1
|
Piao YH, Luo J, Ren T, Wang A, Li YY, Pan LJ, Li XZ, Li FT, Bao YW, Zheng F, Yue H. Integrating Intestinal Biotransformation and Gut Microbiota to Uncover the Influence of Tongfu Xiexia Decoction in Rats With Constipation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10065. [PMID: 40329014 DOI: 10.1002/rcm.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
RATIONALE Tongfu Xiexia Decoction (TFXXD), a traditional Chinese medicine formula, comprises six herbs: semen raphani, Rehmannia glutinosa, rhubarb, Magnolia officinalis, trifoliate orange, and mirabilite. The aim of this study was to investigate the effects of TFXXD on its biotransformation and microbial abundance in the gut of constipated rats. METHODS Ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to analyze the biotransformation of TFXXD in the colonic contents, and 16S rRNA sequencing was used to assess the structure and diversity of the gut microbiota across various rat groups. RESULTS We identified and analyzed 25 biotransformations of TFXXD in the colonic contents, which undergo various reactions such as deglycosylation, ring opening, and hydration in intestinal bacteria, with 14 originating from trifoliate orange, six from rhubarb, three from Rehmannia glutinosa, one from Semen raphani, and one from M. officinalis. 16S rRNA analysis revealed that TFXXD significantly enhanced the relative abundance of beneficial bacteria, such as Lactobacillus and Bacteroides while significantly reducing Oscillospira abundance. Moreover, TFXXD considerably affected the carbohydrate and amino acid metabolism. Correlation analyses revealed a significant negative correlation between Bacteroides and ACH (Acetylcholine), NO (nitric oxide), D-Lac (D-Lactate), IL-6 (Interleukin-6), TNF-α (tumor necrosis factor-α), and IL-1β (Interleukin-1β) and a significant positive correlation between Bacteroides, hesperetin, and rhein. CONCLUSIONS In conclusion, our findings indicate that TFXXD can modulate the structure and diversity of the gut microbiota and enhance the metabolic balance in constipated rats.
Collapse
Affiliation(s)
- Yu-Han Piao
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Luo
- Changchun University of Chinese Medicine, Changchun, China
| | - Tao Ren
- Changchun University of Chinese Medicine, Changchun, China
| | - Ao Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu-Yun Li
- Jilin City Hospital of Chemical Industry, Jilin, China
| | - Li-Jia Pan
- Changchun University of Chinese Medicine, Changchun, China
| | - Xin-Ze Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang-Tong Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu-Wen Bao
- Changchun University of Chinese Medicine, Changchun, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Liu Y, Ning H, Li Y, Li Y, Ma J. The microbiota in breast cancer: dysbiosis, microbial metabolites, and therapeutic implications. Am J Cancer Res 2025; 15:1384-1409. [PMID: 40371158 PMCID: PMC12070087 DOI: 10.62347/zjcf2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/29/2025] [Indexed: 05/16/2025] Open
Abstract
The human microbiome plays a pivotal role in host health and disease, with emerging evidence underscoring its significant influence on the development and progression of breast cancer. Studies have revealed that dysbiosis in both the gut and breast tissue microbiota is strongly associated with an elevated risk of breast cancer. Distinct microbial profiles have been identified among healthy individuals, patients with benign breast conditions, and those with malignant tumors, with further variations observed across different ethnic groups and breast cancer subtypes. The complex interplay between breast cancer risk factors and microbial populations, coupled with the direct impact of microbial communities and their metabolites on inflammatory pathways and immune responses, underscores the importance of this field. Additionally, the interaction between gut microbiota and therapeutic modalities such as chemotherapy and radiotherapy is of particular interest, as these interactions can significantly influence treatment outcomes, either enhancing or diminishing efficacy. This review explores the effects of the Mediterranean diet, probiotics, prebiotics, and natural medicinal products on gut microbiota, emphasizing their potential as innovative therapeutic strategies. Notably, the use of engineered probiotics within the tumor microenvironment represents a promising frontier in breast cancer treatment. In conclusion, research on the human microbiome not only deepens our understanding of breast cancer pathogenesis but also lays the groundwork for the development of novel and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yan Liu
- Shanxi Province Cancer Hospital, Shanxi Medical UniversityTaiyuan 030006, Shanxi, China
| | - Haiyang Ning
- Shanxi Province Cancer Hospital, Shanxi Medical UniversityTaiyuan 030006, Shanxi, China
| | - Yifei Li
- Shanxi Province Cancer Hospital, Shanxi Medical UniversityTaiyuan 030006, Shanxi, China
| | - Yifan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| |
Collapse
|
3
|
Wang N, Wu P, Chen XD. New Insights into a Conceptual Bionic Colonic Bioreactor: A Model, 'Probiotics in Human Colon', Showing How Probiotics Alleviate Constipation from a Bioprocess Engineering Perspective. Foods 2025; 14:1335. [PMID: 40282737 PMCID: PMC12027397 DOI: 10.3390/foods14081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Constipation is a common problem which often causes negative impacts on the patient's quality of life. Apart from the pharmacologic and diet approaches, the use of probiotics has gradually shown promising efficacy to alleviate constipation. However, an exact understanding of the underlying mechanisms of probiotic actions on alleviating constipation is still unclear and need to be explored. In this review, we propose a model, 'probiotics in human colon', from a bioprocess engineering perspective. This model can be interpreted as a new concept of bionic colonic bioreactor design of a human colon in vitro, in which the transport phenomena during the fermentation of chyme by probiotics can be detected. By reviewing the anatomy structure and peristalsis mode of the human colon, we have focused on the influence by probiotics on the physical properties of colonic contents during the fermentation process. We relate physical properties such as shape, water content, density, hardness, viscosity, and elasticity to constipation symptoms directly. The influences on the physical properties of colon contents triggered by probiotics can be a potential key to understand the mechanisms for alleviating constipation.
Collapse
Affiliation(s)
- Ni Wang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China;
| | | | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China;
| |
Collapse
|
4
|
Han J, Ren Y, Zhang P, Fang C, Yang L, Zhou S, Ji Z. The effectiveness of treatment with probiotics in preventing necrotizing enterocolitis and related mortality: results from an umbrella meta-analysis on meta-analyses of randomized controlled trials. BMC Gastroenterol 2025; 25:245. [PMID: 40217146 PMCID: PMC11987312 DOI: 10.1186/s12876-025-03788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Probiotic supplementation has been proposed as a preventive measure for necrotizing enterocolitis (NEC) in preterm infants. This umbrella meta-analysis assesses the effects of probiotics, including single-strain and multi-strain formulations, on NEC and related mortality. METHODS A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science, and Embase for studies up to August 2024. The AMSTAR2 tool assessed the quality of included studies. Meta-analysis studies were selected based on the PICOS framework, focusing on preterm neonates (< 37-week gestation), probiotic supplementation (single-strain or multi-strain), placebo or standard care comparison, and outcomes of NEC and mortality. Pooled relative risks (RR) and odds ratios (OR) with 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Overall, 35 eligible studies were included into the study. Twenty-six and 32 probiotic intervention arms used single- and multi-strain probiotics, respectively. The findings revealed that probiotics decreased NEC significantly (ESRR: 0.51; 95% CI: 0.46, 0.55, p < 0.001, and ESOR: 0.59; 95%CI: 0.48, 0.72, P < 0.001), and mortality rate (ESRR: 0.72; 95% CI: 0.68, 0.76, P < 0.001, and ESOR: 0.77; 95%CI: 0.70, 0.84, p < 0.001). CONCLUSION The present review suggests that supplementation with probiotics reduced NEC and related mortality. Probiotic supplementation can be recognized as a NEC-preventing approach in preterm and very preterm infants, particularly Multi-strain probiotics.
Collapse
Affiliation(s)
- Jiaju Han
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Yufeng Ren
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China.
| | - Peini Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Zhiqing Ji
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| |
Collapse
|
5
|
Chen Y, Zhu F, Yu G, Peng N, Li X, Ge M, Yang L, Dong W. Bifidobacterium bifidum postbiotics prevent Salmonella Pullorum infection in chickens by modulating pyroptosis and enhancing gut health. Poult Sci 2025; 104:104968. [PMID: 40043668 PMCID: PMC11927735 DOI: 10.1016/j.psj.2025.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
The overuse of antibiotics in poultry farming has led to the emergence of multidrug-resistant pathogens, posing severe threats to animal health and public safety. Salmonella Pullorum (S. Pullorum), a host-specific pathogen targeting poultry, causes high mortality in chicks and disrupts intestinal health. This study evaluated the protective effects of Bifidobacterium bifidum postbiotics (BbP) against S. Pullorum infection, focusing on their mechanisms in regulating pyroptosis, restoring intestinal barrier function, and modulating gut microbiota. Both in vivo (chickens challenged with S. Pullorum) and in vitro (chicken small intestinal epithelial cells, CSIEC) models were used to assess the effects of BbP and its components (bacterial lysates or metabolites). Results showed that BbP significantly improved growth performance in infected chickens, reducing mortality from 66.66 % to 8.33 %. BbP effectively suppressed the expression of pyroptosis-related proteins, including apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1 (cysteine-aspartic acid protease-1), and Gasdermin D N-terminal (GSDMD-N), and reduced inflammatory cytokines, including interleukin-1β (IL-1β) and interleukin-8 (IL-8), while increasing anti-inflammatory cytokines, such as interleukin-10 (IL-10) and interleukin-4 (IL-4), thereby mitigating inflammation. Furthermore, BbP restored intestinal barrier function by upregulating the expression of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1. The cecal microbiota diversity was also improved by BbP, with a decrease in the abundance of harmful bacteria (e.g., Escherichia-Shigella) and an enrichment of beneficial bacteria (e.g., Lactobacillus and Ruminococcus). These findings demonstrate that BbP provides significant protection against S. Pullorum infection by modulating pyroptosis, protecting the intestinal barrier, and restoring microbial balance. As an effective antibiotic alternative, BbP shows promise for the prevention and control of S. Pullorum infections in poultry farming.
