1
|
Lu J, Liu S, Wei M, Zhang W, Zhu T, Xing L, Liu J, Zheng X, Pang X, Zhang S, Lv J. The impact of heating-induced lactosylation on the digestibility of lactotransferrin. Food Chem 2025; 465:141942. [PMID: 39536624 DOI: 10.1016/j.foodchem.2024.141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Lactosylation of lysines occurs during the heating of dairy products, yet how lactosylation impact the lysine release during digestion remains largely unknown. This study examines the effect of lactosylation on the digestibility of lactotransferrin using chemical analysis, proteomics, and peptidomics. Under the applied heating conditions, lactotransferrin primarily undergoes early-stage Maillard reactions, producing lactulose-lysine. Furosine content increases with heating time and temperature, with time being more influential. And 23 out of 54 lysines in lactotransferrin were lactosylated. Following in-vitro infant digestion, free lysine levels in samples heated at 130 °C for 30s decreased by 25 % compared to unheated ones, likely due to lactosylation hindering protease cleavage. Intriguingly, lactosylated lysine was absent in peptides ranging from 5 to 17 amino acids but remained in larger peptides. The formation of large lactosylated peptides from heating impeded free lysine release. Further investigation is needed to determine if the human body can utilize these lactosylated peptides.
Collapse
Affiliation(s)
- Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuangneng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Miaohong Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Wenyuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Tong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lina Xing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaowei Zheng
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China.
| |
Collapse
|
2
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
3
|
Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021; 26:molecules26010205. [PMID: 33401580 PMCID: PMC7795860 DOI: 10.3390/molecules26010205] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lactoferrin is an iron binding glycoprotein with multiple roles in the body. Its participation in apoptotic processes in cancer cells, its ability to modulate various reactions of the immune system, and its activity against a broad spectrum of pathogenic microorganisms, including respiratory viruses, have made it a protein of broad interest in pharmaceutical and food research and industry. In this review, we have focused on describing the most important functions of lactoferrin and the possible mechanisms of action that lead to its function.
Collapse
|
4
|
Pirr S, Viemann D. Host Factors of Favorable Intestinal Microbial Colonization. Front Immunol 2020; 11:584288. [PMID: 33117398 PMCID: PMC7576995 DOI: 10.3389/fimmu.2020.584288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbial colonization starts with birth and initiates a complex process between the host and the microbiota. Successful co-development of both establishes a symbiotic mutual relationship and functional homeostasis, while alterations thereof predispose the individual life-long to inflammatory and metabolic diseases. Multiple data have been provided how colonizing microbes induce a reprogramming and maturation of immunity by providing crucial instructing information to the newborn immune system. Less is known about what host factors have influence on the interplay between intestinal immunity and the composition of the gut microbial ecology. Here we review existing evidence regarding host factors that contribute to a favorable development of the gut microbiome and thereby successful maturation of gut mucosal immunity.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| |
Collapse
|
5
|
Pasteurized ready-to-feed (RTF) infant formula fortified with lactoferrin: a potential niche product. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Erliana UD, Fly AD. The Function and Alteration of Immunological Properties in Human Milk of Obese Mothers. Nutrients 2019; 11:nu11061284. [PMID: 31174304 PMCID: PMC6627488 DOI: 10.3390/nu11061284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Abstract
Maternal obesity is associated with metabolic changes in mothers and higher risk of obesity in the offspring. Obesity in breastfeeding mothers appears to influence human milk production as well as the quality of human milk. Maternal obesity is associated with alteration of immunological factors concentrations in the human milk, such as C-reactive protein (CRP), leptin, IL-6, insulin, TNF-Alpha, ghrelin, adiponectin, and obestatin. Human milk is considered a first choice for infant nutrition due to the complete profile of macro nutrients, micro nutrients, and immunological properties. It is essential to understand how maternal obesity influences immunological properties of human milk because alterations could impact the nutrition status and health of the infant. This review summarizes the literature regarding the impact of maternal obesity on the concentration of particular immunological properties in the human milk.
Collapse
Affiliation(s)
- Ummu D Erliana
- Indiana University Bloomington School of Public Health, Bloomington, IN 47405, USA.
| | - Alyce D Fly
- Indiana University Bloomington School of Public Health, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Abstract
NEC is a multifactorial disease that occurs when multiple risk factors and/or stressors overlap, leading to profound inflammation and intestinal injury. Human milk feedings, both from the infant's mother and donor human milk, have been associated with reductions in NEC in preterm infants. This article will review the protective factors in human milk, clinical studies of human milk and NEC, and practices to enhance human milk use in neonatal intensive care units.
