently effective approach, significantly outperforming the entirety of examined methods in terms of EEG recordings epileptic-pattern identification. Indeed, the RF classifier appeared to record an average balanced classification rate (BCR) of 92.38 % in regard to spikes recognition process, and 78.77 % in terms of HFOs detection. SUMMARY Compared to other approaches, our results provide valuable insights into the RF classifier's effectiveness as a powerful ML technique, fit for detecting EEG signals born epileptic bursts. OUTLOOK As a potential future work, we envisage to further validate and sustain our major reached findings through incorporating a larger EEG dataset. We also aim to explore the generative adversarial networks (GANs) application so as to generate synthetic EEG signals or combine signal generation techniques with deep learning approaches. Through this new vein of thought, we actually preconize to enhance and boost the automated detection methods' performance even more, thereby, noticeably enhancing the epileptic EEG pattern recognition area.
Collapse
Affiliation(s)
- Sahbi Chaibi
- AFD2E Laboratory, National Engineering School, Sfax University, Sfax, Tunisia
- Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Chahira Mahjoub
- AFD2E Laboratory, National Engineering School, Sfax University, Sfax, Tunisia
| | - Wadhah Ayadi
- Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | | |
Collapse
|
5
|
Kantipudi MVVP, Kumar NSP, Aluvalu R, Selvarajan S, Kotecha K. An improved GBSO-TAENN-based EEG signal classification model for epileptic seizure detection. Sci Rep 2024; 14:843. [PMID: 38191643 PMCID: PMC10774431 DOI: 10.1038/s41598-024-51337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Detection and classification of epileptic seizures from the EEG signals have gained significant attention in recent decades. Among other signals, EEG signals are extensively used by medical experts for diagnosing purposes. So, most of the existing research works developed automated mechanisms for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. Thus, the proposed work intends to develop an automated epileptic seizure detection system with an improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique is used to filter the input signals and the relevant set of features are extracted from the normalized output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm Optimization (GBSO) technique is employed to select the optimal features by computing the best fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence algorithms, such as preprocessing, optimization, and classification, are used in the literature to identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization approaches are reduced convergence rates and higher computational complexity. Furthermore, the problems with machine learning approaches include a significant method complexity, intricate mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models might dramatically improve disease detection accuracy while decreasing complexity of system along with time consumption as compared to the prior techniques. By using the proposed methodology, the overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% and G-mean of 98.9% values.
Collapse
Affiliation(s)
- M V V Prasad Kantipudi
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, 412115, India
| | - N S Pradeep Kumar
- S.E.A College of Engineering and Technology, Bengaluru, 560049, India
| | - Rajanikanth Aluvalu
- Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Shitharth Selvarajan
- School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, LS1 3HE, UK.
- Department of Computer Science, Kebri Dehar University, Somali, Ethiopia.
| | - K Kotecha
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, 412115, India
- Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis International (Deemed) University, Pune, 412115, India
| |
Collapse
|
6
|
Abdullah S, Abosuliman SS. Analyzing of optimal classifier selection for EEG signals of depression patients based on intelligent fuzzy decision support systems. Sci Rep 2023; 13:11425. [PMID: 37452055 PMCID: PMC10349151 DOI: 10.1038/s41598-023-36095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2023] [Indexed: 07/18/2023] Open
Abstract
Electroencephalograms (EEG) is used to assess patients' clinical records of depression (EEG). The disorder of human thinking is a very complex problem caused by heavy-duty in daily life. We need some future and optimal classifier selection by using different techniques for depression data extraction using EEG. Intelligent decision support is a decision-making process that is automated based on some input information. The primary goal of this proposed work is to create an artificial intelligence-based fuzzy decision support system (AI-FDSS). Based on the given criteria, the AI-FDSS is considered for classifier selection for EEG under depression information. The proposed intelligent decision technique examines classifier alternatives such as Gaussian mixture models (GMM), k-nearest neighbor algorithm (k-NN), Decision tree (DT), Nave Bayes classification (NBC), and Probabilistic neural network (PNN). For analyzing optimal classifiers selection for EEG in depression patients, the proposed technique is criterion-based. First, we develop a general algorithm for intelligent decision systems based on non-linear Diophantine fuzzy numbers to examine the classifier selection technique using various criteria. We use classifier methods to obtain data from depression patients in normal and abnormal situations based on the given criteria. The proposed technique is criterion-based for analyzing optimal classifier selection for EEG in patients suffering from depression. The proposed model for analyzing classifier selection in EEG is compared to existing models.