Collapse
Affiliation(s)
- Yuhao Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Fuqiang Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Guobi Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Nana Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Xinying Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Lei Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Wei Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
6
|
Xu R, Yu Y, Chen T. Exploring the dark side of probiotics to pursue light: Intrinsic and extrinsic risks to be opportunistic pathogens. Curr Res Food Sci 2025; 10:101044. [PMID: 40235735 PMCID: PMC11999689 DOI: 10.1016/j.crfs.2025.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Probiotics, live microorganisms with multiple health benefits, have gained popularity for their roles in maintaining daily health and treating a variety of diseases. However, they have the potential to be opportunistic pathogens in some conditions. This review delves into the intrinsic and extrinsic risks associated with probiotics. Intrinsic risks involve the production of harmful substances, such as toxins and invasive factors, biofilm formation, bacteria emboli, antibiotic resistance with relevant genetic materials, genetic plasticity, and metabolic issues, while extrinsic risks include problems in regulatory oversight and public awareness, host health status and appropriately administration. It emphasizes the need for a balanced view of their therapeutic benefits and potential hazards, advocating for further research to understand the complex interactions between probiotics and the human microbiome, to optimize the safety and efficacy of probiotics.
Collapse
Affiliation(s)
- Ruiyan Xu
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yifeng Yu
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Aoki Y, Kawasoe S, Kubozono T, Yoshimoto J, Kishi M, Kanouchi H, Suzuki S, Ohishi M. Association between defecation status and the habit of eating vinegar-based dishes in community-dwelling Japanese individuals: a cross-sectional study. Sci Rep 2025; 15:10732. [PMID: 40155513 PMCID: PMC11953461 DOI: 10.1038/s41598-025-95618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Vinegar intake reportedly has an antihypertensive effect and reduces visceral fat. Nonetheless, studies on the form of vinegar intake and its effect on defecation are scarce. This cross-sectional study aimed to investigate the association between the frequency of vinegar-based dish intake and defecation status using data from the Tarumizu cohort study. The participants (n = 1024, 634 women) responded to a health check survey in 2019 using a brief-type self-administered diet history questionnaire. The association between the frequency of vinegar-based dish intake and defecation status was examined using a multivariate logistic regression analysis. Considering confounding factors influencing the defecation status such as sex, age, dietary fiber intake, and medication history, individuals with a habit of eating vinegar-based dishes, such as "sour main dishes" (odds ratio [OR]: 1.38; p = 0.039), "sunomono" (OR: 1.49; p = 0.035), and "salad with sour dressing" (OR: 1.41; p = 0.049), had a significantly higher defecation frequency. No significant association was observed between the habit of eating vinegar-based dishes and the time required for defecation or straining during defecation. Our study showed that the habit of eating vinegar-based dishes was positively associated with defecation status. Our findings may suggest a novel approach for defecation improvement in people with defecation problems.
Collapse
Affiliation(s)
- Yuto Aoki
- Central Research Institute, Mizkan Holdings Co., Ltd, Handa-shi, Aichi, Japan.
| | - Shin Kawasoe
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-shi, Kagoshima, Japan
| | - Takuro Kubozono
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-shi, Kagoshima, Japan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd, Handa-shi, Aichi, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd, Handa-shi, Aichi, Japan
| | - Hiroaki Kanouchi
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka-shi, Osaka, Japan
| | - Satoko Suzuki
- Department of Nutrition Management, Imakiire General Hospital, Kagoshima-shi, Kagoshima, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-shi, Kagoshima, Japan
| |
Collapse
|
8
|
Wei S, Qian J, Zou M, Qian Y, Zhou W, Gu Y, Tang L, Liu H, Zhang C. Non-linear relationship between Dietary Inflammatory Index and constipation: threshold identification and insights from NHANES [2005-2010] and Mendelian randomization analysis. Transl Gastroenterol Hepatol 2025; 10:25. [PMID: 40337765 PMCID: PMC12056116 DOI: 10.21037/tgh-24-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/18/2024] [Indexed: 05/09/2025] Open
Abstract
Background With the acceleration of the pace of life and changes in dietary habits, functional gastrointestinal disorders, especially constipation, have become a significant public health issue affecting health and quality of life of people worldwide. Given the limitations of traditional treatments, adjusting dietary structure has become a more economical and convenient therapeutic approach. We aimed to explore the associations between the Dietary Inflammatory Index (DII) and constipation in this study. Methods This study was based on the National Health and Nutrition Examination Survey (NHANES) data from 2005-2010, utilizing bowel movement frequency and stool characteristics questionnaires to determine constipation status, and calculating the DII based on 24-hour dietary recall data. To assess the relationship between the DII and constipation, we employed three models, which were further explored through inverse probability of treatment weighting (IPTW), restricted cubic splines (RCS) analysis, and Mendelian randomization. Results Individuals with a higher DII exhibited a higher risk of constipation. In the unadjusted model, participants in the highest quartile (Q4) had a 2.85-fold increased risk of constipation compared to those in the lowest quartile (Q1) [odds ratio (OR): 2.85; 95% confidence interval (CI): 1.78-4.56; P<0.001], with similar results observed in various adjusted models and IPTW adjusted models. RCS analysis revealed a nonlinear relationship between the DII and constipation, with a threshold value (DII =0.974) beyond which the risk of constipation significantly increased. Subgroup analysis showed that gender, income level, and diabetes status affected the relationship between the DII and constipation. Mendelian randomization analysis did not find any significant causal relationships for components of the DII, except for energy intake. Conclusions There is a nonlinear relationship between the DII and the risk of constipation, with a threshold value of 0.974, and differences in the risk of constipation associated with the DII across different income, gender, and diabetes status groups. These findings provide a basis for using the DII as a strategy for the prevention and intervention of constipation.
Collapse
Affiliation(s)
- Shuxun Wei
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| | - Jin Qian
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| | - Minghao Zou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| | - Ye Qian
- Department of Clinical Medicine, Qilu Medical University, Zibo, China
| | - Wenxuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| | - Yangjuan Gu
- Department of Nutrition, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| | - Lili Tang
- Department of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Hefei, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| | - Chengjing Zhang
- Department of Nutrition, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Navy Medical University, Shanghai, China
| |
Collapse
|
9
|
Jeong JW, Lee D, Kim H, Gwon H, Lee K, Kim JY, Shim JJ, Lee JH. Lacticaseibacillus paracasei HP7 Improves Gastric Emptying by Modulating Digestive Factors in a Loperamide-Induced Functional Dyspepsia Mouse Model. J Microbiol Biotechnol 2025; 35:e2412035. [PMID: 40081888 PMCID: PMC11925751 DOI: 10.4014/jmb.2412.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 03/16/2025]
Abstract
Functional dyspepsia (FD) is a condition characterized by persistent indigestion symptoms without a clear underlying cause. We investigated the effects on FD of Lacticaseibacillus paracasei HP7 (HP7), which was isolated from kimchi and is known to inhibit Helicobacter pylori. In a mouse model of loperamide-induced FD, HP7 administration significantly improved gastrointestinal (GI) motility and gastric emptying, as demonstrated by increased charcoal movement in the GI tract, decreased stomach weight, and the amount of remaining phenol red solution. HP7 administration significantly enhanced peristalsis by upregulating the expression of smooth muscle contraction-related genes, such as the 5HT4 receptor, anoctamin-1, ryanodine receptor 3, and smooth muscle myosin light-chain kinase. In addition, digestive factors, including GI regulatory hormones such as gastrin, gastric inhibitory peptide, and peptide YY, and the activity of digestive enzymes, such as amylase, trypsin, and lipase, were restored to normal levels. These results indicate that HP7 is a promising probiotic strain to alleviate FD symptoms by modulating peristalsis and digestive factors.
