1
|
Ji F, Lee HS, Lee H, Kim JH. The impact of frailty syndrome on skeletal muscle histology: preventive effects of exercise. FEBS Open Bio 2025. [PMID: 40325953 DOI: 10.1002/2211-5463.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Frailty syndrome, a condition marked by increased vulnerability due to age-related physiological decline, exerts a profound impact on skeletal muscle structure and function. Despite its widespread prevalence, the underlying mechanisms contributing to frailty-associated muscle deterioration remain poorly elucidated. This study utilized histological and biochemical analyses in a murine model to investigate the effects of frailty syndrome on skeletal muscle. Mice were classified based on age and condition, including a subset subjected to an exercise intervention. Parameters evaluated included body weight, lean mass ratio, myofiber size and number, extracellular matrix (ECM) content, and myosin heavy chain isoform expression. Frailty syndrome led to increased body weight and ECM content, coupled with reductions in myofiber size and number, reflecting substantial structural and functional impairments in skeletal muscle. Exercise interventions effectively countered these deleterious changes, preserving myofiber morphology and reducing ECM expansion, thereby demonstrating the protective role of exercise in mitigating frailty-induced muscle deterioration. The study highlights the severe impact of frailty syndrome on skeletal muscle structure and integrity. Importantly, it underscores the potential of regular exercise as an effective therapeutic approach to prevent or reverse muscle deterioration associated with frailty, offering critical insights into managing age-related muscular degeneration.
Collapse
Affiliation(s)
- Fujue Ji
- Department of Physical Education, College of Performing Arts and Sport, Hanyang University, Seoul, Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, Seoul, Korea
| | - Hae Sung Lee
- Department of Physical Education, College of Education, Wonkwang University, Iksan, Korea
| | - Haesung Lee
- Department of Physical Education, College of Performing Arts and Sport, Hanyang University, Seoul, Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, Seoul, Korea
| | - Jong-Hee Kim
- Department of Physical Education, College of Performing Arts and Sport, Hanyang University, Seoul, Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, Seoul, Korea
| |
Collapse
|
2
|
Jin B, Li Y, Li D, Jing C, Sheng Q. Causal associations between epigenetic age and thromboembolism: a bi-directional two-sample Mendelian randomization study. Clin Epigenetics 2025; 17:75. [PMID: 40325450 PMCID: PMC12051321 DOI: 10.1186/s13148-025-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Thromboembolism is one of the most prevalent cardiovascular conditions affecting the elder population. The associations between epigenetic aging and thromboembolism risks remain incompletely elucidated. Through Mendelian randomization (MR), this research seeks to assess the causal links between genetically determined epigenetic aging factors and thromboembolism. RESULTS Genetic variants were extracted from genome-wide association studies (GWAS) under stringent threshold as instrumental variables (IVs). Bi-directional two-sample MR analyses were conducted to determine the direction of causal associations. We employed the inverse variance weighted (IVW), weighted median, weighted mode and MR Egger to estimate the causal effect, with sensitivity analyses such as Cochran's Q tests, MR-PRESSO and leave-one-out performed to avoid potential heterogeneity and pleiotropy. Our MR analysis revealed a causal association between intrinsic epigenetic age acceleration and deep vein thrombosis of lower extremities (IVW: OR 0.963, 95% CI 0.934-0.992, P = 0.014), and between the genetically determined levels of plasminogen activator inhibitor-1 and other arterial embolism and thrombosis (IVW: OR 1.000, 95% CI 1.000-1.0005, P = 0.029). Causality was also identified between the genetically predicted levels of FGF23 and other arterial embolism and thrombosis (IVW: OR: 1.661, 95% CI 1.051-2.624, P = 0.029) and arterial embolism and thrombosis of lower extremity artery (IVW: OR 1.68, 95% CI 1.031-2.725, P = 0.037). Moreover, bi-directional MR showed reverse effects between portal vein thrombosis and PhenoAge (IVW: OR 0.871, 95% CI 0.765-0.992, P = 0.037) and between venous thromboembolism and GrimAge (IVW: OR 1.186, 95% CI 1.048-1.341, P = 0.007). Sensitivity analysis using Cochran's Q tests, MR-PRESSO and leave-one-out excluded the influence of heterogeneity, horizontal pleiotropy, and outliers. CONCLUSION Our results identified a causal association between genetically predicted epigenetic aging factors and thromboembolism. The findings highlight the necessity for further exploration into the underlying etiology of thromboembolism.
Collapse
Affiliation(s)
- Bowen Jin
- Department of Cardiovascular Surgery, Wuhan Asia Heart Hospital, Wuhan City, 430000, Hubei Province, China.
| | - Yunyan Li
- Department of Cardiovascular Surgery, Wuhan Asia Heart Hospital, Wuhan City, 430000, Hubei Province, China
| | - Dingyang Li
- Department of Cardiovascular Surgery, Wuhan Asia Heart Hospital, Wuhan City, 430000, Hubei Province, China
| | - Chi Jing
- Department of Cardiovascular Surgery, Wuhan Asia Heart Hospital, Wuhan City, 430000, Hubei Province, China
| | - Qunshan Sheng
- Department of Cardiovascular Surgery, Wuhan Asia Heart Hospital, Wuhan City, 430000, Hubei Province, China
| |
Collapse
|
3
|
Roig-Soriano J, Edo Á, Verdés S, Martín-Alonso C, Sánchez-de-Diego C, Rodriguez-Estevez L, Serrano AL, Abraham CR, Bosch A, Ventura F, Jordan BA, Muñoz-Cánoves P, Chillón M. Long-term effects of s-KL treatment in wild-type mice: Enhancing longevity, physical well-being, and neurological resilience. Mol Ther 2025; 33:1449-1465. [PMID: 39988871 PMCID: PMC11997498 DOI: 10.1016/j.ymthe.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
Aging is a major risk factor for pathologies including sarcopenia, osteoporosis, and cognitive decline, which bring suffering, disability, and elevated economic and social costs. Therefore, new therapies are needed to achieve healthy aging. The protein Klotho (KL) has emerged as a promising anti-aging molecule due to its pleiotropic actions modulating insulin, insulin-like growth factor-1, and Wnt signaling pathways and reducing inflammatory and oxidative stress. Here, we explored the anti-aging potential of the secreted isoform of this protein on the non-pathological aging progression of wild-type mice. The delivery of an adeno-associated virus serotype 9 (AAV9) coding for secreted KL (s-KL) efficiently increased the concentration of s-KL in serum, resulting in a 20% increase in lifespan. Notably, KL treatment improved physical fitness, related to a reduction in muscle fibrosis and an increase in muscular regenerative capacity. KL treatment also improved bone microstructural parameters associated with osteoporosis. Finally, s-KL-treated mice exhibited increased cellular markers of adult neurogenesis and immune response, with transcriptomic analysis revealing induced phagocytosis and immune cell activity in the aged hippocampus. These results show the potential of elevating s-KL expression to simultaneously reduce the age-associated degeneration in multiple organs, increasing both life and health span.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Ángel Edo
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Sergi Verdés
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Carlos Martín-Alonso
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Laura Rodriguez-Estevez
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | | | - Assumpció Bosch
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Ciberned, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | - Miguel Chillón
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Unitat de Producció de Vectors (UPV), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
4
|
Lee CW, Wang BYH, Wong SH, Chen YF, Cao Q, Hsiao AWT, Fung SH, Chen YF, Wu HH, Cheng PY, Chou ZH, Lee WYW, Tsui SKW, Lee OKS. Ginkgolide B increases healthspan and lifespan of female mice. NATURE AGING 2025; 5:237-258. [PMID: 39890935 DOI: 10.1038/s43587-024-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Chen
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Allen Wei-Ting Hsiao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Cheng
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Zong-Han Chou
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
5
|
Parr MK, Keiler AM. Oligonucleotide therapeutics in sports? An antidoping perspective. Arch Pharm (Weinheim) 2025; 358:e2400404. [PMID: 39449227 PMCID: PMC11704058 DOI: 10.1002/ardp.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Within the last two decades, the European Medicines Agency and the US Food and Drug Administration have approved several gene therapies. One category is oligonucleotide therapeutics, which allow for the regulation of the expression of target genes. Besides already approved therapeutics, there are several preclinical and clinical trials ongoing. The World Anti-Doping Agency prohibits the use of "nucleic acids or nucleic acid analogs that may alter genome sequences and/or alter gene expression by any mechanism" as a nonspecified method at all times. Hence, the administration of nucleic acids or analogs by athletes would cause an Anti-Doping Rule Violation. Herein, we discuss types of oligonucleotide therapeutics, their potential to be misused in sports, and considerations to sample preparation and mass spectrometric approaches with regard to antidoping analysis.
