1
|
Zhong Y, Wang L, Dan W, Liang D. Combining transarterial chemoembolization, radiofrequency ablation, and iodine-125 seed implantation for recurrent hepatocellular carcinoma post-hepatectomy. Diagn Interv Radiol 2025; 31:253-258. [PMID: 39601278 PMCID: PMC12057538 DOI: 10.4274/dir.2024.242814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE This study aimed to evaluate the efficacy and safety of transarterial chemoembolization (TACE) combined with radiofrequency ablation (RFA) and iodine-125 (125I) seed implantation (TACE-RFA-125I) for recurrent hepatocellular carcinoma (HCC) after hepatectomy. METHODS The study retrospectively analyzed patients with recurrent HCC who received TACE-RFA-125I or TACE-RFA treatment in our institution between January 2013 and January 2023. Overall survival (OS), progression-free survival (PFS), and recurrence were compared between the two groups. RESULTS A total of 187 patients were enrolled in this study, with 105 in the TACE-RFA-125I group and 82 in the TACE-RFA group. There were 67 men and 15 women in the TACE-RFA group, with an average age of 55.4 ± 10.9 years, and 93 men and 12 women in the TACE-RFA-125I group, with an average age of 55.5 ± 10.7 years. The TACE-RFA-125I group exhibited a significantly improved survival benefit compared with the TACE-RFA group (median OS: 49 months vs. 32 months, P < 0.001; median PFS: 24 months vs. 16 months, P < 0.001). The univariate and multivariate analyses revealed that TACE-RFA-125I was a protective factor for OS and PFS. A total of 32 patients in the TACE-RFA group experienced recurrence during follow-up, with local recurrence in 12 cases, intrahepatic recurrence in 10 cases, and extrahepatic metastases in 10 cases. A total of 28 patients in the TACE-RFA-125I group experienced recurrence, 6 with local recurrence, 12 with intrahepatic recurrence, and 10 with extrahepatic metastases. No procedure-related deaths occurred in this study. CONCLUSION In patients with recurrent HCC, TACE-RFA-125I demonstrates promising tumor control and acceptable safety. CLINICAL SIGNIFICANCE This study provides promising clinical guidance for patients with recurrent HCC after hepatectomy and is expected to provide beneficial strategies for the treatment of this disease.
Collapse
Affiliation(s)
- Yong Zhong
- Tongcheng County People’s Hospital, Department of Oncology, Tongcheng, China
| | - Li Wang
- Tongcheng County People’s Hospital, Department of Oncology, Tongcheng, China
| | - Weibin Dan
- Tongcheng County People’s Hospital, Department of Oncology, Tongcheng, China
| | - Dan Liang
- Tongcheng County People’s Hospital, Department of Ultrasound Medicine, Tongcheng, China
| |
Collapse
|
2
|
Thurlow PC, Azhideh A, Ho CK, Stratchko LM, Pooyan A, Alipour E, Hosseini N, Chalian M. Thermal Protection Techniques for Image-guided Musculoskeletal Ablation. Radiographics 2025; 45:e240078. [PMID: 40048387 DOI: 10.1148/rg.240078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2025]
Abstract
Percutaneous image-guided thermal ablation has gained wide acceptance among physicians for the treatment of benign and malignant tumors of the musculoskeletal system. Increasing evidence to support the efficacy of thermal ablation techniques in primary and adjuvant treatment of soft-tissue sarcomas, treatment of oligometastatic disease to bone and soft tissue, and metastatic pain palliation has positioned interventional oncology alongside surgery, systemic therapies, and radiation therapy as the fourth pillar of modern comprehensive cancer care. Despite the expanding indications and increasing use in clinical practice, thermal ablation carries a significant risk of injury to the adjacent vulnerable structures, predominantly the skin, bowel, and neural structures. Knowledge of the mechanism of action of each thermal ablation modality informs the physician of the attendant risks associated with a particular modality. Thermal ablation mechanisms can be divided into hypothermic (cryoablation) and hyperthermic (radiofrequency ablation, microwave ablation, high-intensity focused US, or laser). Active thermal protection techniques include hydrodissection, pneumodissection, direct skin thermal protection, and physical displacement techniques. Passive thermal protection techniques include temperature monitoring, biofeedback, and neurophysiologic monitoring. The authors provide an overview of the mechanism of action of the most commonly used thermal ablation modalities, review the thermal injury risks associated with these modalities, and introduce the active and passive thermal protective techniques critical to safe and effective musculoskeletal ablative therapy. ©RSNA, 2025 See the invited commentary by Tomasian and Jennings in this issue.
Collapse
Affiliation(s)
- Peter C Thurlow
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Arash Azhideh
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Corey K Ho
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Lindsay M Stratchko
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Atefe Pooyan
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Ehsan Alipour
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Nastaran Hosseini
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| | - Majid Chalian
- From the Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, 4245 Roosevelt Way NE, Box 354755, Seattle, WA 98105 (P.C.T., A.A., A.P., E.A., N.H., M.C.); Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Colorado Anschutz Medical Campus, Aurora, Colo (C.K.H.); and Department of Radiology, Penn State Health, Hershey, Pa (L.M.S.)
| |
Collapse
|
3
|
Lee CM, Seo JY, Kim JC, Chon MK. Gradual Temperature Rise in Radiofrequency Ablation: Enhancing Lesion Quality and Safety in Porcine Myocardial Tissue. Bioengineering (Basel) 2025; 12:360. [PMID: 40281720 PMCID: PMC12025035 DOI: 10.3390/bioengineering12040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Radiofrequency ablation (RFA) is a pivotal therapeutic technique for various medical conditions, including cardiovascular disease and oncological conditions such as liver and lung cancer. The energy-controlled mode in RFA procedures allows for uniform energy delivery but is less safe compared to the temperature-controlled mode. Therefore, it is necessary to develop a protocol that ensures safety while efficiently delivering energy in the temperature-controlled mode. In this study, we compared lesion formation using the gradual-temperature-rise mode to the fixed-temperature mode. We evaluated the lesion size, energy, cumulative time efficiency, and procedural safety in both in vitro and in vivo experiments with porcine myocardial tissue. Three experimental groups (n = 6) were compared to assess the effect of gradual-temperature-rise and fixed-temperature ablation modes. Five experimental groups (n = 6) were used to determine the optimal temperature turn-up time. The gradual-temperature-rise mode ablated larger lesions (10.48 ± 0.56 mm) compared to the 75 °C (7.67 ± 0.37 mm) and 85 °C (8.05 ± 0.36 mm) fixed-temperature groups (p = 0.002). The optimal turn-up time for efficient lesion formation was found to be between 120 and 180 s. The in vivo experiments validated the safety and efficacy of the optimized gradual-temperature-rise mode. Therefore, using the gradual-temperature-rise mode of temperature-controlled RFA enhances lesion formation, energy transfer, and safety, making it a promising approach for clinical application in cardiac ablation procedures.
Collapse
Affiliation(s)
- Cheol-Min Lee
- Department of R&D Center, TAU MEDICL Inc., Busan 50612, Republic of Korea
| | - Jae-Young Seo
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan 46241, Republic of Korea;
| | - Jin-Chang Kim
- Department of R&D Center, TAU MEDICL Inc., Busan 50612, Republic of Korea
| | - Min-Ku Chon
- Department of Internal Medicine, Pusan National University School of Medicine and Cardiology, Cardiovascular Center and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Gadour E, Al Ghamdi S, Miutescu B, Shaaban HE, Hassan Z, Almuhaidb A, Okasha HH. Linear endoscopic ultrasound: Current uses and future perspectives in mediastinal examination. World J Gastroenterol 2024; 30:3803-3809. [PMID: 39351425 PMCID: PMC11438627 DOI: 10.3748/wjg.v30.i33.3803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
This editorial elaborates on the current and future applications of linear endoscopic ultrasound (EUS), a substantial diagnostic and therapeutic modality for various anatomical regions. The scope of endosonographic assessment is broad and, among other factors, allows for the evaluation of the mediastinal anatomy and related pathologies, such as mediastinal lymphadenopathy and the staging of central malignant lung lesions. Moreover, EUS assessment has proven more accurate in detecting small lesions missed by standard imaging examinations, such as computed tomography or magnetic resonance imaging. We focus on its current uses in the mediastinum, including lung and esophageal cancer staging, as well as evaluating mediastinal lymphadenopathy and submucosal lesions. The editorial also explores future perspectives of EUS in mediastinal examination, including ultrasound-guided therapies, artificial intelligence integration, advancements in mediastinal modalities, and improved diagnostic approaches for various mediastinal lesions.
Collapse
Affiliation(s)
- Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa 36428, Saudi Arabia
- Department of Internal Medicine, Zamzam University College, School of Medicine, Khartoum 11113, Sudan
| | - Sarah Al Ghamdi
- Department of Medicine, Division of Gastroenterology, King Abdulaziz University, Jeddah 3646, Saudi Arabia
| | - Bogdan Miutescu
- Department of Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Hossam E Shaaban
- Department of Internal Medicine and Gastroenterology, Nhtmri, Cairo 11796, Egypt
| | - Zeinab Hassan
- Department of Internal Medicine, Stockport Hospitals NHS Foundation Trust, Manchester SK2 7JE, United Kingdom
| | - Aymen Almuhaidb
- Department of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hussein H Okasha
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kasr Al-Aini School of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
7
|
Cao F, Zheng J, Hao W. Combined image-guided radiofrequency and iodine-125 seeds implantation in the treatment of recurrent hepatocellular carcinoma after hepatectomy. BMC Cancer 2024; 24:666. [PMID: 38822264 PMCID: PMC11143574 DOI: 10.1186/s12885-024-12414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Currently, there is no consensus on the treatment of recurrent hepatocellular carcinoma (HCC) after hepatectomy. It is necessary to assess the efficacy and safety of radiofrequency ablation (RFA) combined with iodine-125 seeds implantation (RFA-125I) in the treatment of recurrent HCC. METHODS This study retrospectively analyzed the clinical data of patients with postoperative recurrence of HCC receiving RFA-125I or RFA treatment from January 2013 to January 2023. Both RFA and 125I seeds implantation were performed under dual guidance of ultrasound and CT. Overall survival (OS), progression-free survival (PFS), recurrence, and complications were compared between the two groups. RESULTS A total of 210 patients with recurrent HCC were enrolled in this study, including 125 patients in the RFA-125I group and 85 patients in the RFA group. The RFA-125I group showed a significantly better survival benefit than RFA group (median OS: 37 months vs. 16 months, P < 0.001; median PFS: 15 months vs. 10 months, P = 0.001). The uni- and multivariate analysis showed that RFA-125I was a protective factor for OS and PFS. There were no procedure-related deaths and no grade 3 or higher adverse events in both groups. CONCLUSIONS RFA combined with 125I seeds implantation under dual guidance of ultrasound and CT is effective and safe for the treatment of HCC patients with recurrence after hepatectomy.