Collapse
Affiliation(s)
- Aloka L Patel
- Section of Neonatology, Rush University Children's Hospital, 1653 W. Congress Pkwy, Pavilion 353, Chicago, Illinois 60612.
| | - Jae H Kim
- Divisions of Neonatology & Pediatric Gastroenterology, Hepatology and Nutrition, University of California San Diego, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
8
|
Cai X, Duan Y, Li Y, Wang J, Mao Y, Yang Z, Zhao X, Zhao Y, Guan Y, Yin S. Lactoferrin level in breast milk: a study of 248 samples from eight regions in China. Food Funct 2018; 9:4216-4222. [DOI: 10.1039/c7fo01559c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lactoferrin plays an important role in infant gastrointestinal health and immunity responses.
Collapse
Affiliation(s)
| | - Yifan Duan
- National Institute for Nutrition and Health
- Chinese Center for Disease Control and Prevention
- Beijing
- China
| | - Yang Li
- Abbott Nutrition R&D
- Shanghai
- China
| | - Jie Wang
- National Institute for Nutrition and Health
- Chinese Center for Disease Control and Prevention
- Beijing
- China
| | | | - Zhenyu Yang
- National Institute for Nutrition and Health
- Chinese Center for Disease Control and Prevention
- Beijing
- China
| | | | | | - Yan Guan
- Abbott Nutrition R&D
- Shanghai
- China
| | - Shian Yin
- National Institute for Nutrition and Health
- Chinese Center for Disease Control and Prevention
- Beijing
- China
| |
Collapse
|
9
|
Exploitation of SPR to Investigate the Importance of Glycan Chains in the Interaction between Lactoferrin and Bacteria. SENSORS 2017; 17:s17071515. [PMID: 28653977 PMCID: PMC5539864 DOI: 10.3390/s17071515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/22/2023]
Abstract
Bovine lactoferrin (LF) has been shown to prevent adhesion to and invasion of mammalian cell lines by pathogenic bacteria, with evidence for direct bacterial binding by the milk glycoprotein. However, the glycosylation pattern of LF changes over the lactation cycle. In this study, we aim to investigate the effect that this variation has on the milk glycoprotein's ability to interact with pathogens. Surface plasmon resonance technology was employed to compare the binding of LF from colostrum (early lactation) and mature milk (late lactation) to a panel of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Cronobacter sakazakii, Streptococcus pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes and Salmonella typhimurium). Novel interactions with LF were identified for C. sakazakii, S. pneumoniae and P. aeruginosa with the highest binding ability observed for mature milk LF in all cases, with the exception of S. typhimurium. The difference in bacterial binding observed may be as a result of the varying glycosylation profiles. This work demonstrates the potential of LF as a functional food ingredient to prevent bacterial infection.
Collapse
|
10
|
Lönnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J Nutr Biochem 2016; 41:1-11. [PMID: 27771491 DOI: 10.1016/j.jnutbio.2016.06.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
The protein content of breast milk provides a foundation for estimating protein requirements of infants. Because it serves as a guideline for regulatory agencies issuing regulations for infant formula composition, it is critical that information on the protein content of breast milk is reliable. We have therefore carried out a meta-analysis of the protein and amino acid contents of breast milk and how they evolve during lactation. As several bioactive proteins are not completely digested in the infant and therefore represent "non-utilizable" protein, we evaluated the quantity, mechanism of action and digestive fate of several major breast milk proteins. A better knowledge of the development of the protein contents of breast milk and to what extent protein utilization changes with age of the infant will help improve understanding of protein needs in infancy. It is also essential when designing the composition of infant formulas, particularly when the formula uses a "staging" approach in which the composition of the formula is modified in stages to reflect changes in breast milk and changing requirements as the infant ages.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, USA.