Collapse
Affiliation(s)
- Maria K. Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal ChemistryFreie Universität BerlinBerlinGermany
| | - Annekathrin M. Keiler
- Institute of Doping Analysis & Sports BiochemistryKreischaGermany
- Environmental Monitoring & Endocrinology, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
6
|
Alakhdar AA, Sivakumar S, Kopchak RM, Hunter AN, Ambrosio F, Washburn NR. Age-Related ECM Stiffness Mediates TRAIL Activation in Muscle Stem Cell Differentiation. Adv Biol (Weinh) 2024; 8:e2400334. [PMID: 39601528 PMCID: PMC11889993 DOI: 10.1002/adbi.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Indexed: 11/29/2024]
Abstract
The stiffening of the extracellular matrix (ECM) with age hinders muscle regeneration by causing intrinsic muscle stem cell (MuSC) dysfunction through a poorly understood mechanism. Here, the study aims to study those age-related molecular changes in the differentiation of MuSCs due to age and/or stiffness. Hence, young and aged MuSCs are seeded onto substrates engineered to mimic a soft and stiff ECM microenvironment to study those molecular changes using single-cell RNA sequencing (scRNA). The trajectory of scRNA data of the MuSCs under four different conditions undergoing differentiation is analyzed as well as the active molecular pathways and transcription factors driving those differentiation fates. Data revealed the presence of a branching point within the trajectory leading to the emergence of an age-related fibroblastic population characterized by activation of the TNF-related apoptosis-inducing ligand (TRAIL) pathway, which is significantly activated in aged cells cultured on stiff substrates. Next, using the collagen cross-linking inhibitor β-aminopropionitrile (BAPN) in vivo, the study elucidates stiffness changes on TRAIL downstream apoptotic targets (caspase 8 and caspase 3) using immunostaining. TRAIL activity is significantly inhibited by BAPN in aged animals, indicating a complex mechanism of age-related declines in muscle function through inflammatory and apoptotic mediators.
Collapse
Affiliation(s)
- Amira A. Alakhdar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Rylee M. Kopchak
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
| | - Allison N. Hunter
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Newell R. Washburn
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Neto IVDS, Pinto AP, de Andrade RV, de Souza FHV, de Souza PEN, Assis V, Tibana RA, Neves RVP, Rosa TS, Prestes J, da Silva ASR, Marqueti RDC. Paternal exercise induces antioxidant defenses by α-Klotho/Keap1 pathways in the skeletal muscle of offspring exposed to a high fat-diet without changing telomere length. J Nutr Biochem 2024; 134:109747. [PMID: 39197728 DOI: 10.1016/j.jnutbio.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Although previous studies demonstrated that the ancestral lifestyle can enhance the metabolic health of offspring exposed to an obesogenic diet, the specific connections between these positive effects in redox state and telomere length are unknown. We investigated the impact of paternal resistance training (RT) on stress-responsive signaling and the pathways involved in telomere homeostasis in skeletal muscle. This investigation encompassed both the fathers and first-generation litter exposed to a long-term standard diet (24 weeks) and high fat diet (HFD). Wistar rats were randomized into sedentary or trained fathers (8 weeks of resistance training). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups: offspring of sedentary or trained fathers exposed to either a control diet or HFD. The gastrocnemius was prepared for reverse transcription-quantitative polymerase chain reaction, immunoblotting, ELISA, and electron paramagnetic resonance spectroscopy. RT upregulated shelterin mRNA levels and antioxidant protein, preserving muscle telomere in fathers. Conversely, HFD induced a disturbance in the redox balance, which may have contributed to the offspring telomere shortening from sedentary fathers. Preconceptional paternal RT downregulates Kelch-like ECH-associated protein 1 (Keap1) mRNA levels in the skeletal muscle of progeny exposed to HFD, driving an increase in Glutathione reductase mRNA levels, Sod1 and Catalase protein levels to mitigate ROS production. Also, paternal exercise upregulates α-Klotho protein levels, mediating antioxidative responses without altering shelterin mRNA levels and telomere length. We provide the first in-depth analysis that the offspring's redox state seems to be directly associated with the beneficial effects of paternal exercise.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Taguatinga, Distrito Federal, Brazil
| | | | - Paulo Eduardo Narcizo de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Victória Assis
- Molecular of Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | | | - Thiago Santos Rosa
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Taguatinga, Distrito Federal, Brazil; Graduate Program in Physical Education, Universidade Católica de Brasilia, Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program in Physical Education, Universidade Católica de Brasilia, Brasília, Distrito Federal, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Molecular of Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
8
|
Masuzawa R, Rosa Flete HK, Shimizu J, Kawano F. Age-related histone H3.3 accumulation associates with a repressive chromatin in mouse tibialis anterior muscle. J Physiol Sci 2024; 74:41. [PMID: 39277714 PMCID: PMC11401410 DOI: 10.1186/s12576-024-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate age-related changes in histone variant H3.3 and its role in the aging process of mouse tibialis anterior muscle. H3.3 level significantly increased with age and correlated with H3K27me3 level. Acute exercise successfully upregulated the target gene expression in 8-wk-old mice, whereas no upregulation was noted in 53-wk-old mice. H3K27me3 level was increased at these loci in response to acute exercise in 8-wk-old mice. However, in 53-wk-old mice, H3.3 and H3K27me3 levels were increased at rest and were not affected by acute exercise. Furthermore, forced H3.3 expression in the skeletal muscle of 8-wk-old mice led to a gradual improvement in motor function. The results suggest that age-related H3.3 accumulation induces the formation of repressive chromatin in the mouse tibialis anterior muscle. However, H3.3 accumulation also appears to play a positive role in enhancing skeletal muscle function.