Collapse
Affiliation(s)
- Ji-Woong Jeong
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Daehyeop Lee
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Hyeonji Kim
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Hyeonjun Gwon
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Kippeum Lee
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Jae-Hwan Lee
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| |
Collapse
|
10
|
Wang X, Zhou J, Sun Z, Jia R, Huang D, Tang D, Xia T, Xiao F. Poly-γ-glutamic acid alleviates slow transit constipation by regulating aquaporin and gut microbes. Sci Rep 2025; 15:8244. [PMID: 40065004 PMCID: PMC11893738 DOI: 10.1038/s41598-025-92783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Slow transit constipation (STC) is a prevalent gastrointestinal disorder caused by colon dysfunction. Poly-γ-glutamic acid (γ-PGA), an anionic polymer known for its moisture retention, degradability, and food safety, was studied for its effects on loperamide-induced STC in mice. Treatment with γ-PGA for one week significantly increased both defecation frequency and fecal water content, with the high-dose group (10 g/kg/d) restoring fecal water content to 34.23%, outperforming the low- (16.16%) and medium-dose (27.08%) groups and exceeding the positive control, PEG, by 1.35 times. γ-PGA enhanced intestinal peristalsis and reduced the expression of inflammatory markers (IL-1β, IL-6, caspase-1, TLR2) and water-electrolyte transport genes (AQP3, AQP4, ENaC-β), while improving the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) damaged by loperamide. Histopathological analyses confirmed γ-PGA's capacity to repair intestinal damage. Additionally, Western Blot analysis indicated reduced AQP3/4 levels in the colon, and molecular docking showed good binding affinity between γ-PGA and AQPs. γ-PGA also positively altered gut microbiota composition. Overall, γ-PGA shows promise in treating STC by modulating aquaporins and gut microbiota.
Collapse
Affiliation(s)
- Xiaoru Wang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Jie Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Zengkun Sun
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Ruilei Jia
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Diyi Huang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China.
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science), Jinan, 250353, Shandong, PR China.
| | - Fang Xiao
- Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, PR China.
| |
Collapse
|
11
|
Xi Z, Fenglin X, Yun Z, Chunrong L. Efficacy of probiotics in the treatment of allergic diseases: a meta-analysis. Front Nutr 2025; 12:1502390. [PMID: 40104820 PMCID: PMC11913692 DOI: 10.3389/fnut.2025.1502390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Background information Allergic diseases are an increasingly serious health issue worldwide, affecting not only the physiological health of patients but also significantly reducing their quality of life, thereby imposing a substantial economic burden on families and society. According to data from the World Health Organization, the incidence of allergic diseases has risen markedly over the past few decades, particularly among children and adolescents, making it a significant public health challenge. Although several clinical studies have explored the effects of probiotics in the treatment of food-induced allergies and allergic diseases, the results have been inconsistent. Some studies indicate positive effects, while others fail to demonstrate their efficacy. Therefore, a systematic evaluation of the effectiveness of probiotics in allergic diseases is particularly important. Some studies indicate that patients with food allergies may also experience respiratory symptoms, and certain foods may be associated with the onset or exacerbation of allergic rhinitis and asthma. Diseases such as allergic rhinitis, asthma, and atopic dermatitis are characterized by inappropriate immune responses to typically harmless environmental allergens. The incidence of these diseases is continuously rising in urban populations, prompting researchers to extensively explore novel therapeutic strategies that can effectively modulate immune responses. Objective The aim of this study is to systematically assess the effectiveness of probiotics in the treatment of allergic diseases. By integrating the results of existing clinical studies, we hope to provide a clearer scientific basis for the treatment of allergic diseases. Methods We conducted a comprehensive literature search in databases such as PubMed for articles published before the end of 2023 that evaluated the effectiveness of probiotics in treating allergic diseases. Inclusion criteria focused on studies reporting binary outcomes related to the efficacy of probiotics in patients with food allergies, asthma, allergic rhinitis, or atopic dermatitis. Data were collected using Excel software, and the Review Manager software was used to analyze the collected binary variable data. The effectiveness of probiotics was assessed by calculating the risk ratio (RR) and its 95% confidence interval (CI). Heterogeneity among studies was evaluated using the I2 statistic, and publication bias was assessed through funnel plots. Results The analysis of the aggregated binary data indicates that probiotics significantly improve clinical outcomes in patients with allergic diseases. Additional analysis using continuous variables (scores) further demonstrates the effectiveness of probiotics in alleviating allergic diseases. Subgroup analyses show that probiotics are effective in treating various common conditions, with two specific probiotics strains being particularly effective for allergic diseases. Conclusion We included literature involving pediatric patients with common allergic diseases, Probiotics can help treat allergic diseases by modulating immune mechanisms, but allergic diseases are typically caused by multiple factors and individual variations, however, allergic diseases are typically caused by multiple factors and individual variations, so they should not be used as the sole treatment method.This meta-analysis provides evidence supporting the effectiveness of probiotics in various allergic diseases. The findings suggest that probiotics can serve as a beneficial adjunctive therapy for the treatment of these conditions. Systematic review registration https://clinicaltrials.gov/, CRD42024586317.
Collapse
Affiliation(s)
- Zhang Xi
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Fenglin
- Chengdu Qingyang District Maternal and Child Health Hospital, Chengdu, China
| | - Zhao Yun
- Chengdu Children's Specialized Hospital, Chengdu, China
| | - Li Chunrong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Ward CP, Perelman D, Durand LR, Robinson JL, Cunanan KM, Sudakaran S, Sabetan R, Madrigal-Moeller MJ, Dant C, Sonnenburg ED, Sonnenburg JL, Gardner CD. Effects of fermented and fiber-rich foods on maternal & offspring microbiome study (FeFiFo-MOMS) - Study design and methods. Contemp Clin Trials 2025; 150:107834. [PMID: 39900290 DOI: 10.1016/j.cct.2025.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Recent research underscores the crucial role of the gut microbiota in human health, particularly during states of altered homeostasis, including pregnancy. Additionally, it is not well understood how dietary changes during pregnancy affect the development of microbiomes of both mother and child. METHODS Here, we describe the study design and methods for our randomized controlled trial, the fermented and fiber-rich foods on maternal and offspring microbiome study (FeFiFo-MOMS). We enrolled 135 women during early pregnancy, randomizing them to one of four diet arms: increased fiber, increased fermented foods, increase in both, and no dietary intervention as a comparator arm. Samples were collected across pregnancy continuing to 18 months post-birth for clinical, microbiome, and immune marker analysis. RESULTS Our trial design intended to investigate the effects of dietary interventions-specifically, increased intake of high-fiber and fermented foods-on maternal gut microbiota diversity and its subsequent transmission to infants. CONCLUSION The FeFiFo-MOMS trial was designed to provide valuable insights into the modifiable dietary factors that could influence maternal and infant health through microbiota-mediated mechanisms and examine the broader implications of diet on pregnant mothers' and infants' health and disease. CLINICALTRIALS govID:NCT05123612.
Collapse
Affiliation(s)
- Catherine P Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Lindsay R Durand
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Jennifer L Robinson
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Kristen M Cunanan
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Sailendharan Sudakaran
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Roujheen Sabetan
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Maggie J Madrigal-Moeller
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Christopher Dant
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
13
|
Tan F, Kong CS. Inhibitory Effect of Lactiplantibacillus plantarun HFY11 on Compound Diphenoxylate-Induced Constipation in Mice. Biomolecules 2025; 15:358. [PMID: 40149894 PMCID: PMC11940172 DOI: 10.3390/biom15030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Lactiplantibacillus plantarun HFY11 (LP-HFY11) is a newly discovered microbial strain. This study was the first to investigate the preventive effect of LP-HFY11 on compound diphenoxylate induced constipation in mice by measuring intestinal contents, serum, and small intestinal tissue indexes. In mice suffering from constipation, LP-HFY11 could prevent the reduction in fecal weight, particle count, and water content. The constipated mice that ingested a high LP-HFY11 dose (LP-HFY11H) expelled the first black stool faster than the model group and the drug lactulose-treated group, but they were slower than the normal group. Furthermore, the small intestine in the LP-HFY11H group had a greater propulsion rate of activated charcoal than that in the model and lactulose groups, but the propulsion rate was still lower than that in the normal group. According to hematoxylin-eosin (H&E) staining, LP-HFY11H was more effective than lactulose at reducing intestinal villi breaking and constipation-induced harm to the small intestine. Simultaneously, compared with the model group, the LP-HFY11H group had markedly increased serum levels of motilin (MTL), endothelin-1 (ET-1), vasoactive intestinal peptide (VIP), and acetylcholinesterase (AchE). Transient receptor potential vanilloid 1 (TRPV1) expression was only higher than in the normal group, but the mRNA expression of c-Kit, stem cell factor (SCF), and glial cell line-derived neurotrophic factor (GDNF) was all higher in the small intestine in the LP-HFY11H group than in the model and lactulose groups, according to the results of quantitative polymerase chain reaction (qPCR) experiments. Analysis of microbial mRNA in the small intestinal contents of the constipated mice further validated the capacity of LP-HFY11 to decrease the abundance of Firmicutes and increase the abundance of Bacteroidetes, Bifidobacteria, and Lactobacillus. This revealed that LP-HFY11, which produced better results than the drug lactulose, can control the gut microbiota of constipated mice and successfully cure constipation. LP-HFY11 has the potential to be used as a probiotic in the treatment of constipation. It has good application prospects in the food industry and biopharma.
