1
|
Liu Y, Gilchrist AE, Johansson PK, Guan Y, Deras JD, Liu YC, Ceva S, Huang MS, Navarro RS, Enejder A, Peltz G, Heilshorn SC. Engineered Hydrogels for Organoid Models of Human Nonalcoholic Fatty Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17332. [PMID: 40364726 DOI: 10.1002/advs.202417332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by increased lipid accumulation and excessive deposition of extracellular matrix (ECM) that results in tissue stiffening. The potential interplay between matrix stiffness and hepatocyte lipid accumulation during NAFLD has not been established. Here, an in vitro NAFLD model is developed using chemically defined, engineered hydrogels and human induced pluripotent stem cell-derived hepatic organoids (HOs). Specifically, dynamic covalent chemistry crosslinking, along with transient small molecule competitors, are used to create dynamic stiffening hydrogels that enable the reproducible culture of HOs. Within matrices that mimic the stiffness of healthy to diseased tissue (≈1-6 kPa), lipid droplet accumulation in HOs is triggered by exposure to an NAFLD-associated free fatty acid. These NAFLD model suggests that higher stiffness microenvironments result in increased hepatic lipid droplet accumulation, increased expression of fibrosis markers, and increased metabolic dysregulation. By targeting the ROCK mechanosignaling pathway, the synergy between matrix stiffness and lipid droplet accumulation is disrupted. The in vitro model of NAFLD has the potential to understand the role of mechanosignaling in disease progression and identify new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yuan Guan
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jaydon D Deras
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yu-Chung Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sofia Ceva
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Renato S Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Tran NNQ, Choi H, Sactivel B, Oh YJ, Maeng HJ, Kim MK, Lee J, Kim YB, Lee DH, Oh BC, Jun HS, Chun KH. The dual targeting effects of KD025 on casein kinase 2 and ROCK2 in a mouse model of diet-induced obesity. Biochem Pharmacol 2025; 237:116933. [PMID: 40210126 DOI: 10.1016/j.bcp.2025.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
KD025(belumosudil), a selective ROCK2 inhibitor, exhibits unique anti-adipogenic activity through inhibition of casein kinase 2 (CK2). This study investigated the dual inhibitory effects of KD025 on metabolism in a diet-induced obese model. C57BL/6 mice on a high fat diet (HFD) were treated with KD025 for 4 weeks, while fasudil (a pan-ROCK inhibitor) and CX-4945 (a CK2-specific inhibitor) served as comparison treatments. KD025 significantly reduced body weight gain without affecting food intake, serum insulin, or fasting blood glucose levels. In contrast, while both CX-4945 and fasudil treatments showed a trend toward weight reduction, these results were not statistically significant. KD025 improved lipid metabolism by significantly lowering LDL cholesterol and triglyceride, although it slightly impaired glucose metabolism, as observed in insulin and glucose tolerance tests. Weight reduction in the KD025- and CX-4945-treated groups was attributed to decreased adipose tissue mass, particularly in inguinal (ingWAT) and epididymal (epiWAT) fat depots. Hematoxylin and eosin (H&E) staining confirmed smaller adipocyte size in these groups. KD025 had no significant effect on serum levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), or monocyte chemoattractant protein-1 (MCP-1) with varied inflammatory responses. Furthermore, KD025 and CX-4945 upregulated adipogenic and browning markers, such as Cebpa, Cidea, and Pparg in the epiWAT, though without significant UCP1 expression. Overall, KD025 effectively reduced weight gain in HFD-fed mice through dual inhibition of CK2 and ROCK2, highlighting its potential as a therapeutic agent for obesity-related conditions.