Collapse
Affiliation(s)
- Ryo Masuzawa
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Hemilce Karina Rosa Flete
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Junya Shimizu
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan.
| |
Collapse
|
9
|
Muglia L, Di Dio M, Filicetti E, Greco GI, Volpentesta M, Beccacece A, Fabbietti P, Lattanzio F, Corsonello A, Gembillo G, Santoro D, Soraci L. Biomarkers of chronic kidney disease in older individuals: navigating complexity in diagnosis. Front Med (Lausanne) 2024; 11:1397160. [PMID: 39055699 PMCID: PMC11269154 DOI: 10.3389/fmed.2024.1397160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic kidney disease (CKD) in older individuals is a matter of growing concern in the field of public health across the globe. Indeed, prevalence of kidney function impairment increases with advancing age and is often exacerbated by age-induced modifications of kidney function, presence of chronic diseases such as diabetes, hypertension, and cardiovascular disorders, and increased burden related to frailty, cognitive impairment and sarcopenia. Accurate assessment of CKD in older individuals is crucial for timely intervention and management and relies heavily on biomarkers for disease diagnosis and monitoring. However, the interpretation of these biomarkers in older patients may be complex due to interplays between CKD, aging, chronic diseases and geriatric syndromes. Biomarkers such as serum creatinine, estimated glomerular filtration rate (eGFR), and albuminuria can be significantly altered by systemic inflammation, metabolic changes, and medication use commonly seen in this population. To overcome the limitations of traditional biomarkers, several innovative proteins have been investigated as potential, in this review we aimed at consolidating the existing data concerning the geriatric aspects of CKD, describing the challenges and considerations in using traditional and innovative biomarkers to assess CKD in older patients, highlighting the need for integration of the clinical context to improve biomarkers' accuracy.
Collapse
Affiliation(s)
- Lucia Muglia
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Michele Di Dio
- Unit of Urology, Department of Surgery, Annunziata Hospital, Cosenza, Italy
| | - Elvira Filicetti
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Giada Ida Greco
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Mara Volpentesta
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Alessia Beccacece
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Paolo Fabbietti
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | - Andrea Corsonello
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Sciences, School of Medicine and Digital Technologies, University of Calabria, Arcavacata di Rende, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| |
Collapse
|
10
|
Jasper AA, Shah KH, Karim H, Gujral S, Miljkovic I, Rosano C, Barchowsky A, Sahu A. Regenerative rehabilitation measures to restore tissue function after arsenic exposure. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 30:100529. [PMID: 40191583 PMCID: PMC11970924 DOI: 10.1016/j.cobme.2024.100529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Environmental exposure of arsenic impairs the cardiometabolic profile, skeletal muscle health, and neurological function. Such declining tissue health is observed as early as in one's childhood, where the exposure is prevalent, thereby accelerating the effect of time's arrow. Despite the known deleterious effects of arsenic exposure, there is a paucity of specific treatment plans for restoring tissue function in exposed individuals. In this review, we propose to harness the untapped potential of existing regenerative rehabilitation programs, such as stem cell therapeutics with rehabilitation, acellular therapeutics, and artificial intelligence/robotics technologies, to address this critical gap in environmental toxicology. With regenerative rehabilitation techniques showing promise in other injury paradigms, fostering collaboration between these scientific realms offers an effective means of mitigating the detrimental effects of arsenic on tissue function.
Collapse
Affiliation(s)
- Adam A Jasper
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - Kush H Shah
- The Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA, USA
| | - Helmet Karim
- Department of Psychiatry, University of Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh, USA
| | - Swathi Gujral
- Department of Psychiatry, University of Pittsburgh, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, USA
| | | | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, USA
| |
Collapse
|
11
|
Tarkhov AE, Lindstrom-Vautrin T, Zhang S, Ying K, Moqri M, Zhang B, Tyshkovskiy A, Levy O, Gladyshev VN. Nature of epigenetic aging from a single-cell perspective. NATURE AGING 2024; 4:854-870. [PMID: 38724733 DOI: 10.1038/s43587-024-00616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Age-related changes in DNA methylation (DNAm) form the basis of the most robust predictors of age-epigenetic clocks-but a clear mechanistic understanding of exactly which aspects of aging are quantified by these clocks is lacking. Here, to clarify the nature of epigenetic aging, we juxtapose the dynamics of tissue and single-cell DNAm in mice. We compare these changes during early development with those observed during adult aging in mice, and corroborate our analyses with a single-cell RNA sequencing analysis within the same multiomics dataset. We show that epigenetic aging involves co-regulated changes as well as a major stochastic component, and this is consistent with transcriptional patterns. We further support the finding of stochastic epigenetic aging by direct tissue and single-cell DNAm analyses and modeling of aging DNAm trajectories with a stochastic process akin to radiocarbon decay. Finally, we describe a single-cell algorithm for the identification of co-regulated and stochastic CpG clusters showing consistent transcriptomic coordination patterns. Together, our analyses increase our understanding of the basis of epigenetic clocks and highlight potential opportunities for targeting aging and evaluating longevity interventions.
Collapse
Affiliation(s)
- Andrei E Tarkhov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Retro Biosciences Inc., Redwood City, CA, USA.
| | - Thomas Lindstrom-Vautrin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Orr Levy
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Xie Y, Huang K, Li H, Kong W, Ye J. High serum klotho levels are inversely associated with the risk of low muscle mass in middle-aged adults: results from a cross-sectional study. Front Nutr 2024; 11:1390517. [PMID: 38854159 PMCID: PMC11157077 DOI: 10.3389/fnut.2024.1390517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Muscle mass gradually declines with advancing age, and as an anti-aging protein, klotho may be associated with muscle mass. This study aims to explore the relationship between klotho levels and muscle mass in the middle-aged population. Methods Utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning 2011 to 2018, we conducted a cross-sectional analysis on a cohort of individuals aged 40-59. Weighted multivariable analysis was employed to assess the correlation between klotho and low muscle mass, with stratified and Restricted Cubic Spline (RCS) analyses. Results The cross-sectional investigation revealed a significant negative correlation between klotho levels and the risk of low muscle mass (Model 3: OR = 0.807, 95% CI: 0.712-0.915). A notable interaction between klotho and sex was observed, with a significant interaction effect (P for interaction = 0.01). The risk association was notably higher in females. The risk association was notably higher in females. Additionally, RCS analysis unveiled a significant linear relationship between klotho and low muscle mass (P for nonlinear = 0.9495, P for overall<0.0001). Conclusion Our observational analysis revealed a noteworthy inverse relationship between klotho and low muscle mass, particularly prominent among female participants. This discovery provides crucial insights for the development of more effective intervention strategies and offers a new direction for enhancing muscle quality in the middle-aged population.