Collapse
Affiliation(s)
- Fei Cao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, China
| | - Jiaping Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, China
| | - Weiyuan Hao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
8
|
Do K, Kawana E, Tian S, Bigcas JL. Treatment of Warthin's Tumors of the Parotid Gland With Radiofrequency Ablation: A Systematic Review of the Current Literature. EAR, NOSE & THROAT JOURNAL 2024:1455613241248119. [PMID: 38647239 DOI: 10.1177/01455613241248119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Objective: Warthin's tumors of the parotid gland can be safely observed. Definitive treatment usually requires parotidectomy under general anesthesia. The decision to operate on Warthin's tumors of the parotid gland can be complicated in patients who wish to avoid risks of surgery and general anesthesia. This systematic review explores the potential of radiofrequency ablation (RFA) as a minimally invasive alternative. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model was used to collect 3 relevant studies that focused on RFA treatment for Warthin's tumors. The cumulative averages for tumor size and cosmetic scores were then quantified for patients with Warthin's tumors who underwent RFA therapy. The PRISMA systematic review method was employed to the PubMed and EMBASE databases. The comprehensive search term "Warthin Tumor Treatment" yielded 1299 articles from the years 1955 to 2023, 3 of which met inclusion criteria and were then selected. Results: The 3 quantitative studies collectively assessed 37 patients with Warthin's tumors treated with RFA. Patients experienced an average tumor size reduction of 85.03% at 12 months post-RFA. There were minimal complications associated with RFA in these patients. Conclusion: This study suggests that RFA is an alternative to parotidectomy for the symptomatic treatment of Warthin's tumors. RFA procedures demonstrated substantial tumor size reduction with few complications. However, further meta-analysis and comparison with alternative treatments is warranted to establish RFA's role in treatment of Warthin's tumors. The study is limited by its reliance on only 2 databases and a lack of comprehensive examination of different RFA settings.
Collapse
Affiliation(s)
- Kenny Do
- Department of Otolaryngology-Head and Neck Surgery, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Eric Kawana
- Department of Otolaryngology-Head and Neck Surgery, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Sisi Tian
- Department of Otolaryngology-Head and Neck Surgery, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jo-Lawrence Bigcas
- Department of Otolaryngology-Head and Neck Surgery, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
9
|
Sato M, Moriyama M, Fukumoto T, Yamada T, Wake T, Nakagomi R, Nakatsuka T, Minami T, Uchino K, Enooku K, Nakagawa H, Shiina S, Koike K, Fujishiro M, Tateishi R. Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation. Hepatol Int 2024; 18:131-137. [PMID: 37689614 PMCID: PMC10857948 DOI: 10.1007/s12072-023-10585-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION Radiofrequency ablation (RFA) is a widely accepted, minimally invasive treatment modality for patients with hepatocellular carcinoma (HCC). Accurate prognosis prediction is important to identify patients at high risk for cancer progression/recurrence after RFA. Recently, state-of-the-art transformer models showing improved performance over existing deep learning-based models have been developed in several fields. This study was aimed at developing and validating a transformer model to predict the overall survival in HCC patients with treated by RFA. METHODS We enrolled a total of 1778 treatment-naïve HCC patients treated by RFA as the first-line treatment. We developed a transformer-based machine learning model to predict the overall survival in the HCC patients treated by RFA and compared its predictive performance with that of a deep learning-based model. Model performance was evaluated by determining the Harrel's c-index and validated externally by the split-sample method. RESULTS The Harrel's c-index of the transformer-based model was 0.69, indicating its better discrimination performance than that of the deep learning model (Harrel's c-index, 0.60) in the external validation cohort. The transformer model showed a high discriminative ability for stratifying the external validation cohort into two or three different risk groups (p < 0.001 for both risk groupings). The model also enabled output of a personalized cumulative recurrence prediction curve for each patient. CONCLUSIONS We developed a novel transformer model for personalized prediction of the overall survival in HCC patients after RFA treatment. The current model may offer a personalized survival prediction schema for patients with HCC undergoing RFA treatment.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Makoto Moriyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Fukumoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijiro Wake
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Minami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Uchino
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Kho ASK, Ooi EH, Foo JJ, Ooi ET. Saline-Infused Radiofrequency Ablation: A Review on the Key Factors for a Safe and Reliable Tumour Treatment. IEEE Rev Biomed Eng 2024; 17:310-321. [PMID: 35653443 DOI: 10.1109/rbme.2022.3179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Radiofrequency ablation (RFA) combined with saline infusion into tissue is a promising technique to ablate larger tumours. Nevertheless, the application of saline-infused RFA remains at clinical trials due to the contradictory findings as a result of the inconsistencies in experimental procedures. These inconsistencies not only magnify the number of factors to consider during the treatment, but also obscure the understanding of the role of saline in enlarging the coagulation zone. Consequently, this can result in major complications, which includes unwanted thermal damages to adjacent tissues and also incomplete ablation of the tumour. This review aims to identify the key factors of saline responsible for enlarging the coagulation zone during saline-infused RFA, and provide a proper understanding on their effects that is supported with findings from computational studies to ensure a safe and reliable cancer treatment.
Collapse
|
11
|
Nakla T, Chow JJ, Pham K, Abi-Jaoudeh N. Non-Thermal Liver Ablation: Existing and New Technology. Semin Intervent Radiol 2023; 40:497-504. [PMID: 38274216 PMCID: PMC10807968 DOI: 10.1055/s-0043-1777844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cancer has and continues to be a complex health crisis plaguing millions around the world. Alcohol ablation was one of the initial methods used for the treatment of liver lesions. It was surpassed by thermal ablation which has played a big role in the therapeutic arsenal for primary and metastatic liver tumors. However, thermal ablation has several shortcomings and limitations that prompted the development of alternative technologies including electroporation and histotripsy. Percutaneous alcohol injection in the liver lesion leads to dehydration and coagulative necrosis. This technology is limited to the lesion with relative sparing of the surrounding tissue, making it safe to use adjacent to sensitive structures. Electroporation utilizes short high-voltage pulses to permeabilize the cell membrane and can result in cell death dependent on the threshold reached. It can effectively target the tumor margins and has lower damage rates to surrounding structures due to the short pulse duration. Histotripsy is a novel technology, and although the first human trial was just completed, its results are encouraging, given the sharp demarcation of the targeted tissue, lack of thermal damage, and potential for immunomodulation of the tumor microenvironment. Herein, we discuss these techniques, their uses, and overall clinical benefit.
Collapse
Affiliation(s)
- Tiffany Nakla
- College of Osteopathic Medicine, Touro University Nevada, Henderson, Nevada
| | - Jacqueline J. Chow
- School of Medicine, University of California, Irvine, Irvine, California
| | - Kathleen Pham
- Department of Radiological Sciences, University of California, Irvine, Irvine, California
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, University of California, Irvine, Irvine, California
| |
Collapse
|
12
|
Cao Y, Sun T, Sun B, Zhang G, Liu J, Liang B, Zheng C, Kan X. Injectable hydrogel loaded with lysed OK-432 and doxorubicin for residual liver cancer after incomplete radiofrequency ablation. J Nanobiotechnology 2023; 21:404. [PMID: 37919724 PMCID: PMC10623833 DOI: 10.1186/s12951-023-02170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE To investigate the efficacy of an injectable hydrogel loaded with lysed OK-432 (lyOK-432) and doxorubicin (DOX) for residual liver cancer after incomplete radiofrequency ablation (iRFA) of hepatocellular carcinoma (HCC), and explore the underlying mechanism. MATERIALS AND METHODS The effect of OK-432 and lyOK-432 was compared in activating dendritic cells (DCs). RADA16-I (R) peptide was dissolved in a mixture of lyOK-432 (O) and DOX (D) to develop an ROD hydrogel. The characteristics of ROD hydrogel were evaluated. Tumor response and mice survival were measured after different treatments. The number of immune cells and cytokine levels were measured, and the activation of cGAS/STING/IFN-I signaling pathway in DC was evaluated both in vitro and in vivo. RESULTS LyOK-432 was more effective than OK-432 in promoting DC maturation and activating the IFN-I pathway. ROD was an injectable hydrogel for effectively loading lyOK-432 and DOX, and presented the controlled-release property. ROD treatment achieved the highest tumor necrosis rate (p < 0.001) and the longest survival time (p < 0.001) compared with the other therapies. The ROD group also displayed the highest percentages of DCs, CD4+ T cells and CD8+ T cells (p < 0.001), the lowest level of Treg cells (p < 0.001), and the highest expression levels of IFN-γ and TNF-α (p < 0.001) compared with the other groups. The expression levels of pSTING, pIRF3, and IFN-β in DCs were obviously higher after treatment of lyOK-432 in combination with DOX than the other therapies. The surviving mice in the ROD group showed a growth inhibition of rechallenged subcutaneous tumor. CONCLUSION The novel ROD peptide hydrogel induced an antitumor immunity by activating the STING pathway, which was effective for treating residual liver cancer after iRFA of HCC.