Collapse
Affiliation(s)
- Saleem Abdullah
- Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Shougi S Abosuliman
- Department of Port and Maritime Transport, Faculty of Maritime Studies, King Abdulaziz University, Jeddah, 21588, Saudi Arabia.
| |
Collapse
|
7
|
Ficici C, Telatar Z, Kocak O, Erogul O. Identification of TLE Focus from EEG Signals by Using Deep Learning Approach. Diagnostics (Basel) 2023; 13:2261. [PMID: 37443655 DOI: 10.3390/diagnostics13132261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Temporal lobe epilepsy, a neurological disease that causes seizures as a result of excessive neural activities in the brain, is the most common type of focal seizure, accounting for 30-35% of all epilepsies. Detection of epilepsy and localization of epileptic focus are essential for treatment planning and epilepsy surgery. Currently, epileptic focus is decided by expert physician by examining the EEG records and determining EEG channel where epileptic patterns begins and continues intensely during seizure. Examination of long EEG recordings is very time-consuming process, requires attention and decision can vary depending on physician. In this study, to assist physicians in detecting epileptic focus side from EEG recordings, a novel deep learning-based computer-aided diagnosis system is presented. In the proposed framework, ictal epochs are detected using long short-term memory network fed with EEG subband features obtained by discrete wavelet transform, and then, epileptic focus identification is realized by using asymmetry score. This algorithm was tested on EEG database obtained from the Ankara University hospital. Experimental results showed ictal and interictal epochs were classified with accuracy of 86.84%, sensitivity of 86.96% and specificity of 89.68% on Ankara University hospital dataset, and 96.67% success rate was obtained on Bonn EEG dataset. In addition, epileptic focus was identified with accuracy of 96.10%, sensitivity of 100% and specificity of 93.80% by using the proposed deep learning-based algorithm and university hospital dataset. These results showed that proposed method can be used properly in clinical applications, epilepsy treatment and surgical planning as a medical decision support system.
Collapse
Affiliation(s)
- Cansel Ficici
- Department of Electrical and Electronics Engineering, Ankara University, 06830 Ankara, Turkey
| | - Ziya Telatar
- Department of Biomedical Engineering, Başkent University, 06790 Ankara, Turkey
| | - Onur Kocak
- Department of Biomedical Engineering, Başkent University, 06790 Ankara, Turkey
| | - Osman Erogul
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| |
Collapse
|
8
|
A Review on the Applications of Time-Frequency Methods in ECG Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2023. [DOI: 10.1155/2023/3145483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The joint time-frequency analysis method represents a signal in both time and frequency. Thus, it provides more information compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electrophysiological studies. The current review provides comprehensive knowledge about different time-frequency methods and their applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea detection, biometric identification, emotion detection, and driver drowsiness detection. The paper also discusses the limitations of these methods. The review will form a reference for future researchers willing to conduct research in the same field.
Collapse
|
9
|
Automated temporal lobe epilepsy and psychogenic nonepileptic seizure patient discrimination from multichannel EEG recordings using DWT based analysis. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Classification of EEG Signals for Prediction of Epileptic Seizures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epilepsy is a common brain disorder that causes patients to face multiple seizures in a single day. Around 65 million people are affected by epilepsy worldwide. Patients with focal epilepsy can be treated with surgery, whereas generalized epileptic seizures can be managed with medications. It has been noted that in more than 30% of cases, these medications fail to control epileptic seizures, resulting in accidents and limiting the patient’s life. Predicting epileptic seizures in such patients prior to the commencement of an oncoming seizure is critical so that the seizure can be treated with preventive medicines before it occurs. Electroencephalogram (EEG) signals of patients recorded to observe brain electrical activity during a seizure can be quite helpful in predicting seizures. Researchers have proposed methods that use machine and/or deep learning techniques to predict epileptic seizures using scalp EEG signals; however, prediction of seizures with increased accuracy is still a challenge. Therefore, we propose a three-step approach. It includes preprocessing of scalp EEG signals with PREP pipeline, which is a more sophisticated alternative to basic notch filtering. This method uses a regression-based technique to further enhance the SNR, with a combination of handcrafted, i.e., statistical features such as temporal mean, variance, and skewness, and automated features using CNN, followed by classification of interictal state and preictal state segments using LSTM to predict seizures. We train and validate our proposed technique on the CHB-MIT scalp EEG dataset and achieve accuracy of 94%, sensitivity of 93.8%, and 91.2% specificity. The proposed technique achieves better sensitivity and specificity than existing methods.
Collapse
|
11
|
Automatic Diagnosis of Epileptic Seizures in EEG Signals Using Fractal Dimension Features and Convolutional Autoencoder Method. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes a new method for epileptic seizure detection in electroencephalography (EEG) signals using nonlinear features based on fractal dimension (FD) and a deep learning (DL) model. Firstly, Bonn and Freiburg datasets were used to perform experiments. The Bonn dataset consists of binary and multi-class classification problems, and the Freiburg dataset consists of two-class EEG classification problems. In the preprocessing step, all datasets were prepossessed using a Butterworth band pass filter with 0.5–60 Hz cut-off frequency. Then, the EEG signals of the datasets were segmented into different time windows. In this section, dual-tree complex wavelet transform (DT-CWT) was used to decompose the EEG signals into the different sub-bands. In the following section, in order to feature extraction, various FD techniques were used, including Higuchi (HFD), Katz (KFD), Petrosian (PFD), Hurst exponent (HE), detrended fluctuation analysis (DFA), Sevcik, box counting (BC), multiresolution box-counting (MBC), Margaos-Sun (MSFD), multifractal DFA (MF-DFA), and recurrence quantification analysis (RQA). In the next step, the minimum redundancy maximum relevance (mRMR) technique was used for feature selection. Finally, the k-nearest neighbors (KNN), support vector machine (SVM), and convolutional autoencoder (CNN-AE) were used for the classification step. In the classification step, the K-fold cross-validation with k = 10 was employed to demonstrate the effectiveness of the classifier methods. The experiment results show that the proposed CNN-AE method achieved an accuracy of 99.736% and 99.176% for the Bonn and Freiburg datasets, respectively.