Collapse
Affiliation(s)
- Yilian Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kai Huang
- Department of General Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hui Li
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Weiliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayuan Ye
- Department of Infectious Diseases, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China
| |
Collapse
|
13
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
14
|
Giacona JM, Afridi A, Bezan Petric U, Johnson T, Pastor J, Ren J, Sandon L, Malloy C, Pandey A, Shah A, Berry JD, Moe OW, Vongpatanasin W. Association between dietary phosphate intake and skeletal muscle energetics in adults without cardiovascular disease. J Appl Physiol (1985) 2024; 136:1007-1014. [PMID: 38482570 PMCID: PMC11575913 DOI: 10.1152/japplphysiol.00818.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 04/17/2024] Open
Abstract
Highly bioavailable inorganic phosphate (Pi) is present in large quantities in the typical Western diet and represents a large fraction of total phosphate intake. Dietary Pi excess induces exercise intolerance and skeletal muscle mitochondrial dysfunction in normal mice. However, the relevance of this to humans remains unknown. The study was conducted on 13 individuals without a history of cardiopulmonary disease (46% female, 15% Black participants) enrolled in the pilot-phase of the Dallas Heart and Mind Study. Total dietary phosphate was estimated from 24-h dietary recall (ASA24). Muscle ATP synthesis was measured at rest, and phosphocreatinine (PCr) dynamics was measured during plantar flexion exercise using 7-T 31P magnetic resonance (MR) spectroscopy in the calf muscle. Correlation was assessed between dietary phosphate intake normalized to total caloric intake, resting ATP synthesis, and PCr depletion during exercise. Higher dietary phosphate intake was associated with lower resting ATP synthesis (r = -0.62, P = 0.03), and with higher levels of PCr depletion during plantar flexion exercise relative to the resting period (r = -0.72; P = 0.004). These associations remain significant after adjustment for age and estimated glomerular filtration rate (both P < 0.05). High dietary phosphate intake was also associated with lower serum Klotho levels, and Klotho levels are in turn associated with PCr depletion and higher ADP accumulation post exercise. Our study suggests that higher dietary phosphate is associated with reduced skeletal muscle mitochondrial function at rest and exercise in humans providing new insight into potential mechanisms linking the Western diet to impaired energy metabolism.NEW & NOTEWORTHY This is the first translational research study directly demonstrating the adverse effects of dietary phosphate on muscle energy metabolism in humans. Importantly, our data show that dietary phosphate is associated with impaired muscle ATP synthesis at rest and during exercise, independent of age and renal function. This is a new biologic paradigm with significant clinical dietary implications.
Collapse
Affiliation(s)
- John M Giacona
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Areeb Afridi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ursa Bezan Petric
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Talon Johnson
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Johanne Pastor
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Lona Sandon
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Craig Malloy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ambarish Pandey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Amil Shah
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jarett D Berry
- Department of Internal Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
15
|
Miller MJ, Gries KJ, Marcotte GR, Ryan Z, Strub MD, Kunz HE, Arendt BK, Dasari S, Ebert SM, Adams CM, Lanza IR. Human myofiber-enriched aging-induced lncRNA FRAIL1 promotes loss of skeletal muscle function. Aging Cell 2024; 23:e14097. [PMID: 38297807 PMCID: PMC11019130 DOI: 10.1111/acel.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
The loss of skeletal muscle mass during aging is a significant health concern linked to adverse outcomes in older individuals. Understanding the molecular basis of age-related muscle loss is crucial for developing strategies to combat this debilitating condition. Long noncoding RNAs (lncRNAs) are a largely uncharacterized class of biomolecules that have been implicated in cellular homeostasis and dysfunction across a many tissues and cell types. To identify lncRNAs that might contribute to skeletal muscle aging, we screened for lncRNAs whose expression was altered in vastus lateralis muscle from older compared to young adults. We identified FRAIL1 as an aging-induced lncRNA with high abundance in human skeletal muscle. In healthy young and older adults, skeletal muscle FRAIL1 was increased with age in conjunction with lower muscle function. Forced expression of FRAIL1 in mouse tibialis anterior muscle elicits a dose-dependent reduction in skeletal muscle fiber size that is independent of changes in muscle fiber type. Furthermore, this reduction in muscle size is dependent on an intact region of FRAIL1 that is highly conserved across non-human primates. Unbiased transcriptional and proteomic profiling of the effects of FRAIL1 expression in mouse skeletal muscle revealed widespread changes in mRNA and protein abundance that recapitulate age-related changes in pathways and processes that are known to be altered in aging skeletal muscle. Taken together, these findings shed light on the intricate molecular mechanisms underlying skeletal muscle aging and implicate FRAIL1 in age-related skeletal muscle phenotypes.