Collapse
Affiliation(s)
- Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Guilin Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiayun Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
13
|
Zhang K, Chen Y, Zhu J, Ge X, Wu J, Xu P, Yao J. Advancement of single-cell sequencing for clinical diagnosis and treatment of pancreatic cancer. Front Med (Lausanne) 2023; 10:1213136. [PMID: 37720505 PMCID: PMC10501729 DOI: 10.3389/fmed.2023.1213136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell sequencing is a high-throughput technique that enables detection of genomic, transcriptomic, and epigenomic information at the individual cell level, offering significant advantages in detecting cellular heterogeneity, precise cell classification, and identifying rare subpopulations. The technique holds tremendous potential in improving the diagnosis and treatment of pancreatic cancer. Moreover, single-cell sequencing provides unique insights into the mechanisms of pancreatic cancer metastasis and cachexia, paving the way for developing novel preventive strategies. Overall, single-cell sequencing has immense potential in promoting early diagnosis, guiding personalized treatment, and preventing complications of pancreatic cancer. Emerging single-cell sequencing technologies will undoubtedly enhance our understanding of the complex biology of pancreatic cancer and pave the way for new directions in its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Yuan Chen
- Medical College of Yangzhou University, Yangzhou, China
| | - Jie Zhu
- Medical College of Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Medical College of Yangzhou University, Yangzhou, China
| | - Peng Xu
- Northern Jiangsu People’s Hospital Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jie Yao
- Northern Jiangsu People’s Hospital Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
15
|
Zheng H, Li P, Ma R, Zhang F, Ji H, Monsky WL, Johnson E, Yang W, Ni C, Gao D, Yang X. Development of a Three-Dimensional Multi-Modal Perfusion-Thermal Electrode System for Complete Tumor Eradication. Cancers (Basel) 2022; 14:4768. [PMID: 36230690 PMCID: PMC9562205 DOI: 10.3390/cancers14194768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Residual viable tumor cells after ablation at the tumor periphery serve as the source for tumor recurrence, leading to treatment failure. Purpose: To develop a novel three-dimensional (3D) multi-modal perfusion-thermal electrode system completely eradicating medium-to-large malignancies. Materials and Methods: This study included five steps: (i) design of the new system; (ii) production of the new system; (iii) ex vivo evaluation of its perfusion-thermal functions; (iv) mathematic modeling and computer simulation to confirm the optimal temperature profiles during the thermal ablation process, and; (v) in vivo technical validation using five living rabbits with orthotopic liver tumors. Results: In ex vivo experiments, gross pathology and optical imaging demonstrated the successful spherical distribution/deposition of motexafin gadolinium administered through the new electrode, with a temperature gradient from the electrode core at 80 °C to its periphery at 42 °C. An excellent repeatable correlation of temperature profiles at varying spots, from the center to periphery of the liver tumor, was found between the mathematic simulation and actual animal tumor models (Pearson coefficient ≥0.977). For in vivo validation, indocyanine green (ICG) was directly delivered into the peritumoral zones during simultaneous generation of central tumoral lethal radiofrequency (RF) heat (>60 °C) and peritumoral sublethal RF hyperthermia (<60 °C). Both optical imaging and fluorescent microscopy confirmed successful peritumoral ICG distribution/deposition with increased heat shock protein 70 expression. Conclusion: This new 3D, perfusion-thermal electrode system provided the evidence on the potential to enable simultaneous delivery of therapeutic agents and RF hyperthermia into the difficult-to-treat peritumoral zones, creating a new strategy to address the critical limitation, i.e., the high incidence of residual and recurrent tumor following thermal ablation of unresectable medium-to-large and irregular tumors.
Collapse
Affiliation(s)
- Hui Zheng
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Peicheng Li
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ruidong Ma
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Feng Zhang
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hongxiu Ji
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, Overlake Medical Center and Incyte Diagnosticsm, Bellevue, WA 98004, USA
| | - Wayne L. Monsky
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Evan Johnson
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Weizhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Caifang Ni
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Xiaoming Yang
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
16
|
Mo A, Velten C, Jiang JM, Tang J, Ohri N, Kalnicki S, Mirhaji P, Nemoto K, Aasman B, Garg M, Guha C, Brodin NP, Kabarriti R. Improving Adjuvant Liver-Directed Treatment Recommendations for Unresectable Hepatocellular Carcinoma: An Artificial Intelligence-Based Decision-Making Tool. JCO Clin Cancer Inform 2022; 6:e2200024. [PMID: 35671414 PMCID: PMC9225499 DOI: 10.1200/cci.22.00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Liver-directed therapy after transarterial chemoembolization (TACE) can lead to improvement in survival for selected patients with unresectable hepatocellular carcinoma (HCC). However, there is uncertainty in the appropriate application and modality of therapy in current clinical practice guidelines. The aim of this study was to develop a proof-of-concept, machine learning (ML) model for treatment recommendation in patients previously treated with TACE and select patients who might benefit from additional treatment with combination stereotactic body radiotherapy (SBRT) or radiofrequency ablation (RFA). METHODS This retrospective observational study was based on data from an urban, academic hospital system selecting for patients diagnosed with stage I-III HCC from January 1, 2008, to December 31, 2018, treated with TACE, followed by adjuvant RFA, SBRT, or no additional liver-directed modality. A feedforward, ML ensemble model provided a treatment recommendation on the basis of pairwise assessments evaluating each potential treatment option and estimated benefit in survival. RESULTS Two hundred thirty-seven patients met inclusion criteria, of whom 54 (23%) and 49 (21%) received combination of TACE and SBRT or TACE and RFA, respectively. The ML model suggested a different consolidative modality in 32.7% of cases among patients who had previously received combination treatment. Patients treated in concordance with model recommendations had significant improvement in progression-free survival (hazard ratio 0.5; P = .007). The most important features for model prediction were cause of cirrhosis, stage of disease, and albumin-bilirubin grade (a measure of liver function). CONCLUSION In this proof-of-concept study, an ensemble ML model was able to provide treatment recommendations for HCC who had undergone prior TACE. Additional treatment in line with model recommendations was associated with significant improvement in progression-free survival, suggesting a potential benefit for ML-guided medical decision making.
Collapse
Affiliation(s)
- Allen Mo
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Christian Velten
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY.,Institute for Onco-Physics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Julie M Jiang
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Justin Tang
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Nitin Ohri
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Shalom Kalnicki
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Parsa Mirhaji
- Department of Systems & Computational Biology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY.,Center for Health Data Innovation, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Kei Nemoto
- Center for Health Data Innovation, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Boudewijn Aasman
- Center for Health Data Innovation, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Madhur Garg
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY.,Institute for Onco-Physics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY.,Institute for Onco-Physics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
17
|
Ansari MY, Abdalla A, Ansari MY, Ansari MI, Malluhi B, Mohanty S, Mishra S, Singh SS, Abinahed J, Al-Ansari A, Balakrishnan S, Dakua SP. Practical utility of liver segmentation methods in clinical surgeries and interventions. BMC Med Imaging 2022; 22:97. [PMID: 35610600 PMCID: PMC9128093 DOI: 10.1186/s12880-022-00825-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical imaging (e.g., magnetic resonance imaging and computed tomography) is a crucial adjunct for clinicians, aiding in the diagnosis of diseases and planning of appropriate interventions. This is especially true in malignant conditions such as hepatocellular carcinoma (HCC), where image segmentation (such as accurate delineation of liver and tumor) is the preliminary step taken by the clinicians to optimize diagnosis, staging, and treatment planning and intervention (e.g., transplantation, surgical resection, radiotherapy, PVE, embolization, etc). Thus, segmentation methods could potentially impact the diagnosis and treatment outcomes. This paper comprehensively reviews the literature (during the year 2012-2021) for relevant segmentation methods and proposes a broad categorization based on their clinical utility (i.e., surgical and radiological interventions) in HCC. The categorization is based on the parameters such as precision, accuracy, and automation.
Collapse
|
18
|
Minami Y, Takaki H, Yamakado K, Kudo M. How Compatible Are Immune Checkpoint Inhibitors and Thermal Ablation for Liver Metastases? Cancers (Basel) 2022; 14:cancers14092206. [PMID: 35565338 PMCID: PMC9103121 DOI: 10.3390/cancers14092206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although immune checkpoint inhibitors (ICIs) have achieved great progression in cancer treatment, the efficacy of ICI monotherapy is still limited. Meanwhile, the negative efficacy of thermal ablation for liver metastases is the high rate of local tumor progression. Since thermal ablation-induced inflammation and increases in tumor antigens have been suggested to promote the cancer-immunity cycle, thermal ablation and ICI can boost the immune response against cancer cells as one of the positive synergy effects. The findings of preclinical and clinical research have provided supportive evidence for the combination of ICIs with thermal ablation reversing T-cell exhaustion and demonstrating synergy. However, the clinical feasibility of immune response activation by combination therapy with ICI monotherapy and thermal ablation appears to be limited, it may be not very common phenomena. Abstract Cancer immunotherapy, which reactivates the weakened immune cells of cancer patients, has achieved great success, and several immune checkpoint inhibitors (ICIs) are now available in clinical practice. Despite promising clinical outcomes, favorable responses are only observed in a fraction of patients, and resistance mechanisms, including the absence of tumor antigens, have been reported. Thermal ablation involves the induction of irreversible damage to cancer cells by localized heat and may result in the release of tumor antigens. The combination of immunotherapy and thermal ablation is an emerging therapeutic option with enhanced efficacy. Since thermal ablation-induced inflammation and increases in tumor antigens have been suggested to promote the cancer-immunity cycle, the combination of immuno-oncology (IO) therapy and thermal ablation may be mutually beneficial. In preclinical and clinical studies, the combination of ICI and thermal ablation significantly inhibited tumor growth, and synergistic antitumor effects appeared to prolong the survival of patients with secondary liver cancer. However, evidence for the efficacy of ICI monotherapy combined with thermal ablation is currently insufficient. Therefore, the clinical feasibility of immune response activation by ICI monotherapy combined with thermal ablation may be limited, and thermal ablation may be more compatible with dual ICIs (the IO–IO combination) to induce strong immune responses.
Collapse
Affiliation(s)
- Yasunori Minami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-366-0221 (ext. 3525); Fax: +81-72-367-2880
| | - Haruyuki Takaki
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa Nishinomiya, Nishinomiya 663-8501, Japan; (H.T.); (K.Y.)
| | - Koichiro Yamakado
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa Nishinomiya, Nishinomiya 663-8501, Japan; (H.T.); (K.Y.)