Collapse
Affiliation(s)
- Nhu Nguyen Quynh Tran
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Bathiga Sactivel
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yu Jin Oh
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Kyung Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
3
|
Zhang X, Chen T, Li Z, Wan L, Zhou Z, Xu Y, Yan D, Zhao W, Chen H. NORAD exacerbates metabolic dysfunction-associated steatotic liver disease development via the miR-511-3p/Rock2 axis and inhibits ubiquitin-mediated degradation of ROCK2. Metabolism 2025; 164:156111. [PMID: 39710000 DOI: 10.1016/j.metabol.2024.156111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND & AIMS Abnormal regulation of lncRNA is strongly linked to metabolic dysfunction-associated steatotic liver disease (MASLD). However, the precise molecular mechanisms remain unclear. This study explores the roles of noncoding RNA activated by DNA damage (NORAD)/miR-511-3p/Rho-associated protein kinase 2 (Rock2) axis and the NORAD/ROCK2 interaction in the development of MASLD. METHODS In vitro and in vivo models of MASLD were created using high-fat diet-fed mice and free fatty acid (FFA)-treated hepatocytes. To examine the relationships between NORAD, miR-511-3p, and ROCK2, we employed bioinformatics, luciferase assays, RNA immunoprecipitation, and biotinylated NORAD pull-down assays. MASLD progression was assessed based on food intake, energy expenditure, insulin resistance, hepatic steatosis, inflammation, white fat growth, and liver fibrosis. RESULTS NORAD and ROCK2 were upregulated, while miR-511-3p was downregulated in MASLD liver tissues and FFA-treated hepatocytes. Mechanistically, NORAD competitively interacted with miR-511-3p to modulate Rock2 mRNA expression, and directly stabilized ROCK2 protein by abrogating its ubiquitination degradation. Functionally, liver-specific knockdown of NORAD or overexpression of miR-511-3p significantly slowed MASLD progression. Overexpression of NORAD or ROCK2 partially reversed miR-511-3p-induced inhibition of MASLD. Additionally, ROCK2 knockdown attenuated NORAD-induced worsening of MASLD. Moreover, overexpressing NORAD or ROCK2 or interfering miR-511-3p influenced resmetirom treatment to suppress MASLD development. Finally, metabolic changes in liver driven by the NORAD/miR-511-3p/Rock2 axis and NORAD/ROCK2 interaction also influenced white adipose growth, pancreatic β-cell dedifferentiation, and liver fibrosis. CONCLUSIONS The NORAD/miR-511-3p/Rock2 axis and the NORAD/ROCK2 interaction play critical roles in MASLD progression, identifying potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Xu Zhang
- The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | | | - Zhenhan Li
- Department of Pathology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, China; School of Clinical Medicine, Wannan Medical College, Wuhu, China; The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingfeng Wan
- Fatty liver disease center of integrated Chinese and Western medicine, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Zhihang Zhou
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital, Chengdu Medical College, Chengdu, China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Dong Yan
- Nanjing University of TCM, Nanjing, China; Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Wei Zhao
- School of Clinical Medicine, The First Affiliated Hospital, Chengdu Medical College, Chengdu, China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| | - Hao Chen
- Department of Pathology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, China; Postdoctoral Research Station of Clinical Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Rivera-Correa J, Gupta S, Ricker E, Flores-Castro D, Jenkins D, Vulcano S, Phalke SP, Pannellini T, Miele MM, Li Z, Zamponi N, Kim YB, Chinenov Y, Giannopoulou E, Cerchietti L, Pernis AB. ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI. JCI Insight 2025; 10:e180507. [PMID: 39903532 PMCID: PMC11949073 DOI: 10.1172/jci.insight.180507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Swati P. Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Matthew M. Miele
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuoning Li
- Microchemistry & Proteomics Core at Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nahuel Zamponi
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, New York, New York, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Thoota SK, Maddila S, Pindiprolu SKSS, Kohli SK, Matsa SK, Gumbi B, Venigalla L, Almutairi TM, Islam MS. Design, Synthesis, and Evaluation of Piperazine‐7‐Deazapurine Based Thiazolidone Derivatives as Novel ROCK Inhibitors. ChemistrySelect 2025; 10. [DOI: 10.1002/slct.202405783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
AbstractIn this research journey of exploring ROCK inhibitors, we synthesized a new series of substituted piperazine‐7‐deazapurine‐linked thiazolidone analogs (10a–s) via a five‐step process, and employing sophisticated molecular modeling techniques, optimized the crystal structures of ROCK1 and ROCK2 to evaluate the binding affinities of these compounds. The evaluation of ROCK inhibitory activity demonstrated generally low binding affinities across the series, as reflected in their pIC50 values. Significantly, compound 10h emerged as a potent inhibitor of ROCK1 with an impressive pIC50 value of 6.54. Similarly, compound 10q showed strong inhibitory effects on ROCK2, marked by a pIC50 value of 6.03. Notably compound 10k exhibited a balanced inhibitory on both ROCK isoforms with a pIC50 of 5.24 and 5.31 against ROCK1 and ROCK2 respectively, suggesting its viability for further exploration. This research provides significant insights into the structure activity relationships (SAR) of kinase inhibitors, paving the way for designing more targeted and efficacious therapeutic options for diseases involving ROCK kinases.