Collapse
Affiliation(s)
- Fang Tan
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea;
| | - Chang-Suk Kong
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea;
- Department of Food Science and Nutrition, Silla University, Busan 46958, Republic of Korea
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
14
|
Li X, Wen H, Ke J, Zhao D. Association of constipation with all-cause mortality among individuals with type 2 diabetes: A retrospective cohort study. J Diabetes Investig 2025; 16:501-509. [PMID: 39718116 PMCID: PMC11871400 DOI: 10.1111/jdi.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Constipation is a common complication in type 2 diabetes mellitus (T2DM), yet its impact on mortality remains unclear. This study aimed to investigate the association between constipation and all-cause mortality in patients with T2DM. METHODS We conducted a retrospective cohort study using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Mortality outcomes were ascertained through linkage to National Death Index records until December 31, 2019. The association between constipation and all-cause mortality was assessed using weighted Cox proportional hazards regression models. Kaplan-Meier curves were then employed to visualize survival probabilities. Effect modification was explored through stratified analyses and interaction tests. RESULTS Of 1,339 participants with T2DM, 146 (10.90%) reported constipation. During a median follow-up of 10.75 years, 411 deaths occurred (57 in the constipation group, 354 in the non-constipation group). Fully adjusted weighted Cox regression analysis revealed that constipation was associated with increased all-cause mortality (HR 1.50, 95% CI 1.01-2.22, P = 0.04). Kaplan-Meier analysis demonstrated a significantly lower survival probability in patients with constipation (log-rank P < 0.05). Stratified analyses and interaction tests corroborated these findings across various subgroups. CONCLUSIONS Constipation is associated with elevated all-cause mortality risk in T2DM patients. These findings suggest that constipation management may be an important consideration in improving long-term outcomes for individuals with T2DM.
Collapse
Affiliation(s)
- Xianhua Li
- Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He HospitalCapital Medical UniversityBeijingChina
| | - Haibin Wen
- Department of NephrologyJiang Bin Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He HospitalCapital Medical UniversityBeijingChina
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Wu Y, Zhang X, Wang GQ, Jiao Y. Clinical significance of perioperative probiotic intervention on recovery following intestinal surgery. World J Gastrointest Surg 2025; 17:97503. [DOI: 10.4240/wjgs.v17.i2.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Restoring the balance of gut microbiota has emerged as a critical strategy in treating intestinal disorders, with probiotics playing a pivotal role in maintaining bacterial equilibrium. Surgical preparations, trauma, and digestive tract reconstruction associated with intestinal surgeries often disrupt the intestinal flora, prompting interest in the potential role of probiotics in postoperative recovery. Lan et al conducted a prospective randomized study on 60 patients with acute appendicitis, revealing that postoperative administration of Bacillus licheniformis capsules facilitated early resolution of inflammation and restoration of gastrointestinal motility, offering a novel therapeutic avenue for accelerated postoperative recovery. This editorial delves into the effects of perioperative probiotic supplementation on physical and intestinal recovery following surgery. Within the framework of enhanced recovery after surgery, the exploration of new probiotic supplementation strategies to mitigate surgical complications and reshape gut microbiota is particularly intriguing.
Collapse
Affiliation(s)
- Yang Wu
- Department of Nephrology, Jilin People’s Hospital, Jilin 132000, Jilin Province, China
| | - Xin Zhang
- Department of Nephrology, Jilin People’s Hospital, Jilin 132000, Jilin Province, China
| | - Guan-Qiao Wang
- Department of Abdominal Tumor Surgery, Jilin Cancer Hospital, Changchun 130000, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
16
|
Hayeeawaema F, Sermwittayawong N, Tipbunjong C, Huipao N, Muangnil P, Khuituan P. Live and heat-killed Leuconostoc mesenteroides counteract the gastrointestinal dysfunction in chronic kidney disease mice through intestinal environment modulation. PLoS One 2025; 20:e0318827. [PMID: 39992980 PMCID: PMC12005673 DOI: 10.1371/journal.pone.0318827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Probiotics are well-known therapeutic agents for managing constipation and have been used to improve chronic kidney disease (CKD) progression. However, heat-killed probiotics on CKD remain inadequately explored. This study aimed to evaluate the probiotic potential of lactic acid bacteria derived from natural sources and to investigate the effects of both live and heat-killed Leuconostoc mesenteroides (Ln.m) on renal and gastrointestinal functions in CKD mice. Ln.m was selected from acid and bile salt intolerance tests, non-hemolytic activity, and antibiotic sensitivity. CKD mice demonstrated significantly elevated blood urea nitrogen (BUN) and creatinine levels compared to control mice (p < 0.001 and p < 0.01). Treatment with live and heat-killed Ln.m significantly reduced BUN and creatinine levels in CKD mice (p < 0.01 and p < 0.05). Additionally, kidney damage observed in CKD mice compared to control mice, including glomerular necrosis, tubular dilatation, inflammation, and fibrosis, was significantly alleviated following live and heat-killed Ln.m treatments. CKD-induced gastrointestinal dysfunction was characterized by an imbalance in Firmicutes/Bacteroidota populations, increased colonic uremic toxin (p < 0.01), reduced fecal short-chain fatty acids (SCFAs) (p < 0.05), and constipation. Treatment with live and heat-killed Ln.m restored gut microbiota, decreased uremic toxin (p < 0.001), increased SCFAs (p < 0.05), and alleviated constipation. In summary, both live and heat-killed Ln.m effectively alleviated gastrointestinal dysfunction and renal damage in CKD mice, primarily through modulation of the intestinal environment. These findings highlight the therapeutic potential of live and heat-killed Ln.m as the gastrointestinal dysfunction treatment in CKD.
Collapse
Affiliation(s)
- Fittree Hayeeawaema
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Nawiya Huipao
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Paradorn Muangnil
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Thailand
| | - Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
17
|
Hu L, Huang X, Liu S, Fang L, Zhang J, Tang X. The impact of carbohydrate quality on gut health: Insights from the NHANES. PLoS One 2025; 20:e0315795. [PMID: 39946401 PMCID: PMC11825055 DOI: 10.1371/journal.pone.0315795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND High- and low-quality carbohydrate diets are linked to gut health. However, their specific relationship with constipation or diarrhea is unclear. This study uses 2005-2010 NHANES data to examine the relationship between carbohydrate quality and constipation and diarrhea, and to identify suitable populations for different carbohydrate diets. METHODS Chronic constipation was defined as BSFS types 1 and 2, and chronic diarrhea as types 6 and 7. Dietary intake data were provided by the FPED, using data from the NHANES database. Subjects recalled foods and beverages consumed in the past 24 hours, and intake was averaged and divided into quartiles (Q). After adjusting for covariates, associations between high- and low-quality carbohydrate diets and constipation or diarrhea were assessed using weighted RCS curves and multivariate logistic regression. Results were expressed as weighted ORs and 95% CIs, with subgroup analyses performed. RESULTS A total of 11,355 people participated, with 10,488 in the constipation group and 10,516 in the diarrhea group. Multiple regression showed that high-quality carbohydrates were negatively associated with constipation (OR: 0.852, 95% CI: 0.796-0.912, P = 0.0001). Low-quality carbohydrates were positively associated with constipation (OR: 1.010, 95% CI: 1.002-1.018, P = 0.0295). There was no significant direct association between carbohydrate quality and diarrhoea (P = 0.5189, P = 0.8278). Segmented regression results showed a non-significant association between low quality carbohydrate intake above 40.65 servings/day and constipation, while quality carbohydrate intake above 3.84 servings/day was not significantly associated with diarrhoea. Subgroup analyses showed differences in carbohydrate quality and constipation or diarrhoea across populations. CONCLUSIONS High-quality carbohydrates lowered constipation risk by 33.7% and reduced diarrhea risk with intake up to 3.84 servings/day. In contrast, low-quality carbohydrates increased constipation risk by 83.4%, with risk stabilizing beyond 40.65 servings/day. These effects varied across groups, suggesting that better carbohydrate quality supports gut health, especially in sensitive individuals.
Collapse
Affiliation(s)
- Lanshuo Hu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xuanchun Huang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Shan Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lihui Fang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Zhu L, Yang X. Gut Microecological Prescription: A Novel Approach to Regulating Intestinal Micro-Ecological Balance. Int J Gen Med 2025; 18:603-626. [PMID: 39931312 PMCID: PMC11807788 DOI: 10.2147/ijgm.s504616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The intestinal microecology is comprises intestinal microorganisms and other components constituting the entire ecosystem, presenting characteristics of stability and dynamic balance. Current research reveals intestinal microecological imbalances are related to various diseases. However, fundamental research and clinical applications have not been effectively integrated. Considering the importance and complexity of regulating the intestinal microecological balance, this study provides an overview of the high-risk factors affecting intestinal microecology and detection methods. Moreover, it proposes the definition of intestinal microecological imbalance and the definition, formulation, and outcomes of gut microecological prescription to facilitate its application in clinical practice, thus promoting clinical research on intestinal microecology and improving the quality of life of the population.