| | - Peter Erdmann
- Nestlé Nutrition, Rue Entre-Deux-Villes 10, CH-1814, La Tour-de-Peilz, Switzerland
| | - Sagar K Thakkar
- Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000, Lausanne, 26, Switzerland
| | - Julien Sauser
- Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000, Lausanne, 26, Switzerland
| | - Frédéric Destaillats
- Nestlé Nutrition, Rue Entre-Deux-Villes 10, CH-1814, La Tour-de-Peilz, Switzerland
| |
Collapse
|
11
|
Zhao D, Shah NP. Tea and soybean extracts in combination with milk fermentation inhibit growth and enterocyte adherence of selected foodborne pathogens. Food Chem 2015; 180:306-316. [PMID: 25766833 DOI: 10.1016/j.foodchem.2015.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/11/2015] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
Abstract
This study examined the antibacterial and anti-adhesive properties of pure plant extracts (PPEs) of green tea (GT), black tea (BT) and soybean individually or in combination with milk. Fermented phenolic enriched-milk (fPEM) was prepared by combining PPEs with milk and fermented with lactic acid bacteria. Antimicrobial activity of extracts was evaluated by broth-dilution and agar diffusion assay. Anti-adhesive property of extracts was evaluated in Caco-2 cell model. Results from antibacterial tests showed that PPEs exhibited a dose-dependent growth inhibitory effect. Tea extracts were more effective in inhibiting Gram-positive bacteria while soybean extract exhibited similar effects against all pathogens tested. For fPEM, although total phenolic contents decreased compared with those in PPEs, growth inhibitory effect of fPEM containing tea extracts was greatly enhanced. All extracts showed significant inhibition against pathogen adhesion to Caco-2 cells. In particular, adhesion inhibition against Staphylococcus aureus and Listeria monocytogenes was >89% when fPEM extracts were applied.
Collapse
Affiliation(s)
- Danyue Zhao
- Food and Nutritional Science - School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Science - School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
12
|
Zhang Z, Chen C, Li Z, Wu YH, Xiao XM. Individualized management of pregnant women with high hepatitis B virus DNA levels. World J Gastroenterol 2014; 20:12056-12061. [PMID: 25232243 PMCID: PMC4161794 DOI: 10.3748/wjg.v20.i34.12056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/09/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B is a major health concern in the Asia-Pacific region, and is endemic in China, Southeast Asia, and Africa. Chronic hepatitis B virus (HBV) infection may cause hepatic cirrhosis and liver cancer. It is estimated that there are more than 350 million chronic HBV carriers worldwide, of whom approximately one quarter will die of chronic hepatitis B-related liver diseases. HBV is transmitted horizontally through blood and blood products or by sexual transmission, and vertically from mother to infant. Perinatal infection is the predominant mode of transmission in countries with a high prevalence of hepatitis B surface antigen (HBsAg) carriage, and perinatal transmission leads to high rates of chronic infection. Therefore, it is important to prevent the mother-to-child transmission (MTCT) of HBV. Research has shown that pregnant women with high HBV DNA levels have an increased risk of MTCT. However, most of the obstetrics guidelines do not make a distinction between pregnant women with high HBV DNA levels and those who are HBsAg positive only. This review addresses the management of pregnant women with high levels of HBV viremia, in terms of antiviral therapy, use of hepatitis B immunoglobulin (HBIG), the combined application of hepatitis B vaccine and HBIG, choice of delivery mode and feeding practices.
Collapse
|
13
|
Quintero-Villegas MI, Wittke A, Hutkins R. Adherence Inhibition of Cronobacter sakazakii to Intestinal Epithelial Cells by Lactoferrin. Curr Microbiol 2014; 69:574-9. [DOI: 10.1007/s00284-014-0623-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/22/2014] [Indexed: 02/01/2023]
|
14
|
Ogasawara Y, Imase M, Oda H, Wakabayashi H, Ishii K. Lactoferrin directly scavenges hydroxyl radicals and undergoes oxidative self-degradation: a possible role in protection against oxidative DNA damage. Int J Mol Sci 2014; 15:1003-13. [PMID: 24424315 PMCID: PMC3907852 DOI: 10.3390/ijms15011003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/24/2013] [Accepted: 01/09/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, we examined the protective effect of lactoferrin against DNA damage induced by various hydroxyl radical generation systems. Lactoferrin (LF) was examined with regard to its potential role as a scavenger against radical oxygen species using bovine milk LF. Native LF, iron-saturated LF (holo-LF), and apolactoferrin (apo-LF) effectively suppressed strand breaks in plasmid DNA due to hydroxyl radicals produced by the Fenton reaction. In addition, both native LF and holo-LF clearly protected calf thymus DNA from fragmentation due to ultraviolet irradiation in the presence of H2O2. We also demonstrated a protective effect of all three LF molecules against 8-hydroxydeoxyguanosine (8-OHdG) formation in calf thymus DNA following ultraviolet (UV) irradiation with H2O2. Our results clearly indicate that native LF has reactive oxygen species-scavenging ability, independent of its nature as a masking component for transient metals. We also demonstrated that the protective effect of LF against oxidative DNA damage is due to degradation of LF itself, which is more susceptible to degradation than other bovine milk proteins.