Collapse
Affiliation(s)
- Sandeep Kumar Thoota
- Department of Chemistry GITAM School of Sciences, GITAM University Visakhapatnam Andhra Pradesh India
| | - Suresh Maddila
- Department of Chemistry GITAM School of Sciences, GITAM University Visakhapatnam Andhra Pradesh India
- School of Chemistry & Physics University of KwaZulu‐Natal, Westville Campus Chiltern Hills Durban 4000 South Africa
| | | | - Sukhmeen Kaur Kohli
- Department of Earth and Climate Science Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh 517507 India
| | | | - Bhekumuzi Gumbi
- School of Chemistry & Physics University of KwaZulu‐Natal, Westville Campus Chiltern Hills Durban 4000 South Africa
| | - Lalu Venigalla
- Department of Chemistry University of Houston Houstan Texas 77204 USA
| | - Tahani Mazyad Almutairi
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
6
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
7
|
Li S, Lian S, Cheng W, Zhang T, Gong X. THE ROLE OF N6-METHYLADENOSINE METHYLTRANSFERASE RBM15 IN NONALCOHOLIC FATTY LIVER DISEASE. Shock 2024; 61:311-321. [PMID: 38150369 DOI: 10.1097/shk.0000000000002294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder with significant health implications. N6-methyladenosine (m6A) methyltransferase is known to exert regulatory functions in liver-related diseases. This study investigates the intricate role of RNA binding motif protein 15 (RBM15) in modulating inflammation and oxidative stress in NAFLD. An NAFLD model was induced in mice (male, C57BL/6J, 72 mice in the sham group) through a high-fat diet for 9 weeks, and hepatocytes were exposed to long chain-free fatty acids. The expression levels of RBM15, ring finger protein 5 (RNF5), and rho-kinase 1 (ROCK1) were assessed. RBM15 expression was intervened (injection of AAV9 virus at week 9 and detection at week 11). Liver damage was evaluated using staining assays, along with assessments of weight changes and lipid levels. Notably, RBM15 (decreased approximately 40%/60%) and RNF5 (decreased approximately 60%/75%) were poorly expressed while ROCK1 (increased approximately 2.5-fold) was highly expressed in liver tissues and cells. RBM15 overexpression mitigated liver damage, inflammation, and oxidative stress in NAFLD mice, resulting in reduced liver-to-body weight ratio (20%) and decreased levels of alanine aminotransferase (54%), aspartate aminotransferase (36%), total cholesterol (30%), and triglycerides (30%), and inhibited inflammation and oxidative stress levels. Mechanistically, RBM15 upregulated RNF5 expression through m6A methylation modification, and RNF5 suppressed ROCK1 protein levels through ubiquitination modification. RNF5 knockdown or ROCK1 overexpression accelerated inflammation and oxidative stress in NAFLD. Taken together, RBM15 upregulated RNF5 expression through m6A methylation modification. RNF5 inhibited ROCK1 expression through ubiquitination modification to mitigate NAFLD.