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi Osaka-Sayama, Osaka 589-8511, Japan;
| |
Collapse
|
19
|
Zheng H, Zhang F, Monsky W, Ji H, Yang W, Yang X. Interventional Optical Imaging-Monitored Synergistic Effect of Radio-Frequency Hyperthermia and Oncolytic Immunotherapy. Front Oncol 2022; 11:821838. [PMID: 35141157 PMCID: PMC8818682 DOI: 10.3389/fonc.2021.821838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose To develop a new interventional oncology technique using indocyanine green (ICG)-based interventional optical imaging (OI) to monitor the synergistic effect of radiofrequency hyperthermia (RFH)-enhanced oncolytic immunotherapy. Materials and Methods This study included (1) optimization of ICG dose and detection time-window for intracellular uptake by VX2 tumor cells; (2) in-vitro confirmation of capability of using ICG-based OI to assess efficacy of RFH-enhanced oncolytic therapy (LTX-401) for VX2 cells; and (3) in-vivo validation of the interventional OI-monitored, intratumoral RFH-enhanced oncolytic immunotherapy using rabbit models with orthotopic liver VX2 tumors. Both in-vitro and in-vivo experiments were divided into four study groups (n=6/group) with different treatments: (1) combination therapy of RFH+LTX-401; (2) RFH alone at 42°C for 30 min; (3) oncolytic therapy with LTX-401; and (4) control with saline. For in-vivo validation, orthotopic hepatic VX2 tumors were treated using a new multi-functional perfusion-thermal radiofrequency ablation electrode, which enabled simultaneous delivery of both LTX-401 and RFH within the tumor and at the tumor margins. Results In in-vitro experiments, taking up of ICG by VX2 cells was linearly increased from 0 μg/mL to 100 μg/mL, while ICG-signal intensity (SI) reached the peak at 24 hours. MTS assay and apoptosis analysis demonstrated the lowest cell viability and highest apoptosis in combination therapy, compared to three monotherapies (P<0.005). In in-vivo experiments, ultrasound imaging detected the smallest relative tumor volume for the combination therapy, compared to other monotherapies (P<0.005). In both in-vitro and in-vivo experiments, ICG-based interventional optical imaging detected a significantly decreased SI in combination therapy (P<0.005), which was confirmed by the “gold standard” optical/X-ray imaging (P<0.05). Pathologic/laboratory examinations further confirmed the significantly decreased cell proliferation with Ki-67 staining, significantly increased apoptotic index with TUNEL assay, and significantly increased quantities of CD8 and CD80 positive cells with immunostaining in the combination therapy group, compared to other three control groups (P<0.005). Conclusions We present a new interventional oncology technique, interventional optical imaging-monitored RFH-enhanced oncolytic immunotherapy, which may open new avenues to effectively manage those patients with larger, irregular and unresectable malignancies, not only in liver but also the possibility in other organs.
Collapse
Affiliation(s)
- Hui Zheng
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Zhang
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Wayne Monsky
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Hongxiu Ji
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, Overlake Medical Center and Incyte Diagnostics, Bellevue, WA, United States
| | - Weizhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Yang
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Xiaoming Yang,
| |
Collapse
|
20
|
Image-guided locoregional non-intravascular interventional treatments for hepatocellular carcinoma: Current status. J Interv Med 2021; 4:1-7. [PMID: 34805939 PMCID: PMC8562266 DOI: 10.1016/j.jimed.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly and frequent cancers worldwide, although great advancement in the treatment of this malignancy have been made within the past few decades. It continues to be a major health issue due to an increasing incidence and a poor prognosis. The majority of patients have their HCC diagnosed at an intermediate or advanced stage in theUSA or China. Curative therapy such as surgical resection or liver transplantation is not considered anoption of treatment at these stages. Transarterial chemoembolization (TACE), the most widely used locoregional therapeutic approach, used to be the mainstay of treatment for cases with unresectable cancer entities. However, for those patients with hypovascular tumors or impaired liver function reserve, TACE is a suboptimal treatment option. For example, embolization does not result in complete coverage of a hypovascular tumor, and may rather promotes postoperative tumor recurrence, or leave residual tumor, in these TACE-resistance patients. In addition, TACE carries a higher risk of hepatic decompensation in patients with poor liver function or reserve. Non-vascular interventional locoregional therapies for HCC include radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), laser-induced thermotherapy (LITT), cryosurgical ablation (CSA), irreversible Electroporation (IRE), percutaneous ethanol injection (PEI), and brachytherapy. Recent advancements in these techniques have significantly improved the treatment efficacy of HCC and expanded the population of patients who qualify for treatment. This review embraces the current status of imaging-guided locoregional non-intravascular interventional treatments for HCCs, with a primary focus on the clinical evaluation and assessment of the efficacy of combined therapies using these interventional techniques.
Collapse
|
21
|
Kho ASK, Ooi EH, Foo JJ, Ooi ET. How does saline backflow affect the treatment of saline-infused radiofrequency ablation? COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106436. [PMID: 34601185 DOI: 10.1016/j.cmpb.2021.106436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Saline infusion is applied together with radiofrequency ablation (RFA) to enlarge the ablation zone. However, one of the issues with saline-infused RFA is backflow, which spreads saline along the insertion track. This raises the concern of not only thermally ablating the tissue within the backflow region, but also the loss of saline from the targeted tissue, which may affect the treatment efficacy. METHODS In the present study, 2D axisymmetric models were developed to investigate how saline backflow influence saline-infused RFA and whether the aforementioned concerns are warranted. Saline-infused RFA was described using the dual porosity-Joule heating model. The hydrodynamics of backflow was described using Poiseuille law by assuming the flow to be similar to that in a thin annulus. Backflow lengths of 3, 4.5, 6 and 9 cm were considered. RESULTS Results showed that there is no concern of thermally ablating the tissue in the backflow region. This is due to the Joule heating being inversely proportional to distance from the electrode to the fourth power. Results also indicated that larger backflow lengths led to larger growth of thermal damage along the backflow region and greater decrease in coagulation volume. Hence, backflow needs to be controlled to ensure an effective treatment of saline-infused RFA. CONCLUSIONS There is no risk of ablating tissues around the needle insertion track due to backflow. Instead, the risk of underablation as a result of the loss of saline due to backflow was found to be of greater concern.
Collapse
Affiliation(s)
- Antony S K Kho
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Ji J Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| |
Collapse
|
22
|
Wang F, Numata K, Takeda A, Ogushi K, Fukuda H, Nihonmatsu H, Hara K, Chuma M, Tsurugai Y, Maeda S. Optimal application of stereotactic body radiotherapy and radiofrequency ablation treatment for different multifocal hepatocellular carcinoma lesions in patients with Barcelona Clinic Liver Cancer stage A4-B1: a pilot study. BMC Cancer 2021; 21:1169. [PMID: 34717577 PMCID: PMC8557576 DOI: 10.1186/s12885-021-08897-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In clinical practice, many hepatocellular carcinoma (HCC) patients in Barcelona Clinical Liver Cancer (BCLC) stage A4-B1 cannot receive the curative treatments of liver transplantation, resection, and radiofrequency ablation (RFA), which are the recommended options according to liver cancer guidelines. Our aim is to study the feasibility of RFA and stereotactic body radiotherapy (SBRT) as a curative treatment for different multifocal HCCs in BCLC stage A4-B1 patients. METHODS From September 2014 to August 2019, 39 multifocal HCC lesions (median diameter: 16.6 mm) from 15 patients (median age: 73 years) were retrospectively selected. Among them, 23 were treated by RFA and the other 16 by SBRT because of predictable insufficiency and/or risk related to RFA performance. The indicators for evaluating this novel therapy were the tumor response, prognosis (recurrence and survival), and adverse effects (deterioration of laboratory test values and severe complications). RESULTS The median follow-up duration was 31.3 months (range: 15.1-71.9 months). The total patients with a one-year complete response, stable disease, or disease progression were 11, 1, and 3, respectively. In total, 8 and 2 patients had confronted intrahepatic or local recurrence, respectively. The one-year progression-free survival rate and local control rate were 80% (12/15 patients) and 97.4% (38/39 lesions), respectively. The median time to progression was 20.1 (2.8-45.1) months. The one- and two-year survival rates were 100 and 88.9%, respectively. In up to five months' observation, no patient showed severe complications. Seven, four, and two patients had slight changes in their white blood cells, platelet count, or albumin-bilirubin grade, respectively. CONCLUSIONS For patients with BCLC stage A4-B1, RFA and SBRT treatment for different multifocal HCCs may be a potential option because of the favorable prognosis and safety. However, before its application in clinical practice, prospective, controlled, large-scale studies are needed to further confirm our conclusions.
Collapse
Affiliation(s)
- Feiqian Wang
- Ultrasound Department, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan.
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, 247-0056, Japan
| | - Katsuaki Ogushi
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Hiroyuki Fukuda
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Hiromi Nihonmatsu
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Koji Hara
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Yuichirou Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, 247-0056, Japan
| | - Shin Maeda
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
23
|
Sánchez-Margallo JA, Tas L, Moelker A, van den Dobbelsteen JJ, Sánchez-Margallo FM, Langø T, van Walsum T, van de Berg NJ. Block-matching-based registration to evaluate ultrasound visibility of percutaneous needles in liver-mimicking phantoms. Med Phys 2021; 48:7602-7612. [PMID: 34665885 PMCID: PMC9298012 DOI: 10.1002/mp.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To present a novel methodical approach to compare visibility of percutaneous needles in ultrasound images. Methods A motor‐driven rotation platform was used to gradually change the needle angle while capturing image data. Data analysis was automated using block‐matching‐based registration, with a tracking and refinement step. Every 25 frames, a Hough transform was used to improve needle alignments after large rotations. The method was demonstrated by comparing three commercial needles (14G radiofrequency ablation, RFA; 18G Trocar; 22G Chiba) and six prototype needles with different sizes, materials, and surface conditions (polished, sand‐blasted, and kerfed), within polyvinyl alcohol phantom tissue and ex vivo bovine liver models. For each needle and angle, a contrast‐to‐noise ratio (CNR) was determined to quantify visibility. CNR values are presented as a function of needle type and insertion angle. In addition, the normalized area under the (CNR‐angle) curve was used as a summary metric to compare needles. Results In phantom tissue, the first kerfed needle design had the largest normalized area of visibility and the polished 1 mm diameter stainless steel needle the smallest (0.704 ± 0.199 vs. 0.154 ± 0.027, p < 0.01). In the ex vivo model, the second kerfed needle design had the largest normalized area of visibility, and the sand‐blasted stainless steel needle the smallest (0.470 ± 0.190 vs. 0.127 ± 0.047, p < 0.001). As expected, the analysis showed needle visibility peaks at orthogonal insertion angles. For acute or obtuse angles, needle visibility was similar or reduced. Overall, the variability in needle visibility was considerably higher in livers. Conclusion The best overall visibility was found with kerfed needles and the commercial RFA needle. The presented methodical approach to quantify ultrasound visibility allows comparisons of (echogenic) needles, as well as other technological innovations aiming to improve ultrasound visibility of percutaneous needles, such as coatings, material treatments, and beam steering approaches.