Collapse
Affiliation(s)
- Lingping Zhu
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- School of Public Health, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Xuefeng Yang
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| |
Collapse
|
19
|
Fang L, Yi X, Shen J, Deng N, Peng X. Gut-brain axis mediated by intestinal content microbiota was associated with Zhishi Daozhi decoction on constipation. Front Cell Infect Microbiol 2025; 15:1539277. [PMID: 39963403 PMCID: PMC11830728 DOI: 10.3389/fcimb.2025.1539277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Constipation is a common digestive system disorder, which is closely related to the intestinal flora. Zhishi Daozhi decoction (ZDD) is a traditional Chinese medicine prescription used to treat constipation caused by indigestion. This study is to evaluate the efficacy of ZDD in treating constipation and to elucidate the underlying mechanism. Methods In this study, Kunming mice were administered a high-protein diet (HFHPD) and loperamide hydrochloride injections to induce constipation. The mice then received varying doses (2.4, 4.7, and 9.4 mg/kg) of ZDD for seven days. Following the sampling process, we measured fecal microbial activity. The levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), and aquaporin-3 (AQP3) were quantified using enzyme-linked immunosorbent assay. Changes in the gut microbiota were evaluated through 16S rRNA gene sequencing. Additionally, we investigated the correlation between specific microbiota features and the levels of 5-HT, VIP, and AQP3. Results The fecal surface of the mice in the model group (CMM) was rough and dry. The stool of mice in the low-dose ZDD group (CLD), medium-dose ZDD group (CMD), and high-dose ZDD group (CHD) exhibited a smoother texture, closely resembling that of the normal group (CNM). 5-HT levels in the CMM group were significantly lower than in the CNM, CLD, and CHD. VIP levels in the CMD were lower than in the other four groups, and AQP3 levels in CMM showed a decreasing trend. The fecal microbial activity of the CMM group was significantly higher than that of the other groups. Diversity analysis indicated that CMD and CHD treatments were more effective in restoring the intestinal microbiota structure. Potential pathogenic bacteria, including Clostridium, Aerococcus, Jeotgalicoccus, and Staphylococcus were enriched in CMM. In contrast, beneficial bacteria such as Faecalibacterium, Bacillaceae, and Bacillus were more prevalent in the CLD, CMD, and CHD. Correlation analysis revealed that Streptococcus and Enterococcus were positively correlated with VIP, while Succinivibrio showed a negative correlation with 5-HT. Conclusions Constipation induced by HFHPD and loperamide hydrochloride disrupts the structure of the intestinal microbiota. ZDD appears to alleviate constipation, potentially through mechanisms linked to the brain-gut axis and its interaction with the intestinal microbiota. Among the treatment groups, the medium dose of ZDD demonstrated the most effective results.
Collapse
Affiliation(s)
- Leyao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Junxi Shen
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
20
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
21
|
Wang J, He J, Liu D, Zhang T, Wu Y, Xie M. Gut Microbiota and Metabolite Profiles Associated With Functional Constipation Severity. Microbiol Immunol 2025; 69:85-95. [PMID: 39616526 DOI: 10.1111/1348-0421.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 02/04/2025]
Abstract
Functional constipation (FC) is a common digestive disorder that affects patients' quality of life and is closely associated with intestinal tumors. This study used a cross-sectional design to assess the changes of intestinal flora and metabolites in different severities of FC patients through 16S rRNA sequencing and metabolomics analysis. Results showed that patients with severe FC had significantly higher clinical and anxiety scores compared to those in the mild and moderate groups. The species richness of intestinal microorganisms in the severe FC group was also significantly higher, and obvious differences in the flora composition existed. Specifically, the Bacteroidota was more abundant in the severe FC group, which was a characteristic feature distinguishing severe FC. Metabolomic analyses also revealed metabolite differences among patients with mild-to-moderate and severe FC, with the severe FC group showing increased enrichment in L-isoleucine biosynthesis and glycolysis metabolic pathways. The short-chain fatty acid-targeted metabolome suggested that a decrease in butyric acid might be related to worsening constipation. This study suggests that specific flora and metabolic pathways could serve as potential diagnostic and therapeutic targets, thereby contributing to the development of new diagnostic and therapeutic approaches to improve the quality of life and therapeutic outcomes for FC patients.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jixin He
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Liu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yin Wu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming Xie
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
22
|
Mei Z, Du P, Han Y, Shao Z, Zheng D. Probiotics interventions modulating gut microbiota composition in individuals with intestinal constipation: Protocol of a systemic review and meta-analysis of randomized controlled trials. PLoS One 2025; 20:e0311799. [PMID: 39854346 PMCID: PMC11759984 DOI: 10.1371/journal.pone.0311799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/23/2024] [Indexed: 01/26/2025] Open
Abstract
INTRODUCTION Intestinal constipation is a substantive global health concern, significantly impairing patient quality of life. An emerging view is that the gut microbiota plays a critical role in intestinal function, and probiotics could offer therapeutic benefits. This study aims to consolidate evidence from randomized controlled trials (RCTs) that assess the effectiveness of probiotics in modulating microbiota and ameliorating symptoms of constipation. METHODS We will execute a systematic evidence search across Medline (via PubMed), Embase, Cochrane CENTRAL, Web of Science, Scopus, and CINAHL, employing explicit search terms and further reference exploration. Two independent reviewers will ensure study selection and data integrity while assessing methodological quality via the Cochrane Collaboration's Risk of Bias-2 tool. Our primary goal is to outline changes in microbiota composition, with secondary outcomes addressing symptom relief and stool characteristics. Meta-analyses will adopt a random-effects model to quantify the effects of interventions, supplemented by subgroup analyses and publication bias assessments to fortify the rigor of our findings. DISCUSSION This study endeavors to provide a rigorous, synthesized overview of the probiotics interventions evidence for modulating gut microbiota in individuals with intestinal constipation. The insights derived could inform clinical guidelines, nurture the creation of novel constipation management strategies, and direct future research in this field. ETHICS AND DISSEMINATION As this study aggregates and analyzes existing data without direct human subject involvement, no ethical approval is required. We will disseminate the study's findings through scientific forums and seek publication in well-regarded, peer-reviewed journals. TRIAL REGISTRATION OSF registration number: 10.17605/OSF.IO/MEAHT.
Collapse
Affiliation(s)
- Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Peixin Du
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Han
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuo Shao
- Department of General Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, Shanghai, China
| | - De Zheng
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| |
Collapse
|
23
|
Jang JH, Chang YB, Kim SM, Han K, Sim WS, Hong KB, Suh HJ, Han SH. Impact of the probiotic Bacillus coagulans on loperamide-induced delayed bowel movement in Sprague-Dawley rats. Food Funct 2025; 16:720-730. [PMID: 39745362 DOI: 10.1039/d4fo04237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
This study investigated the effects of Bacillus coagulans on alleviating loperamide-induced constipation. To evaluate the efficacy of B. coagulans in Sprague-Dawley (SD) rats, fecal parameters, the intestinal transit rate, and changes in intestinal mucosal cells were measured through histological analysis. Additionally, serotonin levels, water absorption, tight junction-related gene expression, and the cecal short-chain fatty acid (SCFA) content were analyzed. The administration of B. coagulans significantly altered the fecal weight and moisture content and improved gastrointestinal transit in rats with loperamide-induced constipation. Furthermore, B. coagulans supplementation restored the thickness of both muscular and mucosal layers that had been reduced by loperamide and significantly increased the area of intestinal cells, including Cajal and crypt cells. B. coagulans administration upregulated the expression levels of tryptophan hydroxylase and aquaporin genes, which were downregulated by loperamide. As the dose of B. coagulans increased, there was a corresponding upregulation in the expression of tight junction-related genes, including occludin (OCLN), zonula occludens 1 (ZO-1), and claudin 1 (CLDN1). Additionally, the levels of c-kit, AQP 3, and OCLN proteins, which were elevated by loperamide treatment, were reduced with higher concentrations of B. coagulans. Loperamide decreased the acetic acid content; however, high doses of B. coagulans increased it, leading to a significant increase in the total cecal SCFA content. Thus, B. coagulans shows potential as a probiotic for improving constipation.
Collapse
Affiliation(s)
- Joo Hyun Jang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kisoo Han
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea
| | - Wan-Sup Sim
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hee Han
- Institute of Human Behavior & Genetics, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
24
|
Zhang Z, Bi C, Wu R, Qu M. Association of the newly proposed dietary index for gut microbiota and constipation: a cross-sectional study from NHANES. Front Nutr 2025; 12:1529373. [PMID: 39895839 PMCID: PMC11782033 DOI: 10.3389/fnut.2025.1529373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Objective The dietary index for gut microbiota. DI-GM is an innovative metric designed to capture the diversity of the gut microbiome, yet its association with constipation remains unstudied. Methods In this cross-sectional study, 11,405 adults aged 20 and older were selected from the National Health and Nutrition Examination Survey 2005-2010 for the sample. Constipation was defined as fewer than three defecation frequencies per week using bowel health questionnaire (BHQ). Fewer than three bowel movements per week were considered as constipation by Bowel Health Questionnaire (BHQ). DI-GM was derived from dietary recall data, including avocado, broccoli, chickpeas, coffee, cranberries, fermented dairy, fiber, green tea, soybean and whole grains as beneficial elements, red meat, processed meat, refined grains, and high fat as detrimental components. Multivariable weighted logistic was employed to investigate the association of DI-GM with constipation. Secondary analyses included subgroup analyses, restricted cubic spline (RCS), and multiple imputation. Results A higher DI-GM and beneficial gut microbiota score were associated with a lower prevalence of constipation (DI-GM: OR = 0.82, 95% CI = 0.75, 0.90; beneficial gut microbiota score: OR = 0.77, 95% CI = 0.67, 0.89). After grouping DI-GM, in the fully adjusted model, participants with DI-GM ≥ 6 were significantly negatively correlated with both the prevalence of constipation (OR = 0.48, 95% CI = 0.33, 0.71). RCS indicated a non-linear relationship between DI-GM and constipation. Subgroup analyses by age, sex and common complications showed no statistically significant interactions (p > 0.05). Conclusion The newly proposed DI-GM was inversely related with the prevalence of constipation. When treating patients with constipation, it is necessary for clinicians to provide timely and effective dietary interventions incorporating the DI-GM for patients with constipation to avoid further deterioration of the condition.