Collapse
Affiliation(s)
| | - Shengyi Lian
- Department of General Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Cheng
- Teaching and Research Section of Pathophysiology, North Sichuan Medical College, Nanchong, China
| | - Tao Zhang
- Department of Gastroenterology, the Second Clinical College of North Sichuan Medical College-Nanchong City Central Hospital (Beijing Anzhen Hospital, Nanchong Hospital), Nanchong, China
| | - Xiaobing Gong
- Department of Gastroenterology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
9
|
Lin X, Wang L, Lu X, Zhang Y, Zheng R, Chen R, Zhang W. Targeting of G-protein coupled receptor 40 alleviates airway hyperresponsiveness through RhoA/ROCK1 signaling pathway in obese asthmatic mice. Respir Res 2023; 24:56. [PMID: 36803977 PMCID: PMC9938616 DOI: 10.1186/s12931-023-02361-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Obesity increases the severity of airway hyperresponsiveness (AHR) in individuals with asthma, but the mechanism is not well elucidated. G-protein coupled receptor 40 (GPR40) has been found to induce airway smooth muscle contraction after activated by long-chain fatty acids (LC-FFAs), suggesting a close correlation between GPR40 and AHR in obese. In this study, C57BL/6 mice were fed a high-fat diet (HFD) to induce obesity with or without ovalbumin (OVA) sensitization, the regulatory effects of GPR40 on AHR, inflammatory cells infiltration, and the expression of Th1/Th2 cytokines were evaluated by using a small-molecule antagonist of GPR40, DC260126. We found that the free fatty acids (FFAs) level and GPR40 expression were greatly elevated in the pulmonary tissues of obese asthmatic mice. DC260126 greatly reduced methacholine-induced AHR, ameliorated pulmonary pathological changes and decreased inflammatory cell infiltration in the airways in obese asthma. In addition, DC260126 could down-regulate the levels of Th2 cytokines (IL-4, IL-5, and IL-13) and pro-inflammatory cytokines (IL-1β, TNF-α), but elevated Th1 cytokine (IFN-γ) expression. In vitro, DC260126 could remarkedly reduce oleic acid (OA)-induced cell proliferation and migration in HASM cells. Mechanistically, the effects that DC260126 alleviated obese asthma was correlated with the down-regulation of GTP-RhoA and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1). Herein, we proved that targeting of GPR40 with its antagonist helped to mitigate multiple parameters of obese asthma effectively.
Collapse
Affiliation(s)
- Xixi Lin
- grid.417384.d0000 0004 1764 2632Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Like Wang
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Xiaojie Lu
- grid.268099.c0000 0001 0348 3990School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Yuanyuan Zhang
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Rongying Zheng
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Ruijie Chen
- grid.417384.d0000 0004 1764 2632Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
10
|
Liu T, Zhang N, Kong L, Chu S, Zhang T, Yan G, Ma D, Dai J, Ma Z. Paeoniflorin alleviates liver injury in hypercholesterolemic rats through the ROCK/AMPK pathway. Front Pharmacol 2022; 13:968717. [PMID: 36081948 PMCID: PMC9445162 DOI: 10.3389/fphar.2022.968717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Paeoniflorin (PF) is the main active component in Paeonia lactiflora Pall, and it has multiple effects. However, the precise mechanism of PF in hypercholesterolemia is unclear. In this study, rats were either fed a high-cholesterol diet (HCD) for 4 weeks to establish the hypercholesterolemic model or administered normal saline or PF (20 mg/kg/day). PF significantly reduced liver weight and the liver index. PF reduced hepatic lipid deposition and inflammation, improved serum lipid metabolism, and significantly inhibited serum and hepatic oxidative stress and the inflammatory response. PF treatment caused a marked decrease in the phosphorylated myosin phosphatase target subunit (p-MYPT)-1, nuclear sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS) levels, and an increase in the low-density lipoprotein receptor (LDLR) and phosphorylated-AMP-activated protein kinase (p-AMPK). Thus, PF could alleviate liver injury in hypercholesterolemic rats, and the specific mechanism may be related to the antioxidant, anti-inflammatory properties, and ROCK/AMPK/SREBP-1c signaling pathway.
Collapse
Affiliation(s)
- Tong Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ning Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Lingya Kong
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sijie Chu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ting Zhang
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guangdi Yan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- *Correspondence: Zhihong Ma, ; Donglai Ma, ; Jun Dai,
| | - Jun Dai
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- *Correspondence: Zhihong Ma, ; Donglai Ma, ; Jun Dai,
| | - Zhihong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, China
- *Correspondence: Zhihong Ma, ; Donglai Ma, ; Jun Dai,
| |
Collapse
|
11
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|