Collapse
Affiliation(s)
- Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Lisette Tas
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Adriaan Moelker
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Theo van Walsum
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Nick J van de Berg
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Interventional real-time optical imaging guidance for complete tumor ablation. Proc Natl Acad Sci U S A 2021; 118:2113028118. [PMID: 34611022 DOI: 10.1073/pnas.2113028118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop an interventional optical imaging (OI) technique for intraprocedural guidance of complete tumor ablation. Our study employed four strategies: 1) optimizing experimental protocol of various indocyanine green (ICG) concentrations/detection time windows for ICG-based OI of tumor cells (ICG cells); 2) using the optimized OI to evaluate ablation-heat effect on ICG cells; 3) building the interventional OI system and investigating its sensitivity for differentiating residual viable tumors from nonviable tumors; and 4) preclinically validating its technical feasibility for intraprocedural monitoring of radiofrequency ablations (RFAs) using animal models with orthotopic hepatic tumors. OI signal-to-background ratios (SBRs) among preablation tumors, residual, and ablated tumors were statistically compared and confirmed by subsequent pathology. The optimal dose and detection time window for ICG-based OI were 100 μg/mL at 24 h. Interventional OI displayed significantly higher fluorescence signals of viable ICG cells compared with nonviable ICG cells (189.3 ± 7.6 versus 63.7 ± 5.7 au, P < 0.001). The interventional OI could differentiate three definitive zones of tumor, tumor margin, and normal surrounding liver, demonstrating significantly higher average SBR of residual viable tumors compared to ablated nonviable tumors (2.54 ± 0.31 versus 0.57 ± 0.05, P < 0.001). The innovative interventional OI technique permitted operators to instantly detect residual tumors and thereby guide repeated RFAs, ensuring complete tumor eradication, which was confirmed by ex vivo OI and pathology. In conclusion, we present an interventional oncologic technique, which should revolutionize the current ablation technology, leading to a significant advancement in complete treatment of larger or irregular malignancies.
Collapse
|
25
|
Xu H, Schmidt R, Hamm CA, Schobert IT, He Y, Böning G, Jonczyk M, Hamm B, Gebauer B, Savic LJ. Comparison of intrahepatic progression patterns of hepatocellular carcinoma and colorectal liver metastases following CT-guided high dose-rate brachytherapy. Ther Adv Med Oncol 2021; 13:17588359211042304. [PMID: 34539817 PMCID: PMC8442486 DOI: 10.1177/17588359211042304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Given the metachronous and multifocal occurrence of hepatocellular carcinoma
(HCC) and colorectal cancer metastases in the liver (CRLM), this study aimed
to compare intrahepatic progression patterns after computed tomography
(CT)-guided high dose-rate brachytherapy. Patients and methods: This retrospective analysis included 164 patients (114 HCC, 50 CRLM) treated
with brachytherapy between January 2016 and January 2018. Patients received
multiparametric magnetic resonance imaging (MRI) before, and about 8 weeks
after brachytherapy, then every 3 months for the first, and every 6 months
for the following years, until progression or death. MRI scans were assessed
for local or distant intrahepatic tumor progression according to RECIST 1.1
and electronic medical records were reviewed prior to therapy. The primary
endpoint was progression-free survival (PFS). Specifically, local and
distant intra-hepatic PFS were assessed to determine differences between the
intrahepatic progression patterns of HCC and CRLM. Secondary endpoints
included the identification of predictors of PFS, time to progression (TTP),
and overall survival (OS). Statistics included Kaplan–Meier analysis and
univariate and multivariate Cox regression modeling. Results: PFS was longer in HCC [11.30 (1.33–35.37) months] than in CRLM patients [8.03
(0.73–19.80) months, p = 0.048], respectively.
Specifically, local recurrence occurred later in HCC [PFS: 36.83
(1.33–40.27) months] than CRLM patients [PFS: 12.43 (0.73–21.90) months,
p = 0.001]. In contrast, distant intrahepatic
progression occurred earlier in HCC [PFS: 13.50 (1.33–27.80) months] than in
CRLM patients [PFS: 19.80 (1.43–19.80) months, p = 0.456]
but without statistical significance. Multivariate Cox regression confirmed
tumor type and patient age as independent predictors for PFS. Conclusion: Brachytherapy proved to achieve better local tumor control and overall PFS in
patients with unresectable HCC as compared to those with CRLM. However,
distant progression preceded local recurrence in HCC. As a result, these
findings may help design disease-specific surveillance strategies and
personalized treatment planning that highlights the strengths of
brachytherapy. They may also help elucidate the potential benefits of
combinations with other loco-regional or systemic therapies.
Collapse
Affiliation(s)
- Han Xu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Robin Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Charlie Alexander Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Isabel Theresa Schobert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Yubei He
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Georg Böning
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Martin Jonczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Bernhard Gebauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Lynn Jeanette Savic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
26
|
Kan X, Zhou G, Zhang F, Ji H, Zheng H, Chick JFB, Valji K, Zheng C, Yang X. Interventional Optical Imaging Permits Instant Visualization of Pathological Zones of Ablated Tumor Periphery and Residual Tumor Detection. Cancer Res 2021; 81:4594-4602. [PMID: 34244237 DOI: 10.1158/0008-5472.can-21-1040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
Optical imaging (OI) provides real-time clinical imaging capability and simultaneous molecular, morphological, and functional information of disease processes. In this study, we present a new interventional OI technique, which enables in vivo visualization of three distinct pathologic zones of ablated tumor periphery for immediate detection of residual tumors during a radiofrequency ablation (RFA) session. Rabbits with orthotopic hepatic tumors were divided into two groups (n = 8/group): incomplete RFA and complete RFA. Indocyanine green-based interventional OI was used to differentiate three pathological zones: ablated tumor, transition margin, and residual tumor or surrounding normal liver-with quantitative comparison of signal-to-background ratios among the three zones and between incompletely and completely ablated tumors. Subsequent ex vivo OI and pathologic correlation were performed to confirm the findings of interventional OI. Interventional OI could differentiate incompletely or completely ablated tumor peripheries, thus permitting identification of residual tumor. This technique may open new avenues for immediate assessment of tumor eradication during a single interventional ablation session. SIGNIFICANCE: Interventional optical imaging can instantly visualize pathologic zones of ablated tumor peripheries to detect residual tumors, which could revolutionize current image-guided interventional oncologic ablation techniques.
Collapse
Affiliation(s)
- Xuefeng Kan
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhui Zhou
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Hongxiu Ji
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Hui Zheng
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jeffrey Forris Beecham Chick
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Karim Valji
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
27
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
28
|
Annular Fiber Probe for Interstitial Illumination in Photoacoustic Guidance of Radiofrequency Ablation. SENSORS 2021; 21:s21134458. [PMID: 34209996 PMCID: PMC8271966 DOI: 10.3390/s21134458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Unresectable liver tumors are commonly treated with percutaneous radiofrequency ablation (RFA). However, this technique is associated with high recurrence rates due to incomplete tumor ablation. Accurate image guidance of the RFA procedure contributes to successful ablation, but currently used imaging modalities have shortcomings in device guidance and treatment monitoring. We explore the potential of using photoacoustic (PA) imaging combined with conventional ultrasound (US) imaging for real-time RFA guidance. To overcome the low penetration depth of light in tissue, we have developed an annular fiber probe (AFP), which can be inserted into tissue enabling interstitial illumination of tissue. The AFP is a cannula with 72 optical fibers that allows an RFA device to slide through its lumen, thereby enabling PA imaging for RFA device guidance and ablation monitoring. We show that the PA signal from interstitial illumination is not affected by absorber-to-surface depth compared to extracorporeal illumination. We also demonstrate successful imaging of the RFA electrodes, a blood vessel mimic, a tumor-mimicking phantom, and ablated liver tissue boundaries in ex vivo chicken and bovine liver samples. PA-assisted needle guidance revealed clear needle tip visualization, a notable improvement to current US needle guidance. Our probe shows potential for RFA device guidance and ablation detection, which potentially aids in real-time monitoring.
Collapse
|
29
|
Chen LC, Lin HY, Hung SK, Chiou WY, Lee MS. Role of modern radiotherapy in managing patients with hepatocellular carcinoma. World J Gastroenterol 2021; 27:2434-2457. [PMID: 34092968 PMCID: PMC8160620 DOI: 10.3748/wjg.v27.i20.2434] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Several treatment options are available for managing HCC patients, classified roughly as local, local-regional, and systemic therapies. The high post-monotherapy recurrence rate of HCC urges the need for the use of combined modalities to increase tumor control and patient survival. Different international guidelines offer treatment recommendations based on different points of view and classification systems. Radiotherapy (RT) is a well-known local-regional treatment modality for managing many types of cancers, including HCC. However, only some of these treatment guidelines include RT, and the role of combined modalities is rarely mentioned. Hence, the present study reviewed clinical evidence for the use of different combined modalities in managing HCC, focusing on modern RT's role. Modern RT has an increased utility in managing HCC patients, mainly due to two driving forces. First, technological advancement (e.g., stereotactic body radiotherapy and advanced proton-beam therapy) enables precise delivery of radiation to increase tumor control and reduce side effects in the surrounding normal tissue. Second, the boom in developing target therapies and checkpoint-blockade immunotherapy prolongs overall survival in HCC patients, re-emphasizing the importance of local tumor control. Remarkably, RT combines with systemic therapies to generate the systemic therapy augmented by radiotherapy effect, a benefit now being actively investigated.
Collapse
Affiliation(s)
- Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
30
|
Hyperspectral image-based analysis of thermal damage for ex-vivo bovine liver utilizing radiofrequency ablation. Surg Oncol 2021; 38:101564. [PMID: 33865183 DOI: 10.1016/j.suronc.2021.101564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/23/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & OBJECTIVE Thermal ablation is the predominant methodology to treat liver tumors for segregating patients who are not permitted to have surgical intervention. However, noticing or predicting the size of the thermal strategies is a challenging endeavor. We aim to analyze the effects of ablation district volume following radiofrequency ablation (RFA) of ex-vivo liver exploiting a custom Hyperspectral Imaging (HSI) system. MATERIALS AND METHODS RFA was conducted on the ex-vivo bovine liver at focal and peripheral blood vessel sites and observed by Custom HSI system, which has been designed to assess the exactness and proficiency using visible and near-infrared wavelengths region for tissue thermal effect. The experiment comprised up to ten trials with RFA. The experiment was carried out in two stages to assess the percentage of the thermal effect on the investigated sample superficially and for the side penetration effect. Measuring the diffuse reflectance (Ŗd) of the sample to identify the spectral reflectance shift which could differentiate between normal and ablated tissue exploiting the designed cross-correlation algorithm for monitoring of thermal ablation. RESULTS Determination of the diffuse reflection (Ŗd) spectral signature responses from normal, thermal effected, and thermal ablation regions of the investigated liver sample. Where the ideal wavelength range at (600-640 nm) could discriminate between these different regions. Then, exploited the converted RGB image of the HS liver tissue after RFA for more validations which shows that the optimum wavelength for differentiation at (530-560 nm and 600-640 nm). Finally, applying statistical analysis to validate our results presenting that wavelength 600 nm had the highest standard deviation (δ) to differentiate between various thermally affected regions regarding the normal tissue and wavelength 640 nm shows the highest (δ) to differentiate between the ablated and normal regions. CONCLUSION The designed and implemented medical imaging system incorporated the hyperspectral camera capabilities with the associate cross-correlation algorithm that could successfully distinguish between the ablated and thermally affected regions to assist the surgery during the tumor therapy.