Collapse
Affiliation(s)
- Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Megumi Imase
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Hirotsugu Oda
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Hiroyuki Wakabayashi
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Kazuyuki Ishii
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
15
|
Abstract
Human milk contains many proteins that have been shown to be bioactive, but it is still not known whether these activities are exerted in breast-fed infants. These bioactivities include enzyme activities, enhancement of nutrient absorption, growth stimulation, modulation of the immune system and defence against pathogens. The antimicrobial activities are very diverse, ranging from stimulation of beneficial microorganisms (i.e. prebiotic effects), killing or inhibition of growth of pathogens, to mechanisms preventing attachment or invasion of harmful microorganisms. Among the bioactive proteins are lactoferrin, lysozyme, secretory immunoglobulin A, haptocorrin, lactoperoxidase, α-lactalbumin, bile salt stimulated lipase, β- and κ-casein, and tumour growth factor β. Human milk proteins may be largely resistant against digestion in the gastrointestinal tract, be partially digested into bioactive peptides, or be more or less completely digested and utilised as a source of amino acids. These events can be studied using an in vitro digestion model, which is useful for predicting results in human infants. Some bovine milk proteins, for example, lactoferrin and tumour growth factor β, may also resist proteolysis and be capable of exerting bioactivities similar to those of human milk proteins.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, California 95616, USA.
| |
Collapse
|
16
|
Species of Cronobacter – A review of recent advances in the genus and their significance in infant formula milk. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2012.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Mother-to-child transmission of hepatitis B virus (HBV) is among the most important causes of chronic HBV infection and is the commonest mode of transmission worldwide. Currently, the presence of HBsAg, HBeAg and HBV DNA in breast milk is confirmed. Several studies have reported that breastfeeding carries no additional risk that might lead to vertical transmission. Beyond some limitations, the surveys have not demonstrated any differences in HBV transmission rate regarding feeding practices in early childhood. Promotion of breastfeeding is substantial, especially for low-income individuals and regions with uncertain, unfeasible, and unsafe water supplies. Lactoferrin, minimal inflammation or activation within the infant gut during exclusive breastfeeding, and nonspecific biological molecules in the milk are identified as major factors of breast-milk defense. This review discusses preemptive antiviral therapy during pregnancy and lactation. Long-term follow up of breast-milk HBV concentrations and correlation with serum viral load; nucleos(t)ide analogue concentrations in breast milk in HBV-positive mothers in the setting of chronic HBV infection; safety of antiviral therapy during pregnancy and lactation; and the difference in viral load in the milk in exclusive or non-exclusive breastfeeding are still open questions. The paper reviews the current data and outlines the course of further investigation into this often underestimated issue.
Collapse
|
18
|
Abstract
Human milk contains a multitude of bioactive proteins, with very diverse functions. Some of these proteins are involved in the synthesis and expression of milk, but the majority appears to have evolved to provide physiological activities in the breast-fed infant. These activities are exerted by a wide variety of mechanisms and have largely been unraveled by in vitro studies. To be active in the gastrointestinal tract, these proteins must be able to resist proteolytic degradation, at least for some time. We have evaluated the human milk proteins lactoferrin, haptocorrin, alpha(1)-antitrypsin, and transforming growth factor -beta in an in vitro digestion model, mimicking the conditions of the infant gastrointestinal milieu. These bioactive proteins are resistant against proteolysis and can remain intact or as larger fragments through passage of the gastrointestinal tract. In vitro digestibility assays can be helpful to assess which human milk proteins can resist proteolysis and to what extent.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Until relatively recently, the only significant source of lactoferrin in the diet was human lactoferrin, provided in breast milk. Today, however, bovine lactoferrin, isolated by dairy technology, as well as recombinant human lactoferrin are commercially available and can be added to foods and clinical products with perceived benefits to the consumer. In this review, the potential biological functions of dietary lactoferrin are described and critically examined. RECENT FINDINGS Ingested lactoferrin has been suggested to exert antibacterial and antiviral activities in the intestine, in part through a direct effect on pathogens, but possibly also affecting mucosal immune function. The latter function is most likely mediated by lactoferrin being taken up by cells via a unique receptor-mediated pathway and affecting gene transcription. Lactoferrin has also been shown to enhance iron status of infants and pregnant women, possibly also via the receptor-mediated pathway. In addition, lactoferrin can stimulate intestinal cell proliferation and differentiation, causing expansion of tissue mass and absorptive capacity. On the contrary, lactoferrin has been shown to inhibit carcinogenesis. Recent findings also suggest that oral lactoferrin treatment may have an anti-inflammatory effect on pregnant women, reducing pregnancy complications. SUMMARY Lactoferrin treatment may have beneficial preventive and therapeutic effects on infection, inflammation, and cancer as well as enhancing iron status and growth in vulnerable groups.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, California 95616, USA.
| |
Collapse
|