Collapse
Affiliation(s)
- Zhuhui Zhang
- Department of Anorectal Surgery, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlu Bi
- Department of Anorectal Surgery, Shenzhen Traditional Chinese Medicine Anorectal Hospital (Futian), Shenzhen, China
| | - Runsheng Wu
- Department of Urology, Shenzhen Pingle Orthopedics Hospital, Shenzhen, Guangdong, China
| | - Muwen Qu
- Department of Anorectal Surgery, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Liang X, Wan D, Li X, Peng Y, Chen L. Study on the effects of Massa Medicata Fermentata with different formulations on the intestinal microbiota and enzyme activities in mice with spleen deficiency constipation. Front Cell Infect Microbiol 2025; 14:1524327. [PMID: 39844840 PMCID: PMC11753248 DOI: 10.3389/fcimb.2024.1524327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Objective This study aims to explore the therapeutic mechanism of Massa Medicata Fermentata (MMF) with different formulations on spleen deficiency constipation in mice by analyzing gastrointestinal hormones, D-xylose, intestinal microbiota, and intestinal enzyme activities. Methods A spleen deficiency constipation model was established using an oral administration of Sennae Folium decoction combined with controlled diet and water intake. After successful model establishment, the mice with spleen deficiency constipation were treated with MMF S1, S2, S3. Following the intervention, serum samples from each group of mice were collected to measure VIP, 5-HT, and D-xylose. Additionally, small intestine contents were analyzed for intestinal enzyme activity and subjected to 16S rRNA high-throughput sequencing. Results Mice with spleen deficiency constipation showed significant decreases in body weight and fecal water content. In contrast, the body weight of the CS2 and CS3 groups returned to normal levels, and fecal water content in the CS2 and CS3 groups also returned to normal. The MMF S2 and S3 significantly increased protease and sucrase enzymes levels compared with CM group. Serum D-xylose levels were significantly reduced in the CM and CS2 group. VIP levels increased significantly in the CM group but decreased in the CS2 and CS3 groups. Additionally, 5-HT levels in the CM and CS1 groups decreased significantly, with the CS2 group returning to normal and the CS3 group showing significant increases. 16S rRNA sequencing analysis revealed that all three MMF formulations effectively restored the intestinal microbiota composition in mice. LEfSe analysis identified characteristic microbiota linked to different intervention groups. The CS3 group significantly upregulated the chloroalkane and chloroalkene degradation and vibrio cholerae pathogenic cycle pathways compared to the CM group. Candidatus_Arthromitus in the CS3 group and Psychrobacter in the CS2 group were positive and negative correlations with 5-HT and VIP, respectively. Conclusion The three formulations of MMF significantly alleviated spleen deficiency constipation symptoms by modulating intestinal enzyme activities, D-xylose, VIP, and 5-HT levels, and restoring intestinal microbiota balance. Psychrobacter and Candidatus_Arthromitus were identified as potential biomarkers for the treatment of spleen deficiency constipation. Different formulations of MMF have different mechanisms of regulating constipation through intestinal microbiota.
Collapse
Affiliation(s)
- Xuejuan Liang
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Dan Wan
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xinliang Li
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Linglong Chen
- Scientific Research Department, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Sun W, Tao L, Qian C, Xue PP, Du SS, Tao YN. Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants. Front Cell Infect Microbiol 2025; 14:1386421. [PMID: 39835278 PMCID: PMC11743518 DOI: 10.3389/fcimb.2024.1386421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Breast milk is an essential source of infant nutrition. It is also a vital determinant of the structure and function of the infant intestinal microbial community, and it connects the mother and infant intestinal microbiota. Human milk oligosaccharides (HMOs) are a critical component in breast milk. HMOs can reach the baby's colon entirely from milk and become a fermentable substrate for some intestinal microorganisms. HMOs can enhance intestinal mucosal barrier function and affect the intestinal function of the host through immune function, which has a therapeutic effect on specific infant intestinal diseases, such as necrotizing enterocolitis. In addition, changes in infant intestinal microbiota can reflect the maternal intestinal microbiota. HMOs are a link between the maternal intestinal microbiota and infant intestinal microbiota. HMOs affect the intestinal microbiota of infants and are related to the maternal milk microbiota. Through breastfeeding, maternal microbiota and HMOs jointly affect infant intestinal bacteria. Therefore, HMOs positively influence the establishment and balance of the infant microbial community, which is vital to ensure infant intestinal function. Therefore, HMOs can be used as a supplement and alternative therapy for infant intestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-na Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People’s Hospital
Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
27
|
Yan Z, Chen Q, Ren Y, Shi J, Xu Z, Xue Y, Geng Y. Maltodextrin alleviates constipation induced by loperamide hydrochloride in mice. FOOD BIOSCI 2025; 63:105675. [DOI: 10.1016/j.fbio.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
29
|
Li J, Zheng H, Liu J, Ding J, Guo Q, Zhang N. Effects of Functional Red Pine Seed Direct-Drinking Oil on Constipation and Intestinal Barrier Function in Mice. Antioxidants (Basel) 2024; 14:14. [PMID: 39857348 PMCID: PMC11760897 DOI: 10.3390/antiox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Constipation is a prevalent global health issue that greatly affects human well-being. However, many existing treatments are associated with side effects, necessitating the development of alternative approaches. In this study, a balanced fatty acid red pine seed direct-drinking oil (SFA:MUFA:PUFA = 1.14:1.08:1, n - 6:n - 3 = 4.17:1) was formulated using red pine seed oil as the base oil, blended with coconut oil, rice bran oil, and camellia oil. The study investigated the effects and mechanisms of this red pine seed direct-drinking oil in alleviating constipation in mice. Results showed that, compared to normal mice, constipated mice exhibited symptoms of dry stools, difficulty defecating, abnormal neurotransmitter levels, oxidative stress, and colonic tissue damage. Additionally, the protein expression levels of occludin and claudin-1 were reduced by 86.11% and 25.00%, respectively (p < 0.05), while mRNA expression levels decreased by 70.80% and 59.00% (p < 0.05). Red pine seed direct-drinking oil intake improved defecation, reduced serum levels of vasoactive intestinal peptide (VIP), endothelin-1 (ET-1), and nitric oxide (NO), and increased substance P (SP) levels. Furthermore, it also significantly elevated serum levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05), alleviated colonic tissue damage, and upregulated the protein and mRNA expression levels of occludin and claudin-1 (p < 0.05). These findings suggest that red pine seed direct-drinking oil alleviates constipation in mice by enhancing intestinal motility, regulating serum neurotransmitters, mitigating oxidative stress, repairing intestinal barrier damage, and increasing tight junction protein expression. This study represents the first use of red pine seed direct-drinking oil to alleviate constipation in mice, providing a novel approach to improving symptoms in individuals with constipation.
Collapse
Affiliation(s)
- Jie Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Haonan Zheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Jiahui Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Jie Ding
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Qingqi Guo
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (J.L.); (H.Z.); (J.L.); (J.D.)
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
30
|
Xu L, Qiu B, Ba F, Zhang S, Han S, Chen H, Wu Y, Gao W, Xie S, Chen Y, Jiang S, Zhang J, Li Y, Berglund B, Yao M, Li L. Synergistic effects of Ligilactobacillus salivarius Li01 and psyllium husk prevent mice from developing loperamide-induced constipation. Food Funct 2024; 15:11934-11948. [PMID: 39545778 DOI: 10.1039/d4fo04444d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Constipation is a gastrointestinal (GI) condition marked by difficulty in defecation, abdominal pain and distension, significantly impacting both physical and mental health. Ligilactobacillus salivarius Li01 (Li01) is a probiotic known to prevent constipation in mice, while psyllium husk (PSH) is a dietary fiber with high water retention, acting as an intestinal lubricant. This study investigates the effects of a combined treatment of Li01 and PSH on mice with loperamide-induced constipation. The combination treatment improved GI transit rates, increased the water content of feces, and regulated serum concentrations of GI hormones more effectively than either Li01 or PSH alone. The beneficial effects were linked to higher levels of butyric acid and a greater proportion of non-12-OH bile acids (BAs) in the GI tract. These protective effects were not influenced by changes in gut microbiota. Additionally, Li01 produced butyric acid and fermented PSH in vitro. Our findings suggest that the probiotic Li01 and the prebiotic PSH synergistically protect against constipation in mice, highlighting their potential as functional food components.