Collapse
Affiliation(s)
- Matthew J. Miller
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- University of IowaIowa CityIowaUSA
| | | | - George R. Marcotte
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- University of IowaIowa CityIowaUSA
| | - Zachary Ryan
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | | | - Hawley E. Kunz
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | | | - Surendra Dasari
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Scott M. Ebert
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Emmyon, Inc.RochesterMinnesotaUSA
| | - Christopher M. Adams
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Emmyon, Inc.RochesterMinnesotaUSA
| | - Ian R. Lanza
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
16
|
Zheng Y, Feng J, Yu Y, Ling M, Wang X. Advances in sarcopenia: mechanisms, therapeutic targets, and intervention strategies. Arch Pharm Res 2024; 47:301-324. [PMID: 38592582 DOI: 10.1007/s12272-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Park MJ, Lee J, Bagon BB, Matienzo ME, Lee CM, Kim K, Kim DI. Therapeutic potential of AAV-FL-Klotho in obesity: Impact on weight loss and lipid metabolism in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167055. [PMID: 38325589 DOI: 10.1016/j.bbadis.2024.167055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Klotho, an anti-aging protein, has gained attention for its protective effects against various diseases, including metabolic disorders, through recombinant Klotho administration. However, the potential of Klotho as a target for gene therapy requires further exploration, as it remains relatively understudied in the context of metabolic disorders. In this study, we demonstrate that AAV-full length(FL)-Klotho administration induces weight loss in mice and provides protection against high-fat diet (HFD)-induced obesity and hepatic steatosis, concurrently reducing the weights of white adipose tissue and liver. AAV-FL-Klotho administration also enhanced thermogenic gene expression in brown adipose tissue (BAT) and improved the morphology of interscapular BAT. The weight loss effect of AAV-FL-Klotho was found to be, at least in part, mediated by UCP1-dependent thermogenesis in brown adipocytes, potentially influenced by hepatokines secreted from AAV-FL-Klotho-transduced hepatocytes. These findings suggest that AAV-FL-Klotho is an attractive candidate for gene therapy to combat obesity. Nevertheless, unbiased experiments have also revealed disturbances in lipid metabolism due to AAV-FL-Klotho, as evidenced by the emergence of lipomas and increased expression of hepatic lipogenic proteins.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
18
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
19
|
Kim DH, Lee J, Lee B, Lee K. Research Note: Muscle hypertrophy is associated with reversed sexual dimorphism in body size of quail. Poult Sci 2024; 103:103263. [PMID: 37992617 PMCID: PMC10700530 DOI: 10.1016/j.psj.2023.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Sexual dimorphism is phenotypic differences between males and females in the same species. In general, males in most animals are larger than females at the same age, however, in quail, females have a larger body size with greater muscle mass than males. To understand what characteristics in muscle growth play roles in reversed sexual dimorphism in quail, the weights and the characteristics of the pectoralis major and gastrocnemius muscles (PM and GM, respectively) of male and female quail were compared in the current study. The data showed that 15-wk-old female quail have significantly heavier bodies, and PM and GM weights compared to male quail (1.27-folds, 1.29-folds, and 1.16-folds, respectively). To compare muscle characteristics such as hypertrophy (increased size) and hyperplasia (increased cell number), the PM and GM were stained using hematoxylin and eosin, and then histological characteristics such as total cross-sectional area (CSA), number and size of myofibers, and muscle bundle of the muscles were measured and analyzed. In both PM and GM, there were no differences in total numbers of myofibers and muscle bundles as well as the average numbers of myofibers per bundle between sexes. However, the sizes of myofiber and the bundle were significantly increased in female compared to male (1.33-folds and 1.28-folds in PM, and both 1.23-folds in GM, respectively). The findings of the current study suggest that muscle hypertrophy in female quail, not hyperplasia, can be attributed to the sexual dimorphism in quail size.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Boin Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju 37224, South Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Gilmer G, Hettinger ZR, Tuakli-Wosornu Y, Skidmore E, Silver JK, Thurston RC, Lowe DA, Ambrosio F. Female aging: when translational models don't translate. NATURE AGING 2023; 3:1500-1508. [PMID: 38052933 PMCID: PMC11099540 DOI: 10.1038/s43587-023-00509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023]
Abstract
For many pathologies associated with aging, female patients present with higher morbidity and more frequent adverse events from treatments compared to male patients. While preclinical models are the foundation of our mechanistic understanding of age-related diseases, the most common models fail to recapitulate archetypical female aging trajectories. For example, while over 70% of the top age-related diseases are influenced by the systemic effects of reproductive senescence, we found that preclinical studies that include menopausal phenotypes modeling those seen in humans make up <1% of published aging biology research. The long-term impacts of pregnancy, birthing and breastfeeding are also typically omitted from preclinical work. In this Perspective, we summarize limitations in the most commonly used aging models, and we provide recommendations for better incorporating menopause, pregnancy and other considerations of sex in vivo and in vitro. Lastly, we outline action items for aging biology researchers, journals, funding agencies and animal providers to address this gap.
Collapse
Affiliation(s)
- Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yetsa Tuakli-Wosornu
- Department of Social and Behavioral Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Skidmore
- Department of Occupational Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie K Silver
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA.
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Borsky P, Holmannova D, Andrys C, Kremlacek J, Fiala Z, Parova H, Rehacek V, Svadlakova T, Byma S, Kucera O, Borska L. Evaluation of potential aging biomarkers in healthy individuals: telomerase, AGEs, GDF11/15, sirtuin 1, NAD+, NLRP3, DNA/RNA damage, and klotho. Biogerontology 2023; 24:937-955. [PMID: 37523061 PMCID: PMC10615959 DOI: 10.1007/s10522-023-10054-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Aging is a natural process of gradual decrease in physical and mental capacity. Biological age (accumulation of changes and damage) and chronological age (years lived) may differ. Biological age reflects the risk of various types of disease and death from any cause. We selected potential biomarkers of aging - telomerase, AGEs, GDF11 and 15 (growth differentiation factor 11/15), sirtuin 1, NAD+ (nicotinamide adenine dinucleotide), inflammasome NLRP3, DNA/RNA damage, and klotho to investigate changes in their levels depending on age and sex. We included 169 healthy volunteers and divided them into groups according to age (under 35; 35-50; over 50) and sex (male, female; male and female under 35; 35-50, over 50). Markers were analyzed using commercial ELISA kits. We found differences in values depending on age and gender. GDF15 increased with age (under 30 and 35-50 p < 0.002; 35-50 and over 50; p < 0.001; under 35 and over 50; p < 0.001) as well as GDF11 (35-50 and over 50; p < 0.03; under 35 and over 50; p < 0.02), AGEs (under 30 and 35-50; p < 0.005), NLRP3 (under 35 over 50; p < 0.03), sirtuin 1 (35-50 and over 50; p < 0.0001; under 35 and over 50; p < 0.004). AGEs and GDF11 differed between males and females. Correlations were identified between individual markers, markers and age, and markers and sex. Markers that reflect the progression of biological aging vary with age (GDF15, GDF11, AGEs, NLRP3, sirtuin) and sex (AGEs, GDF11). Their levels could be used in clinical practice, determining biological age, risk of age-related diseases and death of all-causes, and initiating or contraindicating a therapy in the elderly based on the patient's health status.
Collapse
Affiliation(s)
- Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic.