Collapse
|
31
|
Tong J, Liu P, Ji M, Wang Y, Xue Q, Yang JJ, Zhou CM. Machine Learning Can Predict Total Death After Radiofrequency Ablation in Liver Cancer Patients. Clin Med Insights Oncol 2021; 15:11795549211000017. [PMID: 33854400 PMCID: PMC8013536 DOI: 10.1177/11795549211000017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/07/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Over 1 million new cases of hepatocellular carcinoma (HCC) are diagnosed worldwide every year. Its prognosis remains poor, and the 5-year survival rate in all disease stages is estimated to be between 10% and 20%. Radiofrequency ablation (RFA) has become an important local treatment for liver cancer, and machine learning (ML) can provide many shortcuts for liver cancer medical research. Therefore, we explore the role of ML in predicting the total mortality of liver cancer patients undergoing RFA. METHODS This study is a secondary analysis of public database data from 578 liver cancer patients. We used Python for ML to establish the prognosis model. RESULTS The results showed that the 5 most important factors were platelet count (PLT), Alpha-fetoprotein (AFP), age, tumor size, and total bilirubin, respectively. Results of the total death model for liver cancer patients in test group: among the 5 algorithm models, the highest accuracy rate was that of gbm (0.681), followed by the Logistic algorithm (0.672); among the 5 algorithms, area under the curve (AUC) values, from high to low, were Logistic (0.738), DecisionTree (0.723), gbm (0.717), GradientBoosting (0.714), and Forest (0.693); Among the 5 algorithms, gbm had the highest precision rate (0.721), followed by the Logistic algorithm (0.714). Among the 5 algorithms, DecisionTree had the highest recall rate (0.642), followed by the GradientBoosting algorithm (0.571). CONCLUSION Machine learning can predict total death after RFA in liver cancer patients. Therefore, ML research has great potential for both personalized treatment and prognosis of liver cancer.
Collapse
Affiliation(s)
- Jianhua Tong
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhuo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Xue
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng-Mao Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Qian K, Chen M, Zhang F, Chick JFB, Ji H, Zheng C, Yang X. Image-Guided Radiofrequency Hyperthermia (RFH)-Enhanced Direct Chemotherapy of Hepatic Tumors: The Underlying Biomolecular Mechanisms. Front Oncol 2021; 10:610543. [PMID: 33585231 PMCID: PMC7878973 DOI: 10.3389/fonc.2020.610543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the treatment effect of radiofrequency-induced hyperthermia (RFH) combined with intra-tumoral chemotherapy for rabbit VX2 liver tumors and explore the underlying mechanism that drives local hyperthermia-enhanced chemotherapy. Materials and Methods VX2 cell lines and rabbits with liver VX2 tumors were randomly allocated to four treatment groups including: (1) combination therapy of Doxorubicin (DOX) plus hyperthermia/RFH (n=6); (2) DOX only; (3) hyperthermia/RFH only (n=6); and (4) phosphate-buffered saline-treated control (n=6). Cell viability and doxorubicin uptake by VX2 tumor cells were assayed using flow cytometry and fluorescence microscopy 24 h after treatments. Western blot was used to evaluate the expression level of heat shock protein 70 (HSP70) in tumor cells and tissues. For the harvested VX2 tumors, fluorescence microscopy was used to evaluate the distribution and penetration of doxorubicin in tumor tissues and HSP70 expression was analyzed by Western blot and immunohistochemistry. Results RFH enhanced the chemotherapeutic effect of doxorubicin in VX2 cells and rabbit liver VX2 tumors resulting in higher apoptosis and lower cell viability. Flowcytometry of VX2 cells showed more apoptotic cells in combination therapy of hyperthermia and DOX, compared with other three groups in-vitro experiments (45.80 ± 1.27% vs 20.66 ± 0.71%, vs 15.16 ± 0.81% and 0.62 ± 0.06%, respectively, p<0.01). The quantitative analysis by Western blot and immunohistochemistry showed increased expression of HSP70 in both VX2 tumor cells (1.28 ± 0.13 vs 0.64 ± 0.13 vs 0.83 ± 0.10 vs 0.15 ± 0.03, respectively, p<0.05) and tumors (1.47 ± 0.13 vs 0.51 ± 0.13 vs 0.74 ± 0.11 vs 0.16 ± 0.04, respectively, p <0.01). Fluorescence microscopy showed increased uptake of DOX in tumor cells in the combination therapy group. Conclusions RFH/hyperthermia enhanced the chemotherapeutic effect of DOX in VX2 tumors by promoting the uptake of DOX and the expression HSP70 in tumors.
Collapse
Affiliation(s)
- Kun Qian
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjiang Chen
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Feng Zhang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jeffrey Forris Beecham Chick
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Hongxiu Ji
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
33
|
Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field. Front Med 2020; 15:170-177. [PMID: 33185811 DOI: 10.1007/s11684-020-0747-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Nanosecond pulsed electric field (nsPEF) is a novel, nonthermal, and minimally invasive modality that can ablate solid tumors by inducing apoptosis. Recent animal experiments show that nsPEF can induce the immunogenic cell death of hepatocellular carcinoma (HCC) and stimulate the host's immune response to kill residual tumor cells and decrease distant metastatic tumors. nsPEF-induced immunity is of great clinical importance because the nonthermal ablation may enhance the immune memory, which can prevent HCC recurrence and metastasis. This review summarized the most advanced research on the effect of nsPEF. The possible mechanisms of how locoregional nsPEF ablation enhances the systemic anticancer immune responses were illustrated. nsPEF stimulates the host immune system to boost stimulation and prevail suppression. Also, nsPEF increases the dendritic cell loading and inhibits the regulatory responses, thereby improving immune stimulation and limiting immunosuppression in HCC-bearing hosts. Therefore, nsPEF has excellent potential for HCC treatment.
Collapse
|
34
|
Role of saline concentration during saline-infused radiofrequency ablation: Observation of secondary Joule heating along the saline-tissue interface. Comput Biol Med 2020; 128:104112. [PMID: 33212331 DOI: 10.1016/j.compbiomed.2020.104112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/17/2023]
Abstract
Infusion of saline prior to radiofrequency ablation (RFA) is known to enlarge the thermal coagulation zone. The abundance of ions in saline elevate the electrical conductivity of the saline-saturated region. This promotes greater electric current flow inside the tissue, which increases the amount of RF energy deposition and subsequently enlarges the coagulation zone. In theory, infusion of higher concentration of saline should lead to larger coagulation zone due to the greater number of ions. Nevertheless, existing studies on the effects of concentration on saline-infused RFA have been conflicting, with the exact role of saline concentration yet to be fully elucidated. In this paper, computational models of saline-infused RFA were developed to investigate the role of saline concentration on the outcome of saline-infused RFA. The elevation in tissue electrical conductivity was modelled using the microscopic mixture model, while RFA was modelled using the coupled dual porosity-Joule heating model. Results obtained indicated that the presence of a concentration threshold to which no further elevation in tissue electrical conductivity and enlargement in thermal coagulation can occur. This threshold was determined to be at 15% NaCl. Analysis of the Joule heating distribution revealed the presence of a secondary Joule heating site located along the interface between wet and dry tissue. This secondary Joule heating was responsible for the enlargement in coagulation volume and its rapid growth phase during ablation.
Collapse
|
35
|
Feretis M, Wang Y, Zhang B, Liau SS. Biliary cooling during radiofrequency ablation of liver tumours close to central biliary tree: A systematic review and pooled analysis. Eur J Surg Oncol 2020; 47:743-747. [PMID: 33023797 DOI: 10.1016/j.ejso.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/09/2020] [Accepted: 09/26/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Biliary cooling during radiofrequency ablation (RFA) of liver tumour has been proposed as a protective measure for RFA-related biliary complications in cases whereby the RFA site is close to central biliary tree. This systematic review aims to assess the effect of biliary cooling during RFA on: 1) the development of biliary complications and 2) tumour recurrence rates at ablation site. METHODOLOGY A systematic literature search was performed using the PubMed/EMBASE databases using PRISMA methodology (2000-2019). The initial search yielded 75 reports which were potentially suitable for inclusion. Studies reporting at least one outcome of interest were considered to be suitable for inclusion. Conference abstracts, case reports and animal studies were excluded. Data was retrieved from each study on patient demographics, tumour characteristics, method of cooling, biliary complications, local tumour recurrence and duration of follow-up. RESULTS The final number of studies which met the inclusion criteria was 7, involving 100 patients. There were no randomized controlled trials identified after the literature search. The mean age of the patients included was 65 years. Biliary cooling was performed with the use of a nasobiliary tube in 4 out of 7 studies, via a choledochal incision in 2 out of 7 studies and through the cystic duct in a single study. The overall biliary stricture rate was 2% and the overall tumour recurrence rate at RFA treated site was 14.5%. CONCLUSION Biliary complications appear to be low after biliary cooling during RFA close to central biliary tree. More evidence is required to assess the tumour recurrence rates.