Collapse
Affiliation(s)
- Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Furong Ba
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Shengyi Han
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Wang Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Siyuan Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Jingyi Zhang
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
31
|
Ong SS, Xu L, Ang CW, Deng X, Lu H, Xu T. Global research trajectories in gut microbiota and functional constipation: a bibliometric and visualization study. Front Microbiol 2024; 15:1513723. [PMID: 39712900 PMCID: PMC11659297 DOI: 10.3389/fmicb.2024.1513723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Functional constipation (FC) negatively impacts quality of life and is associated with gut microbiota (GM) imbalances. Despite the growing interest in this area, a thorough analysis of research trends is missing. This study uses bibliometric methods to assess the global research on GM's role in FC, pinpointing key topics, impactful studies, and prominent researchers to guide future research and identify gaps. Methods In our study, we conducted a performance analysis and science mapping using bibliometric indicators such as publication trends, author and institutional contributions, productivity, impact, keyword analysis, and collaboration networks. We employed software tools like VOSviewer, Biblioshiny, CiteSpace, and SCImago Graphica to automate the assessment of metrics including country, institutional, and journal distribution, authorship, keyword frequency, and citation patterns. Results From 2013 to 2024, annual publications on GM and FC rose from 29 to 252, with a slight decrease to 192 in 2024. Average citations per publication peaked at 11.12 in 2021, declining to 6.43 by 2024. China led in research output (37.8%), followed by the United States (14.4%) and Japan (7.5%). Bibliometric analysis identified key authors like CHEN W and ZHANG H, with 30 and 27 articles, respectively. Jiangnan University and Harvard University were top contributors, with 131 and 81 articles. Keywords analysis revealed "constipation," "gut microbiota," and "probiotic" as central themes, with a shift toward "gut microbiota" and "intestinal flora" in recent years. This study provides a comprehensive overview of the research landscape, highlighting leading authors, institutions, and evolving research priorities in the field. Conclusion Our review synthesizes current GM and FC research, guiding future studies. It suggests exploring GM in various GI disorders, the impact of lifestyle and drugs on GM, advanced research techniques, and probiotics/prebiotics for FC. There's also a focus on therapies targeting GM's effect on the gut-brain axis, paving the way for improved FC management.
Collapse
Affiliation(s)
- Shun Seng Ong
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianjie Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ching Wei Ang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyue Deng
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Lu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Wang D, Zhang S, Jiang Y, Ren Y, Kuai D, Zhao R, Wu D. Correlation between colonoscopy difficulty and personality traits: study protocol for a prospective, observational, multicentre study. BMJ Open 2024; 14:e090606. [PMID: 39622570 PMCID: PMC11624761 DOI: 10.1136/bmjopen-2024-090606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Colonoscopy is widely used for screening and treatment of early colonic lesions and is critical for the early diagnosis of colorectal cancer. However, due to its invasive nature, colonoscopy can cause pain and discomfort for patients and is often associated with prolonged insertion times or failed attempts. Difficult colonoscopy is characterised by a caecal insertion time greater than 10 min, multiple insertion attempts or failed insertion, with an incidence rate of approximately 25%. Studies have shown that objective factors such as gender, age, body mass index, bowel preparation quality and history of abdominal or pelvic surgery can make colonoscopy difficult. Integrating clinical evidence and the established impact of personality traits on certain gastrointestinal conditions, a patient's personality traits and emotional and psychological states may also influence caecal insertion time during colonoscopy. Currently, no studies have investigated the predictive role of patients' personality on the difficulty of colonoscopy. This study used the Chinese-Language 44-Item Big Five Personality Inventory to assess patients' personality traits, aiming to observe whether there is a correlation between the degree of difficulty of colonoscopy and any of the personality traits. METHODS AND ANALYSIS This is a prospective, observational, multicentre study. Patients undergoing colonoscopy will be required to complete the Big Five Inventory, the General Anxiety Disorder 7-item scale and the Patient Health Questionnaire 9-item Depression Scale before colonoscopy. During the colonoscopy, the endoscopist will record the primary endpoint of caecal insertion time. The Boston Bowel Preparation Scale, patients pain scores and willingness to undergo a subsequent colonoscopy will be recorded as the secondary endpoints. The study plans to enrol a total of 322 patients. Survival analysis will be used to examine the correlation between colonoscopy difficulty and the Big Five personality traits. ETHICS AND DISSEMINATION This study was approved by the Ethics Committee of the Peking Union Medical College Hospital (No. K2128). All participants in this study will provide written informed consent. The results of this study will be published in an open-access way. There is no independent data monitoring committee because this is an observational and low-risk study. TRIAL REGISTRATION NUMBER NCT05584423.
Collapse
Affiliation(s)
- Duan Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Dongcheng-qu, Beijing, China
| | - Yinan Jiang
- Department of Psychology, Peking Union Medical College Hospital, Dongcheng-qu, Beijing, China
| | - Yutang Ren
- Departmemt of Gastroenterology, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Dayu Kuai
- Department of Gastroenterology, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Ruihong Zhao
- Department of Gastroenterology, The First Bethune Hospital of Jilin University, Changchun, Jilin sheng, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Tarantino G, Cataldi M, Citro V. Could chronic opioid use be an additional risk of hepatic damage in patients with previous liver diseases, and what is the role of microbiome? Front Microbiol 2024; 15:1319897. [PMID: 39687876 PMCID: PMC11646994 DOI: 10.3389/fmicb.2024.1319897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Among illicit drugs, addiction from opioids and synthetic opioids is soaring in an unparalleled manner with its unacceptable amount of deaths. Apart from these extreme consequences, the liver toxicity is another important aspect that should be highlighted. Accordingly, the chronic use of these substances, of which fentanyl is the most frequently consumed, represents an additional risk of liver damage in patients with underlying chronic liver disease. These observations are drawn from various preclinical and clinical studies present in literature. Several downstream molecular events have been proposed, but recent pieces of research strengthen the hypothesis that dysbiosis of the gut microbiota is a solid mechanism inducing and worsening liver damage by both alcohol and illicit drugs. In this scenario, the gut flora modification ascribed to non-alcoholic fatty liver disease performs an additive role. Interestingly enough, HBV and HCV infections impact gut-liver axis. In the end, the authors tried to solicit the attention of operators on this major healthcare problem.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, Naples, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore, Italy
| |
Collapse
|
34
|
Lin TH, Shih TW, Lin CH. Effects of Lactocaseibacillus paracasei subsp. paracasei NTU 101 on gut microbiota: a randomized, double-blind, placebo-controlled clinical study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9494-9505. [PMID: 39051756 DOI: 10.1002/jsfa.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Lactocaseibacillus paracasei subsp. paracasei NTU 101 (NTU101) is a well-known commercial probiotic with multiple health beneficial effects. In this study, the gut microbiota modulation effect of an NTU 101 product, Vigiis 101-LAB, on healthy human was investigated in a randomized, double-blind, placebo-controlled human trial. RESULTS Vigiis 101-LAB significantly modulated human gut microbiota at fourth and sixth weeks of trial (anosim analysis, P = 0.001). It also significantly improved peristalsis (P = 0.003) and shortened defecation interval of subjects. The shift of gut microbiota is significantly fit with defecation interval (P = 0.009) and stool shape (P = 0.001) of subjects. CONCLUSION Our results suggest that Vigiis 101-LAB promotes human intestinal health with improvement of peristalsis and fecal quality. The gut modulation effects of Vigiis 101-LAB subsequently raised the abundance of vitamin B7, vitamin K, pyrimidine and purine biosynthesis pathways. Vigiis 101-LAB may promote peristalsis via purinergic pathway and possibly conferring prophylactic benefits against irritable bowel syndrome with constipation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tzu-Hsing Lin
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | | | - Chih-Hui Lin
- Department of Life Science, National Taitung University, Taitung, Taiwan
| |
Collapse
|
35
|
Yang W, Gao X, Lin J, Liu L, Peng L, Sheng J, Xu K, Tian Y. Water-insoluble dietary fiber from walnut relieves constipation through Limosilactobacillus reuteri-mediated serotonergic synapse and neuroactive ligand-receptor pathways. Int J Biol Macromol 2024; 283:137931. [PMID: 39579820 DOI: 10.1016/j.ijbiomac.2024.137931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Dietary fiber can alleviate functional constipation (FC) by modulating the gut microbiota. To clarify the prebiotic properties of walnut insoluble dietary fiber (WIDF), we explored its structural characteristics and laxative mechanism. A galacturonic acid and glucose-rich WIDF was isolated from walnuts by using a complex enzymatic method. Animal experiments results showed that WIDF could effectively alleviate the symptoms of loperamide-induced FC in mice, including shortening the defecation time, increasing the wet weight and water content of feces, and promoting intestinal motility. WIDF might alleviate FC through activating serotonergic synapse and inhibiting the delta-opioid receptor/inducible nitric oxide synthase (Oprd/iNOS) pathways. Importantly, WIDF treatment altered the structure and composition of the gut microbiota. Correlation analysis revealed that Bacillus and its dominant ASV17, which is considered to be the key microbe for constipation alleviation, were strongly associated with constipation phenotypes. Based on pure culture and 16S rRNA gene phylogenetic analysis, Limosilactobacillus reuteri (L. reuteri), which is 100 % similar to ASV17, was isolated and identified from the feces of WIDF-treated mice. L. reuteri relieved FC by modulating serotonergic synapse and the Oprd/iNOS pathways. These results suggested that WIDF and L. reuteri treatment is a prospective strategy for the prevention of constipation.
Collapse
Affiliation(s)
- Weixing Yang
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jialong Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Kunlong Xu
- Yunnan Agricultural University, Kunming 650201, China.