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Institute of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Helena Parova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Center, University Hospital, 50003, Hradec Kralove, Czech Republic
| | - Tereza Svadlakova
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Svatopluk Byma
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Otto Kucera
- Institute of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| |
Collapse
|
22
|
Arroyo E, Leber CA, Burney HN, Narayanan G, Moorthi R, Avin KG, Warden SJ, Moe SM, Lim K. Relationship between klotho and physical function in healthy aging. Sci Rep 2023; 13:21158. [PMID: 38036596 PMCID: PMC10689840 DOI: 10.1038/s41598-023-47791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Epidemiological studies have reported a strong association between circulating Klotho and physical function; however, the cohorts were comprised of older adults with multiple comorbidities. Herein, we examined the relationship between Klotho and physical function in a community-based cohort of healthy adults. In this cross-sectional study, serum Klotho was measured in 80 adults who visited the Musculoskeletal Function, Imaging, and Tissue Resource Core of the Indiana Center for Musculoskeletal Health. Participants (n = 20, 10 [50%] men per group) were chosen into four age groups: 20-34, 35-49, 50-64, and ≥ 65 years, and were further grouped based on performance (low vs. high) on grip strength and chair stand tests. Klotho levels were lower in the ≥ 65 years group (703.0 [189.3] pg/mL; p = 0.022) and the 50-64 years group (722.6 [190.5] pg/mL; p = 0.045) compared to 20-34 years (916.1 [284.8] pg/mL). No differences were observed in Klotho between the low and high performers. The ≥ 65 years group walked a shorter distance during the 6-min walk test (6MWT) compared to 20-34 years (p = 0.005). Klotho was correlated with age (p < 0.001), body fat (p = 0.037), and 6MWT distance (p = 0.022). Klotho levels decline as early as the fifth decade of life, potentially before the onset of age-related impairment in exercise capacity.
Collapse
Affiliation(s)
- Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Cecilia A Leber
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Heather N Burney
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gayatri Narayanan
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ranjani Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith G Avin
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, IN, USA
| | - Stuart J Warden
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, IN, USA
| | - Sharon M Moe
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Wang K, Frey N, Garcia A, Man K, Yang Y, Gualerzi A, Clemens ZJ, Bedoni M, LeDuc PR, Ambrosio F. Nanotopographical Cues Tune the Therapeutic Potential of Extracellular Vesicles for the Treatment of Aged Skeletal Muscle Injuries. ACS NANO 2023; 17:19640-19651. [PMID: 37797946 PMCID: PMC10603813 DOI: 10.1021/acsnano.3c02269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Skeletal muscle regeneration relies on the tightly temporally regulated lineage progression of muscle stem/progenitor cells (MPCs) from activation to proliferation and, finally, differentiation. However, with aging, MPC lineage progression is disrupted and delayed, ultimately causing impaired muscle regeneration. Extracellular vesicles (EVs) have attracted broad attention as next-generation therapeutics for promoting tissue regeneration. As a next step toward clinical translation, strategies to manipulate EV effects on downstream cellular targets are needed. Here, we developed an engineering strategy to tune the therapeutic potential of EVs using nanotopographical cues. We found that EVs released by young MPCs cultured on flat substrates (fEVs) promoted the proliferation of aged MPCs while EVs released by MPCs cultured on nanogratings (nEVs) promoted myogenic differentiation. We then employed a bioengineered 3D muscle aging model to optimize the administration protocol and test the therapeutic potential of fEVs and nEVs in a high-throughput manner. We found that the sequential administration first of fEVs during the phase of MPC proliferative expansion (i.e., 1 day after injury) followed by nEV administration at the stage of MPC differentiation (i.e., 3 days after injury) enhanced aged muscle regeneration to a significantly greater extent than fEVs and nEVs delivered either in isolation or mixed. The beneficial effects of the sequential EV treatment strategy were further validated in vivo, as evidenced by increased myofiber size and improved functional recovery. Collectively, our study demonstrates the ability of topographical cues to tune EV therapeutic potential and highlights the importance of optimizing the EV administration strategy to accelerate aged skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Nolan Frey
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Andres Garcia
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Kun Man
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| | - Alice Gualerzi
- IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Zachary J. Clemens
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Marzia Bedoni
- IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Philip R. LeDuc
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Computational Biology, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Fabrisia Ambrosio
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Clemens Z, Wang K, Ambrosio F, Barchowsky A. Arsenic disrupts extracellular vesicle-mediated signaling in regenerating myofibers. Toxicol Sci 2023; 195:231-245. [PMID: 37527016 PMCID: PMC10535782 DOI: 10.1093/toxsci/kfad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Chronic exposure to environmental arsenic is a public health crisis affecting hundreds of millions of individuals worldwide. Though arsenic is known to contribute to many pathologies and diseases, including cancers, cardiovascular and pulmonary diseases, and neurological impairment, the mechanisms for arsenic-promoted disease remain unresolved. This is especially true for arsenic impacts on skeletal muscle function and metabolism, despite the crucial role that skeletal muscle health plays in maintaining cardiovascular health, systemic homeostasis, and cognition. A barrier to researching this area is the challenge of interrogating muscle cell-specific effects in biologically relevant models. Ex vivo studies investigating mechanisms for muscle-specific responses to arsenic or other environmental contaminants primarily utilize traditional 2-dimensional culture models that cannot elucidate effects on muscle physiology or function. Therefore, we developed a contractile 3-dimensional muscle construct model-composed of primary mouse muscle progenitor cells differentiated in a hydrogel matrix-to study arsenic exposure impacts on skeletal muscle regeneration. Muscle constructs exposed to low-dose (50 nM) arsenic exhibited reduced strength and myofiber diameter following recovery from muscle injury. These effects were attributable to dysfunctional paracrine signaling mediated by extracellular vesicles (EVs) released from muscle cells. Specifically, we found that EVs collected from arsenic-exposed muscle constructs recapitulated the inhibitory effects of direct arsenic exposure on myofiber regeneration. In addition, muscle constructs treated with EVs isolated from muscles of arsenic-exposed mice displayed significantly decreased strength. Our findings highlight a novel model for muscle toxicity research and uncover a mechanism of arsenic-induced muscle dysfunction by the disruption of EV-mediated intercellular communication.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Pai HL, Wu PY, Chen DM, Chen ZJ, Yang YS, Chang HH, Lin DPC. Klotho Null Mutation Involvement in Adenosine A2B Receptor-Related Skeletal Muscle Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:950-959. [PMID: 37028594 DOI: 10.1016/j.ajpath.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Klotho is known for its age-suppressing function and has been implicated in sarcopenia pathology. It has recently been proposed that the adenosine A2B receptor plays a crucial role in skeletal muscle energy expenditure. However, the association between Klotho and A2B remains elusive. In this study, Klotho knockout mice, aged 10 weeks, and wild-type mice, aged 10 and 64 weeks, were used for comparison in indicators of sarcopenia (n = 6 for each group). PCR was performed to confirm the mice genotypes. Skeletal muscle sections were analyzed using hematoxylin and eosin staining as well as immunohistochemistry staining. The skeletal muscle cross-sectional area was significantly reduced in Klotho knockout mice and wild-type mice, aged 64 weeks, when compared with wild-type mice, aged 10 weeks, with a decreased percentage of type IIa and IIb myofibers. Likely impaired regenerative capacity, as reflected by the reduction of paired box 7 (Pax7)- and myogenic differentiation protein 1 (MyoD)-positive cells, was also observed in Klotho knockout mice and aged wild-type mice. 8-Hydroxy-2-deoxyguanosine expression was enhanced with Klotho knockout and aging, indicating higher oxidative stress. Adenosine A2B signaling was impaired, with a lower expression of the A2B receptor and the cAMP-response element binding protein in Klotho knockout and aged mice. The present study provides the novel finding that sarcopenia involves adenosine signaling under the influence of Klotho knockout.