Collapse
Affiliation(s)
- M Feretis
- Hepatopancreatobiliary (HPB) Surgical Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Y Wang
- Clinical School of Medicine, University of Cambridge, UK
| | - B Zhang
- Clinical School of Medicine, University of Cambridge, UK
| | - S-S Liau
- Hepatopancreatobiliary (HPB) Surgical Unit, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
36
|
Tissue characterization utilizing hyperspectral imaging for liver thermal ablation. Photodiagnosis Photodyn Ther 2020; 31:101899. [DOI: 10.1016/j.pdpdt.2020.101899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
|
37
|
Elboraey M, Devcic Z, Lewis AR, Ritchie CA, Frey GT, Paz-Fumagalli R, McKinney JM, Toskich BB. Transchondral access for irreversible electroporation of hepatocellular carcinoma. Radiol Case Rep 2020; 15:531-533. [PMID: 32153694 PMCID: PMC7058858 DOI: 10.1016/j.radcr.2020.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 11/24/2022] Open
Abstract
Ablative treatment for hepatocellular carcinoma is standard of care in selected settings and is endorsed by international societal guidelines. Centrally located hepatocellular carcinoma are difficult to treat due to their proximity to vasculature and central bile ducts. Irreversible electroporation is a nonthermal ablation modality that has been shown to preserve the extracellular matrix and is less likely to damage structures such as bile ducts and is not susceptible to vascular heat sink. Successful irreversible electroporation requires the parallel placement of probes which can be prevented by ribs or the sternum. This case report describes the use of the coaxial bone biopsy system to enable transchondral access and facilitate parallel placement of probes during irreversible electroporation IRE for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Zlatko Devcic
- Mayo Clinic Florida, 4500 San Pablo Street, Jacksonville 32224, FL, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kho ASK, Foo JJ, Ooi ET, Ooi EH. Shape-shifting thermal coagulation zone during saline-infused radiofrequency ablation: A computational study on the effects of different infusion location. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105289. [PMID: 31891903 DOI: 10.1016/j.cmpb.2019.105289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The majority of the studies on radiofrequency ablation (RFA) have focused on enlarging the size of the coagulation zone. An aspect that is crucial but often overlooked is the shape of the coagulation zone. The shape is crucial because the majority of tumours are irregularly-shaped. In this paper, the ability to manipulate the shape of the coagulation zone following saline-infused RFA by altering the location of saline infusion is explored. METHODS A 3D model of the liver tissue was developed. Saline infusion was described using the dual porosity model, while RFA was described using the electrostatic and bioheat transfer equations. Three infusion locations were investigated, namely at the proximal end, the middle and the distal end of the electrode. Investigations were carried out numerically using the finite element method. RESULTS Results indicated that greater thermal coagulation was found in the region of tissue occupied by the saline bolus. Infusion at the middle of the electrode led to the largest coagulation volume followed by infusion at the proximal and distal ends. It was also found that the ability to delay roll-off, as commonly associated with saline-infused RFA, was true only for the case when infusion is carried out at the middle. When infused at the proximal and distal ends, the occurrence of roll-off was advanced. This may be due to the rapid and more intense heating experienced by the tissue when infusion is carried out at the electrode ends where Joule heating is dominant. CONCLUSION Altering the location of saline infusion can influence the shape of the coagulation zone following saline-infused RFA. The ability to 'shift' the coagulation zone to a desired location opens up great opportunities for the development of more precise saline-infused RFA treatment that targets specific regions within the tissue.
Collapse
Affiliation(s)
- Antony S K Kho
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ji J Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| | - Ean H Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
39
|
Anttinen M, Yli-Pietilä E, Suomi V, Mäkelä P, Sainio T, Saunavaara J, Eklund L, Blanco Sequeiros R, Taimen P, Boström PJ. Histopathological evaluation of prostate specimens after thermal ablation may be confounded by the presence of thermally-fixed cells. Int J Hyperthermia 2020; 36:915-925. [PMID: 31466481 DOI: 10.1080/02656736.2019.1652773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Purpose: Prostate cancer can be eradicated with heat exposure. However, high and rapid temperature elevations may cause thermofixation giving the appearance of viable tissue. The purpose was to characterize the immunoprofile and evaluate the viability of prostate regions with suspected thermofixation. Methods and materials: A prospective, ethics-approved and registered study (NCT03350529) enrolled six patients with MRI-visible, biopsy-concordant prostate cancer to undergo lesion-targeted MRI-guided transurethral ultrasound ablation (TULSA) followed by radical prostatectomy at 3 weeks, to evaluate the accuracy and efficacy of TULSA with whole-mount histology as a reference standard. If ambiguity about complete necrosis within the ablated region remained after hematoxylin-eosin staining, viability was assessed by immunohistochemistry. Treatment day MRI-thermometry and 3-week contrast-enhanced MRI post-TULSA were examined to assess ablation success and correlation with histopathology. Results: One patient presented with an apparently viable subregion inside the ablated area, surrounded by necrosis on H&E staining, located where temperature was highest on MRI-thermometry and tissues completely devascularized on MRI. Immunoprofile of the apparently viable tissue revealed changes in staining patterns suggesting thermofixation; the most significant evidence was the negative cytokeratin 8 staining detected with Cam5.2 antibody. A comprehensive literature review supports these observations of thermofixation with similar findings in prostate and other tissues. Conclusion: Thermally-fixed cells can sustain morphology on H&E staining. Misinterpretation of treatment failure may occur, if this phenomenon is not recognized and immunohistochemistry performed. Based on the previous literature and the current study, Cam5.2 staining for cytokeratin 8 appears to be a practical and reliable tool for distinguishing thermally-fixed from viable cells.
Collapse
Affiliation(s)
- Mikael Anttinen
- Department of Urology, Turku University Hospital , Turku , Finland
| | | | - Visa Suomi
- Department of Diagnostic Radiology, University of Turku , Turku , Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital , Turku , Finland
| | - Pietari Mäkelä
- Department of Diagnostic Radiology, University of Turku , Turku , Finland
| | - Teija Sainio
- Department of Diagnostic Radiology, University of Turku , Turku , Finland
| | - Jani Saunavaara
- Department of Diagnostic Radiology, University of Turku , Turku , Finland
| | - Lauri Eklund
- Medical Imaging Centre of Southwest Finland, Turku University Hospital , Turku , Finland.,Institute of Biomedicine, University of Turku , Turku , Finland.,Department of Pathology, Turku University Hospital , Turku , Finland
| | | | - Pekka Taimen
- Institute of Biomedicine, University of Turku , Turku , Finland.,Department of Pathology, Turku University Hospital , Turku , Finland
| | - Peter J Boström
- Department of Urology, Turku University Hospital , Turku , Finland
| |
Collapse
|
40
|
Chen DD, Du YX, Chen ZB, Lang L, Ye Z, Yang Q, Shen SQ, Lei ZY, Zhang SQ. Computer modeling and in vitro experimental study of water-cooled microwave ablation array. MINIM INVASIV THER 2019; 30:12-20. [PMID: 31597487 DOI: 10.1080/13645706.2019.1674878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Microwaves (MWs) quickly deliver relatively high temperatures into tumors and cover a large ablation zone. We present a research protocol for using water-cooled double-needle MW ablation arrays for tumor ablation here. MATERIAL AND METHODS Our research program includes computer modeling, tissue-mimicking phantom experiments, and in vitro swine liver experiments. The computer modeling is based on the finite element method (FEM) to evaluate ablation temperature distributions. In tissue-mimicking phantom and in vitro swine liver ablation experiments, the performances of the new device and the single-needle MW device currently used in clinical practice are compared. RESULTS FEM shows that the maximum transverse ablation diameter (MTAD) is 4.2 cm at 100 W output and 300 s (assessed at the 50 °C isotherm). In the tissue-mimicking phantom, the MTDA is 2.6 cm at 50 W and 300 s in single-needle MW ablation, and 4 cm in double needle MW ablation array. In in vitro swine liver experiments, the MTAD is 2.820 ± 0.127 cm at 100 W and 300 s in single-needle MW ablation, and 3.847 ± 0.103 cm in MW ablation array. CONCLUSION A new type of water-cooled MW ablation array is designed and tested, and has potential advantages over currently used devices.
Collapse
Affiliation(s)
- Dui-Dui Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu-Xin Du
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-Bing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Liang Lang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China.,National Key Laboratory of Science and Technology on Multi-Spectral Information Processing, Huazhong University of Science and Technology, Wuhan, China
| | - Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shi-Qiang Shen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhen-Yu Lei
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Si-Qi Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Francis KJ, Manohar S. Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization. Phys Med Biol 2019; 64:184001. [PMID: 31357187 DOI: 10.1088/1361-6560/ab36a1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Percutaneous radiofrequency ablation (RFA) is gaining importance as a locoregional treatment for tumors in several organs including the liver, lung, kidney and bone. In RFA, the tumor is eradicated with the direct application of heat using alternating current through a needle electrode positioned under imaging guidance. Various imaging methods are used in the RFA ablation procedure but these have drawbacks. In this work, we introduce photoacoustic (PA) imaging as a new method with potential to visualize the targeting of RFA needle into a region of interest and to report on the extent of ablation achieved. We demonstrate the proof-of-concept in using PA imaging together with ultrasound imaging on ex vivo biological samples in the laboratory simulating relevant clinical scenarios in RFA. These include guidance of the RFA needle to target tissue, mapping of simulated blood vessels during needle insertion and differentiation between ablated and surrounding tissue. The results of this first investigation into the use of PA imaging to assist RFA procedures are encouraging. We discuss the challenges encountered, the scope for future work and envisaged clinical application.
Collapse
Affiliation(s)
- Kalloor Joseph Francis
- Biomedical Photonic Imaging Group and Multimodality Medical Imaging Group, Faculty of Science and Technology, Technical Medical Center, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | |
Collapse
|
42
|
van Rosmalen BV, Klompenhouwer AJ, de Graeff JJ, Haring MPD, de Meijer VE, Rifai L, Dokmak S, Rawashdeh A, Abu Hilal M, de Jong MC, Dejong CHC, Doukas M, de Man RA, IJzermans JNM, van Delden OM, Verheij J, van Gulik TM. Safety and efficacy of transarterial embolization of hepatocellular adenomas. Br J Surg 2019; 106:1362-1371. [PMID: 31313827 PMCID: PMC6771810 DOI: 10.1002/bjs.11213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular adenoma (HCA) larger than 5 cm in diameter has an increased risk of haemorrhage and malignant transformation, and is considered an indication for resection. As an alternative to resection, transarterial embolization (TAE) may play a role in prevention of complications of HCA, but its safety and efficacy are largely unknown. The aim of this study was to assess outcomes and postembolization effects of selective TAE in the management of HCA. METHODS This retrospective, multicentre cohort study included patients aged at least 18 years, diagnosed with HCA and treated with TAE. Patient characteristics, 30-day complications, tumour size before and after TAE, symptoms before and after TAE, and need for secondary interventions were analysed. RESULTS Overall, 59 patients with a median age of 33.5 years were included from six centres; 57 of the 59 patients were women. Median tumour size at time of TAE was 76 mm. Six of 59 patients (10 per cent) had a major complication (cyst formation or sepsis), which could be resolved with minimal therapy, but prolonged hospital stay. Thirty-four patients (58 per cent) were symptomatic at presentation. There were no significant differences in symptoms before TAE and symptoms evaluated in the short term (within 3 months) after TAE (P = 0·134). First follow-up imaging was performed a median of 5·5 months after TAE and showed a reduction in size to a median of 48 mm (P < 0·001). CONCLUSION TAE is safe, can lead to adequate size reduction of HCA and, offers an alternative to resection in selected patients.