Collapse
|
12
|
Seizure detection from multi-channel EEG using entropy-based dynamic graph embedding. Artif Intell Med 2021; 122:102201. [PMID: 34823838 DOI: 10.1016/j.artmed.2021.102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
An epileptic seizure is a chronic disease with sudden abnormal discharge of brain neurons, which leads to transient brain dysfunction. To detect epileptic seizures, we propose a novel idea based on a dynamic graph embedding model. The dynamic graph is built by identifying the correlation among the multi-channel EEG signals. Graph entropy measurement is exploited to calculate the similarity among the graph at each time interval and construct the graph embedding space. Since the abnormal electrical brain activity causes the epileptic seizure, the graph entropy during the seizure time interval is different from other time intervals. Therefore, we propose an entropy-based dynamic graph embedding model to cluster the graphs, and the graphs with epileptic seizures are discriminated. We applied the proposed approach to the Children Hospital Boston-Massachusetts Institute of Technology Scalp EEG database. The results have shown that the proposed approach outperformed the baselines by 1.4% with respect to accuracy.
Collapse
|
13
|
Cao X, Yao B, Chen B, Sun W, Tan G. Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG. Front Neurosci 2021; 15:760987. [PMID: 34720869 PMCID: PMC8555879 DOI: 10.3389/fnins.2021.760987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Accurate identification of the type of seizure is very important for the treatment plan and drug prescription of epileptic patients. Artificial intelligence has shown considerable potential in the fields of automated EEG analysis and seizure classification. However, the highly personalized representation of epileptic seizures in EEG has led to many research results that are not satisfactory in clinical applications. In order to improve the clinical adaptability of the algorithm, this paper proposes an adversarial learning-driven domain-invariant deep feature representation method, which enables the hybrid deep networks (HDN) to reliably identify seizure types. In the train phase, we first use the labeled multi-lead EEG short samples to train squeeze-and-excitation networks (SENet) to extract short-term features, and then use the compressed samples to train the long short-term memory networks (LSTM) to extract long-time features and construct a classifier. In the inference phase, we first adjust the feature mapping of LSTM through the adversarial learning between LSTM and clustering subnet so that the EEG of the target patient and the EEG in the database obey the same distribution in the deep feature space. Finally, we use the adjusted classifier to identify the type of seizure. Experiments were carried out based on the TUH EEG Seizure Corpus and CHB-MIT seizure database. The experimental results show that the proposed domain adaptive deep feature representation improves the classification accuracy of the hybrid deep model in the target set by 5%. It is of great significance for the clinical application of EEG automatic analysis equipment.
Collapse
Affiliation(s)
- Xincheng Cao
- School of Aerospace Engineering, Xiamen University, Xiamen, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Bin Yao
- School of Aerospace Engineering, Xiamen University, Xiamen, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Binqiang Chen
- School of Aerospace Engineering, Xiamen University, Xiamen, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Weifang Sun
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China
| | - Guowei Tan
- Xiamen Key Laboratory of Brain Center, Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Salafian B, Fishel Ben E, Shlezinger N, de Ribaupierre S, Farsad N. Efficient Epileptic Seizure Detection Using CNN-Aided Factor Graphs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:424-429. [PMID: 34891324 DOI: 10.1109/embc46164.2021.9629917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We propose a computationally efficient algorithm for seizure detection. Instead of using a purely data-driven approach, we develop a hybrid model-based/data-driven method, combining convolutional neural networks with factor graph inference. On the CHB-MIT dataset, we demonstrate that the proposed method can generalize well in a 6 fold leave-4-patient-out evaluation. Moreover, it is shown that our algorithm can achieve as much as 5% absolute improvement in performance compared to previous data-driven methods. This is achieved while the computational complexity of the proposed technique is a fraction of the complexity of prior work, making it suitable for real-time seizure detection.
Collapse
|
15
|
Boubchir L. Editorial commentary on special issue of Advances in EEG Signal Processing and Machine Learning for Epileptic Seizure Detection and Prediction. J Biomed Res 2020; 34:149-150. [PMID: 32561694 PMCID: PMC7324273 DOI: 10.7555/jbr.34.20200700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms. The articles selected present important findings including new experimental results and theoretical studies.
Collapse
Affiliation(s)
- Larbi Boubchir
- Laboratoire d'Informatique Avancée de Saint-Denis Research Lab., University of Paris 8, Saint-Denis, Cedex 93526, France
| |
Collapse
|