Collapse
Affiliation(s)
- Hung-Liang Pai
- Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Yu Wu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - De-Ming Chen
- Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Zhi-Jia Chen
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Sun Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
26
|
Bean AC, Sahu A, Piechocki C, Gualerzi A, Picciolini S, Bedoni M, Ambrosio F. Neuromuscular electrical stimulation enhances the ability of serum extracellular vesicles to regenerate aged skeletal muscle after injury. Exp Gerontol 2023; 177:112179. [PMID: 37087025 PMCID: PMC10278579 DOI: 10.1016/j.exger.2023.112179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Exercise promotes healthy aging of skeletal muscle. This benefit may be mediated by youthful factors in the circulation released in response to an exercise protocol. While numerous studies to date have explored soluble proteins as systemic mediators of rejuvenating effect of exercise on tissue function, here we showed that the beneficial effect of skeletal muscle contractile activity on aged muscle function is mediated, at least in part, by regenerative properties of circulating extracellular vesicles (EVs). Muscle contractile activity elicited by neuromuscular electrical stimulation (NMES) decreased intensity of expression of the tetraspanin surface marker, CD63, on circulating EVs. Moreover, NMES shifted the biochemical Raman fingerprint of circulating EVs in aged animals with significant changes in lipid and sugar content in response to NMES when compared to controls. As a demonstration of the physiological relevance of these EV changes, we showed that intramuscular administration of EVs derived from aged animals subjected to NMES enhanced aged skeletal muscle healing after injury. These studies suggest that repetitive muscle contractile activity enhances the regenerative properties of circulating EVs in aged animals.
Collapse
Affiliation(s)
- Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Camilla Piechocki
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | | | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
27
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
28
|
Porukala M, Vinod PK. Network-level analysis of ageing and its relationship with diseases and tissue regeneration in the mouse liver. Sci Rep 2023; 13:4632. [PMID: 36944690 PMCID: PMC10030664 DOI: 10.1038/s41598-023-31315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
The liver plays a vital role in maintaining whole-body metabolic homeostasis, compound detoxification and has the unique ability to regenerate itself post-injury. Ageing leads to functional impairment of the liver and predisposes the liver to non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Mapping the molecular changes of the liver with ageing may help to understand the crosstalk of ageing with different liver diseases. A systems-level analysis of the ageing-induced liver changes and its crosstalk with liver-associated conditions is lacking. In the present study, we performed network-level analyses of the ageing liver using mouse transcriptomic data and a protein-protein interaction (PPI) network. A sample-wise analysis using network entropy measure was performed, which showed an increasing trend with ageing and helped to identify ageing genes based on local entropy changes. To gain further insights, we also integrated the differentially expressed genes (DEGs) between young and different age groups with the PPI network and identified core modules and nodes associated with ageing. Finally, we computed the network proximity of the ageing network with different networks of liver diseases and regeneration to quantify the effect of ageing. Our analysis revealed the complex interplay of immune, cancer signalling, and metabolic genes in the ageing liver. We found significant network proximities between ageing and NAFLD, HCC, liver damage conditions, and the early phase of liver regeneration with common nodes including NLRP12, TRP53, GSK3B, CTNNB1, MAT1 and FASN. Overall, our study maps the network-level changes of ageing and their interconnections with the physiology and pathology of the liver.
Collapse
Affiliation(s)
- Manisri Porukala
- Centre for Computational Natural Sciences and Bioinformatics, IIIT, Hyderabad, 500032, India
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, IIIT, Hyderabad, 500032, India.
| |
Collapse
|
29
|
Pang M, Chen L, Jiang N, Jiang M, Wang B, Wang L, Jia XY. Serum 25-Hydroxyvitamin D Level Is Negatively Associated with Fatigue in Elderly Maintenance Hemodialysis Patients. Kidney Blood Press Res 2023; 48:231-240. [PMID: 36882038 PMCID: PMC10158086 DOI: 10.1159/000529514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Chronic kidney disease-mineral and bone disorder (CKD-MBD) is frequently observed in maintenance hemodialysis (MHD) patients and is associated with fracture, muscle weakness, malnutrition, etc.; however, relationships of CKD-MBD markers and fatigue are not well established. METHODS This was a cross-sectional study including 244 MHD patients (89 elders) from July to September 2021 in the First Affiliated Hospital of Shandong First Medical University. CKD-MBD markers and other clinical data were collected from medical records. Fatigue in the past week was measured by Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) fatigue measure; fatigue at the end of hemodialysis was measured by numeric rating scale (NRS). Spearman correlation, linear regression, and robust linear regression were. RESULTS In all MHD patients, lg[25(OH)D] (nmol/L) was negatively correlated with SONG-HD score (β = -1.503, 95% CI: -2.826 to 0.18, p = 0.026) and NRS score (β = -1.532, p = 0.04) in multiple regression models adjusting for sex, age, and all CKD-MBD characters; but no correlations were found on univariate regression or in other multiple regression models. Interaction effects between age ≥65 years and lg(25[OH]D [nmol/L]) in terms of fatigue scores were significant based on multiple linear regressions (SONG-HD score β = -3.613, p for interaction = 0.006; NRS score β = -3.943, p for interaction = 0.008). Compared with non-elderly patients, elderly patients were with higher ACCI scores (7 [6, 8] vs. 4 [3, 5], p < 0.001), higher SONG-HD scores (3 [2, 6] vs. 2 [1, 3], p < 0.001), higher NRS score (4 [2, 7] vs. 3 [1, 5], p < 0.001), lower serum phosphate levels (1.65 [1.29, 2.10] vs. 1.87 [1.55, 2.26] mmol/L, p = 0.002), and lower serum iPTH levels (160.6 [90.46, 306.45] vs. 282.2 [139, 445.7] pg/mL, p < 0.001). There were no differences in serum calcium, alkaline serum, or 25(OH)D levels between the two groups. In elderly patients, lg[25(OH)D] was negatively correlated with SONG-HD score (β = -3.323, p = 0.010) and NRS score (β = -3.521, p = 0.006) on univariate linear regressions. Following adjustment for sex, age, and all CKD-MBD characters, lg[25(OH)D] was negatively correlated with SONG-HD scores (multiple linear regression β = -4.012, p = 0.004; multiple robust regression β = -4.012, p = 0.003) or NRS scores (multiple linear regression β = -4.104, p = 0.002; multiple robust regression β = -4.104, p = 0.001). There were no significant correlations between fatigue scores and other CKD-MBD markers (calcium, phosphate, lgiPTH, alkaline phosphatase) in elderly MHD patients, on either univariate linear regressions or multiple regressions. CONCLUSION Serum 25(OH)D level is negatively associated with fatigue in elderly MHD patients.