Collapse
Affiliation(s)
- B V van Rosmalen
- Department of Surgery, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands
| | - A J Klompenhouwer
- Department of Surgery, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - J Jaap de Graeff
- Department of Surgery, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands
| | - M P D Haring
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, University Medical Centre Groningen, University of Groningen, Maastricht, the Netherlands
| | - V E de Meijer
- Division of Hepatopancreatobiliary Surgery and Liver Transplantation, University Medical Centre Groningen, University of Groningen, Maastricht, the Netherlands
| | - L Rifai
- Division of Hepatopancreatobiliary Surgery, Beaujon Hospital, University of Paris, Clichy, France
| | - S Dokmak
- Division of Hepatopancreatobiliary Surgery, Beaujon Hospital, University of Paris, Clichy, France
| | - A Rawashdeh
- Division of Hepatopancreatobiliary Surgery, Southampton General Hospital, Southampton, UK
| | - M Abu Hilal
- Division of Hepatopancreatobiliary Surgery, Southampton General Hospital, Southampton, UK
| | - M C de Jong
- Division of Hepatopancreatobiliary Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C H C Dejong
- Department of Surgery and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Surgery, Universitätsklinikum Aachen, Aachen, Germany
| | - M Doukas
- Department of Pathology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - R A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - J N M IJzermans
- Department of Surgery, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - O M van Delden
- Department of Interventional Radiology, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands
| | - J Verheij
- Department of Pathology, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands
| | - T M van Gulik
- Department of Surgery, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands
| | | |
Collapse
|
43
|
van de Berg NJ, Sánchez-Margallo JA, van Dijke AP, Langø T, van den Dobbelsteen JJ. A Methodical Quantification of Needle Visibility and Echogenicity in Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:998-1009. [PMID: 30655111 DOI: 10.1016/j.ultrasmedbio.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
During ultrasound-guided percutaneous interventions, needle localization can be a challenge. To increase needle visibility, enhancements of both the imaging methods and the needle surface properties have been investigated. However, a methodical approach to compare potential solutions is currently unavailable. The work described here involves automated image acquisition, analysis and reporting techniques to collect large amounts of data efficiently, delineate relevant factors and communicate effects. Data processing included filtering, line fitting and image intensity analysis steps. Foreground and background image samples were used to compute a contrast-to-noise ratio or a signal ratio. The approach was evaluated in a comparative study of commercially available and custom-made needles. Varied parameters included needle material, diameter and surface roughness. The shafts with kerfed patterns and the trocar and chiba tips performed best. The approach enabled an intuitive polar depiction of needle visibility in ultrasound images for a large range of insertion angles.
Collapse
Affiliation(s)
- Nick J van de Berg
- Department of BioMechanical Engineering Delft University of Technology, Delft, The Netherlands.
| | - Juan A Sánchez-Margallo
- Medical Technology, SINTEF, Norway; Computer Systems and Telematics, University of Extremadura, Extremadura, Spain
| | - Arjan P van Dijke
- Department of BioMechanical Engineering Delft University of Technology, Delft, The Netherlands
| | | | | |
Collapse
|
44
|
Garnon J, Cazzato RL, Caudrelier J, Nouri-Neuville M, Rao P, Boatta E, Ramamurthy N, Koch G, Gangi A. Adjunctive Thermoprotection During Percutaneous Thermal Ablation Procedures: Review of Current Techniques. Cardiovasc Intervent Radiol 2018; 42:344-357. [DOI: 10.1007/s00270-018-2089-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
|
45
|
Zhang K, Zou J, He K, Xu L, Liu P, Li W, Zhang A, Xu LX. Study of enhanced radiofrequency heating by pre-freezing tissue. Int J Hyperthermia 2018; 35:79-89. [PMID: 29865914 DOI: 10.1080/02656736.2018.1476984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In our previous animal model study, we found that radiofrequency (RF) ablation of pre-frozen tumor resulted in improved therapeutic effects. To understand the underlying mechanisms and optimize the treatment protocol, the RF heating pattern in pre-frozen tissue was studied in this paper. Both ex vivo and in vivo experiments were conducted to compare the temperature profiles of RF heating with or without pre-freezing. Results showed that the heating rate of in vivo tissues was significantly higher with pre-freezing. However, little difference was observed in the heating rate of ex vivo tissues with or without pre-freezing. In the histopathologic analysis of in vivo tissues, both a larger ablation area and a wider transitional zone were found in the tissue with pre-freezing. To investigate the cause for the enhancement in RF heating, the parameters affecting the tissue temperature rise were studied. It was found that the electrical conductivity of in vivo tissue with pre-freezing was much higher at low frequencies, but little difference was found at the 460 kHz frequency commonly used in clinical applications. A finite element model for RF heating was developed and validated to fit the thermal conductivity of in vivo tissue including effects of pre-freezing and the associated blood perfusion rate. Results showed that the enhancement of the heating rate was primarily attributed to the decreased blood perfusion rate in the tissue with vascular damage caused by pre-freezing. The ablation volume was increased by 104% due to the reduced heat dissipation.
Collapse
Affiliation(s)
- Kangwei Zhang
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Jincheng Zou
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Kun He
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Lichao Xu
- b Fudan University Shanghai Cancer Center , Shanghai , China.,c Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , China
| | - Ping Liu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Wentao Li
- b Fudan University Shanghai Cancer Center , Shanghai , China.,c Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , China
| | - Aili Zhang
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Lisa X Xu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China.,d Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
46
|
Kis B, El-Haddad G, Sheth RA, Parikh NS, Ganguli S, Shyn PB, Choi J, Brown KT. Liver-Directed Therapies for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2018; 24:1073274817729244. [PMID: 28975829 PMCID: PMC5937250 DOI: 10.1177/1073274817729244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (IHC) are primary liver cancers where all or most of the tumor burden is usually confined to the liver. Therefore, locoregional liver-directed therapies can provide an opportunity to control intrahepatic disease with minimal systemic side effects. The English medical literature and clinical trials were reviewed to provide a synopsis on the available liver-directed percutaneous therapies for HCC and IHC. Locoregional liver-directed therapies provide survival benefit for patients with HCC and IHC compared to best medical treatment and have lower comorbid risks compared to surgical resection. These treatment options should be considered, especially in patients with unresectable disease.
Collapse
Affiliation(s)
- Bela Kis
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ghassan El-Haddad
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rahul A Sheth
- 2 Department of Interventional Radiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Nainesh S Parikh
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Suvranu Ganguli
- 3 Center for Image Guided Cancer Therapy, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Shyn
- 4 Department of Radiology, Abdominal Imaging and Intervention, Brigham and Women's, Boston, MA, USA
| | - Junsung Choi
- 1 Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Karen T Brown
- 5 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Ziegle J, Audigier C, Krug J, Ali G, Kim Y, Boctor EM, Friebe M. RF-ablation pattern shaping employing switching channels of dual bipolar needle electrodes: ex vivo results. Int J Comput Assist Radiol Surg 2018; 13:905-916. [DOI: 10.1007/s11548-018-1769-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
|
48
|
Ahmad MIM. Expandable radiofrequency electrodes for ablation of centrally placed hepatocellular carcinoma. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2018. [DOI: 10.1016/j.ejrnm.2017.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Han SY, Song GA, Kim DU, Baek DH, Lee MW, Kim GH. Bile Duct Patency Maintained after Intraductal Radiofrequency Ablation in a Case of Hepatocellular Cholangiocarcinoma with Bile Duct Invasion. Clin Endosc 2018; 51:201-205. [PMID: 28854773 PMCID: PMC5903080 DOI: 10.5946/ce.2017.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (HCC-CC) with bile duct invasion (BDI) is rare. In unresectable cases, biliary stent placement and photodynamic therapy (PDT) are used for resolving obstructive jaundice. However, stent occlusion remains problematic, and PDT is expensive and time-consuming. Intraductal radiofrequency ablation (RFA) is an emerging procedure for palliation in these patients. It has potential benefits including less expense, lower rates of severe complication, longer maintenance of ductal patency, and easier technique compared with PDT or stenting alone. We report a 67-year-old man who underwent repeated intraductal RFA for HCC-CC and HCC with BDI, for whom bile duct patency was maintained without additional biliary procedures.
Collapse
Affiliation(s)
- Sung Yong Han
- Department of Internal Medicine, Pusan National University Hospital, Biomedical Research Institute, and Pusan National University School of Medicine, Busan, Korea
| | - Geun Am Song
- Department of Internal Medicine, Pusan National University Hospital, Biomedical Research Institute, and Pusan National University School of Medicine, Busan, Korea
| | - Dong Uk Kim
- Department of Internal Medicine, Pusan National University Hospital, Biomedical Research Institute, and Pusan National University School of Medicine, Busan, Korea
| | - Dong Hoon Baek
- Department of Internal Medicine, Pusan National University Hospital, Biomedical Research Institute, and Pusan National University School of Medicine, Busan, Korea
| | - Moon Won Lee
- Department of Internal Medicine, Pusan National University Hospital, Biomedical Research Institute, and Pusan National University School of Medicine, Busan, Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University Hospital, Biomedical Research Institute, and Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
50
|
Jose A, Surendran M, Fazal S, Prasanth BP, Menon D. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells. Colloids Surf B Biointerfaces 2018. [PMID: 29525697 DOI: 10.1016/j.colsurfb.2018.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work reports the potential of iron quantum clusters (FeQCs) as a hyperthermia agent for cancer, by testing its in-vitro response to shortwave (MHz range), radiofrequency (RF) waves non-invasively. Stable, fluorescent FeQCs of size ∼1 nm prepared by facile aqueous chemistry from endogenous protein haemoglobin were found to give a high thermal response, with a ΔT ∼50 °C at concentrationsas low as165 μg/mL. The as-prepared nanoclusters purified by lyophilization as well as dialysis showed a concentration, power and time-dependent RF response, with the lyophilized FeQCs exhibiting pronounced heating effects. FeQCs were found to be cytocompatible to NIH-3T3 fibroblast and 4T1 cancer cells treated at concentrations upto 1000 μg/mL for 24 h. Upon incubation with FeQCs and exposure to RF waves, significant cancer cell death was observed which proves its therapeutic ability. The fluorescent ability of the clusters could additionally be utilized for imaging cancer cells upon excitation at ∼450 nm. Further, to demonstrate the feasibility of imparting additional functionality such as drug/biomolecule/dye loading to FeQCs, they were self assembled with cationic polymers to form nanoparticles. Self assembly did not alter the RF heating potential of FeQCs and additionally enhanced its fluorescence. The multifunctional fluorescent FeQCs therefore show good promise as a novel therapeutic agent for RF hyperthermia and drug loading.
Collapse
Affiliation(s)
- Akhila Jose
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Mrudula Surendran
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sajid Fazal
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Bindhu-Paul Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|