Collapse
Affiliation(s)
- Menglin Pang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| | - Lin Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| | - Na Jiang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| | - Mengmeng Jiang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| | - Baofeng Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| | - Lili Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| | - Xiao-yan Jia
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Institute of Nephrology, Jinan, China
| |
Collapse
|
30
|
Hettinger ZR, Hu S, Mamiya H, Sahu A, Iijima H, Wang K, Gilmer G, Miller A, Nasello G, Dâ Amore A, Vorp DA, Rando TA, Xing J, Ambrosio F. Dynamical modeling reveals RNA decay mediates the effect of matrix stiffness on aged muscle stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529950. [PMID: 36865124 PMCID: PMC9980169 DOI: 10.1101/2023.02.24.529950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Loss of muscle stem cell (MuSC) self-renewal with aging reflects a combination of influences from the intracellular (e.g., post-transcriptional modifications) and extracellular (e.g., matrix stiffness) environment. Whereas conventional single cell analyses have revealed valuable insights into factors contributing to impaired self-renewal with age, most are limited by static measurements that fail to capture nonlinear dynamics. Using bioengineered matrices mimicking the stiffness of young and old muscle, we showed that while young MuSCs were unaffected by aged matrices, old MuSCs were phenotypically rejuvenated by young matrices. Dynamical modeling of RNA velocity vector fields in silico revealed that soft matrices promoted a self-renewing state in old MuSCs by attenuating RNA decay. Vector field perturbations demonstrated that the effects of matrix stiffness on MuSC self-renewal could be circumvented by fine-tuning the expression of the RNA decay machinery. These results demonstrate that post-transcriptional dynamics dictate the negative effect of aged matrices on MuSC self-renewal.
Collapse
|
31
|
Ohsawa Y, Ohtsubo H, Munekane A, Ohkubo K, Murakami T, Fujino M, Nishimatsu SI, Hagiwara H, Nishimura H, Kaneko R, Suzuki T, Tatsumi R, Mizunoya W, Hinohara A, Fukunaga M, Sunada Y. Circulating α-Klotho Counteracts Transforming Growth Factor-β-Induced Sarcopenia. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:591-607. [PMID: 36773783 DOI: 10.1016/j.ajpath.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
α-Klotho is a longevity-related protein. Its deficiency shortens lifespan with prominent senescent phenotypes, including muscle atrophy and weakness in mice. α-Klotho has two forms: membrane α-Klotho and circulating α-Klotho (c-α-Klotho). Loss of membrane α-Klotho impairs a phosphaturic effect, thereby accelerating phosphate-induced aging. However, the mechanisms of senescence on c-α-Klotho loss remain largely unknown. Here, we show that, with the aging of wild-type mice, c-α-Klotho declined, whereas Smad2, an intracellular transforming growth factor (TGF)-β effector, became activated in skeletal muscle. Moreover, c-α-Klotho suppressed muscle-wasting TGF-β molecules, including myostatin, growth and differentiation factor 11, activin, and TGF-β1, through binding to ligands as well as type I and type II serine/threonine kinase receptors. Indeed, c-α-Klotho reversed impaired in vitro myogenesis caused by these TGF-βs. Oral administration of Ki26894, a small-molecule inhibitor of type I receptors for these TGF-βs, restored muscle atrophy and weakness in α-Klotho (-/-) mice and in elderly wild-type mice by suppression of activated Smad2 and up-regulated Cdkn1a (p21) transcript, a target of phosphorylated Smad2. Ki26894 also induced the slow to fast myofiber switch. These findings show c-α-Klotho's potential as a circulating inhibitor counteracting TGF-β-induced sarcopenia. A novel therapy involving TGF-β blockade could thus be developed to prevent sarcopenia.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| | - Hideaki Ohtsubo
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Asami Munekane
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kohei Ohkubo
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Tatsufumi Murakami
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Masahiro Fujino
- Department of Health and Sports Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki City, Okayama, Japan
| | | | - Hiroki Hagiwara
- Department of Medical Science, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Hirotake Nishimura
- Department of Pathology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Atsushi Hinohara
- Research Coordination Group, Tokyo Research Park, R&D Division, Kyowa Kirin Co, Ltd, Machida-shi, Tokyo, Japan
| | | | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| |
Collapse
|
32
|
Troutman AD, Arroyo E, Lim K, Moorthi RN, Avin KG. Skeletal Muscle Complications in Chronic Kidney Disease. Curr Osteoporos Rep 2022; 20:410-421. [PMID: 36149594 PMCID: PMC10064704 DOI: 10.1007/s11914-022-00751-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To provide an overview of the recent literature investigating the pathophysiology of skeletal muscle changes, interventions for skeletal muscle, and effects of exercise in chronic kidney disease (CKD). RECENT FINDINGS There are multiple CKD-related changes that negatively impact muscle size and function. However, the variability in the assessment of muscle size, in particular, hinders the ability to truly understand the impact it may have in CKD. Exercise interventions to improve muscle size and function demonstrate inconsistent responses that warrant further investigation to optimize exercise prescription. Despite progress in the field, there are many gaps in the knowledge of the pathophysiology of sarcopenia of CKD. Identifying these gaps will help in the design of interventions that can be tested to target muscle loss and its consequences such as impaired mobility, falls, and poor quality of life in patients with CKD.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, CF-326, 1140 W. Michigan St., Indianapolis, IN, 46202, USA
| | - Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ranjani N Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith G Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, CF-326, 1140 W. Michigan St., Indianapolis, IN, 46202, USA.
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Arroyo E, Troutman AD, Moorthi RN, Avin KG, Coggan AR, Lim K. Klotho: An Emerging Factor With Ergogenic Potential. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:807123. [PMID: 36188832 PMCID: PMC9397700 DOI: 10.3389/fresc.2021.807123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.
Collapse
Affiliation(s)
- Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashley D. Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Ranjani N. Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Keith G. Avin
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
34
|
Galán B, Serdan T, Rodrigues L, Manoel R, Gorjão R, Masi L, Pithon-Curi T, Curi R, Hirabara S. Reviewing physical exercise in non-obese diabetic Goto-Kakizaki rats. Braz J Med Biol Res 2022; 55:e11795. [PMID: 35648976 PMCID: PMC9150428 DOI: 10.1590/1414-431x2022e11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance (IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content, improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats.
Collapse
Affiliation(s)
- B.S.M. Galán
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - T.D.A. Serdan
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil; New York University, USA
| | - L.E. Rodrigues
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Manoel
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Gorjão
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - L.N. Masi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - T.C. Pithon-Curi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Curi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil; Instituto Butantan, Brasil
| | - S.M. Hirabara
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| |
Collapse
|
35
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|