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Pu 'er University, Pu 'er 665000, China.
| |
Collapse
|
36
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
37
|
Xu X, Wang Y, Long Y, Cheng Y. Chronic constipation and gut microbiota: current research insights and therapeutic implications. Postgrad Med J 2024; 100:890-897. [PMID: 39237119 DOI: 10.1093/postmj/qgae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Chronic constipation is a prevalent clinical condition. Its etiology and pathogenesis have not yet been fully understood. In recent years, mounting evidence suggests a close association between chronic constipation and intestinal dysbiosis, including alterations in the colony structure and metabolites, as well as the modulation of bowel movements via the brain-gut-microbiota axis. With the deepening of related research, probiotic-related therapies are expected to become a potential first-line treatment for chronic constipation in the future. In this review, we summarize the current research insights into the intricate relationships between chronic constipation and the gut microbiota and briefly discuss several different approaches for treating chronic constipation. The findings from this review may advance our understanding of the pathological mechanisms underlying chronic constipation and, ultimately, translate them into improvements in patient care.
Collapse
Affiliation(s)
- Xiaoqian Xu
- Department of Gastroenterology, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao, 1st Street, Chaoyang District, Beijing 100016, China
| | - Yali Wang
- Department of Gastroenterology, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao, 1st Street, Chaoyang District, Beijing 100016, China
| | - Yiyan Long
- Department of Gastroenterology, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao, 1st Street, Chaoyang District, Beijing 100016, China
| | - Yanli Cheng
- Department of Gastroenterology, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao, 1st Street, Chaoyang District, Beijing 100016, China
| |
Collapse
|
38
|
Luk-In S, Leepiyasakulchai C, Saelee C, Keeratichamroen A, Srisangwan N, Ponprachanuvut P, Chammari K, Chatsuwan T, Wannigama DL, Shein AMS, Kueakulpattana N, Srisakul S, Sranacharoenpong K. Impact of resistant starch type 3 on fecal microbiota and stool frequency in Thai adults with chronic constipation randomized clinical trial. Sci Rep 2024; 14:27944. [PMID: 39543201 PMCID: PMC11564901 DOI: 10.1038/s41598-024-79465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Constipation poses a significant health concern affecting individuals of varying ages and geographic locations worldwide. While the impacts of numerous probiotics on constipation are well-characterized, there has been limited assessment of the potential prebiotic effects of resistant starches. We therefore conducted a randomized, double-blind and placebo-controlled, clinical trial of resistant starch type 3 (RS-3) in Thai adults with self-reported chronic constipation. The effects of these mixed natural starch fibers on beneficial gut bacteria, bowel movements and stool consistency were evaluated after 6- and 12-week periods. Regardless of subject age, consumption of RS-3 compared to placebo resulted in significant improvements in gut health by dramatically increasing levels of beneficial bacteria (Bifidobacterium, Prevotella, Akkermansia and Megamonas) in the gut and relieving constipation. RS-3 consumption was associated with a significantly increased frequency of bowel movements, with subjects reporting these as healthy stools. Our findings provide important insights into the therapeutic advantages of RS-3 for constipation, and propose RS-3 as a feasible alternative strategy for management of constipation.
Collapse
Affiliation(s)
- Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
| | - Chutiphon Saelee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Arisa Keeratichamroen
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Nuttarat Srisangwan
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Punnee Ponprachanuvut
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Kantanit Chammari
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sukrit Srisakul
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Multidisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kitti Sranacharoenpong
- Department of Health Development, ASEAN Institute for Health Development, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
39
|
Terrén Lora A, Penadés BF, López Oliva S, Arponen S, Okutan G, Sánchez Niño GM, San Mauro Martín I. Supplementation with probiotics, prebiotics, and synbiotics in patients with chronic functional constipation: a randomized, double-blind, placebo-controlled pilot clinical trial. Gastroenterol Rep (Oxf) 2024; 12:goae101. [PMID: 39530075 PMCID: PMC11552633 DOI: 10.1093/gastro/goae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024] Open
Abstract
Background Functional constipation includes a set of gastrointestinal symptoms unexplainable by an identifiable underlying physical cause or pathology. The prevalence of this condition is high and there is a need to develop strategies to reduce it. Probiotics, prebiotics, and synbiotics may be an alternative treatment for chronic functional constipation. Methods To compare the efficacy of dietary supplementation on symptoms of patients who suffer from chronic functional constipation. An exploratory, randomized, double-blind, placebo-controlled pilot clinical trial was conducted with 74 patients diagnosed with chronic functional constipation who were divided into four treatment groups-Group A: probiotics; Group B: prebiotics; Group C: synbiotics; Group D: placebo. Each patient was treated for 8 weeks. At the beginning and end of treatment, data were collected by administering questionnaires and scales, including the Bristol stool scale, on gastrointestinal symptoms, bowel movements, and sociodemographic and anthropometric characteristics. Results Stool frequency increased in all four study groups, and greatest difference was observed in the synbiotics group (2.8 ± 1.3 vs. 5.9 ± 2.6; P < 0.001). Stool consistency improved only in the active treatment groups. Based on the evaluation of gastrointestinal symptoms, participants treated with prebiotics, probiotics and synbiotics showed the greatest improvement in abdominal pain (8.28 ± 2.63 vs. 6.56 ± 2.62; P = 0.009), gastroesophageal reflux (4.60 ± 2.66 vs. 3.45 ± 2.42; P = 0.039) and constipation symptoms (13.00 ± 3.97 vs. 8.71 ± 3.35; P = 0.003), respectively. As for quality of life, the main changes were observed in physical health domains, with a placebo effect. Conclusions The present study provides evidence supporting the efficacy of dietary supplementation with probiotics, prebiotics, and synbiotics in patients with chronic functional constipation after 8 weeks of treatment.
Collapse
Affiliation(s)
- Ana Terrén Lora
- Research Centers in Nutrition and Health (CINUSA Group), Research Department, Madrid, Spain
| | - Bruno F Penadés
- Research Centers in Nutrition and Health (CINUSA Group), Research Department, Madrid, Spain
| | - Sara López Oliva
- Research Centers in Nutrition and Health (CINUSA Group), Research Department, Madrid, Spain
| | - Sari Arponen
- Slow Medicine Institute, Research Department, Alcobendas, Madrid, Spain
| | - Gülşah Okutan
- Research Centers in Nutrition and Health (CINUSA Group), Research Department, Madrid, Spain
| | | | | |
Collapse
|
40
|
Kwoji ID, Okpeku M, Aiyegoro OA, Adeleke MA. Metabolic interactions of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 in co-culture: implications for multi-strain probiotics. J Appl Microbiol 2024; 135:lxae264. [PMID: 39510973 DOI: 10.1093/jambio/lxae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
AIMS Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 are potential probiotic bacteria. The mechanisms of enhanced benefits by muti-strain probiotics are yet fully understood. We elucidated the influence of co-culturing on the metabolite profiles of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 to decipher the impacts of co-culturing on metabolic interactions between the strains. METHODS AND RESULTS Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 were grown in single and co-cultures in defined media. Bacterial cell metabolites were extracted at the mid-stationary growth phase and analysed using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). Mass-spectral data were preprocessed and analysed using unsupervised and supervised methods based on the group allocations. A total of 1387 metabolites were identified, with 18.31% significant metabolites (P < 0.05) and 10.17% differential metabolites (P < 0.05, variable importance on projection > 1). The differential metabolites identified include arabinofuranose, methyl-galactoside, N-acetylglutamic acid, phosphoric acid, and decanoic acid. The metabolites impacted carbohydrate and amino-sugar metabolism. CONCLUSION Co-culturing of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 influenced the metabolite profiles of the strains and impacted metabolic/biosynthetic pathways, indicating cell-to-cell interactions between the strains.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090 Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090 Durban, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, Northwest University, Potchefstroom, Northwest 2520, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090 Durban, South Africa
| |
Collapse
|
41
|
Qin X, Sun J, Chen S, Xu Y, Lu L, Lu M, Li J, Ma Y, Lou F, Zou H. Gut microbiota predict retinopathy in patients with diabetes: A longitudinal cohort study. Appl Microbiol Biotechnol 2024; 108:497. [PMID: 39466432 PMCID: PMC11519154 DOI: 10.1007/s00253-024-13316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The gut microbiota has emerged as an independent risk factor for diabetes and its complications. This research aimed to delve into the intricate relationship between the gut microbiome and diabetic retinopathy (DR) through a dual approach of cross-sectional and prospective cohort studies. In our cross-sectional study cross-sectional investigation involving ninety-nine individuals with diabetes, distinct microbial signatures associated with DR were identified. Specifically, gut microbiome profiling revealed decreased levels of Butyricicoccus and Ruminococcus torques group, alongside upregulated methanogenesis pathways among DR patients. These individuals concurrently exhibited lower concentrations of short-chain fatty acids in their plasma. Leveraging machine learning models, including random forest classifiers, we constructed a panel of microbial genera and genes that robustly differentiated DR cases. Importantly, these genera also demonstrated significant correlations with dietary patterns and the molecular profiles of peripheral blood mononuclear cells. Building upon these findings, our prospective cohort study followed 62 diabetes patients over a 2-year period to assess the predictive value of these microbial markers. The results underlined the panel's efficacy in predicting DR incidence. By stratifying patients based on the predictive genera and metabolites identified in the cross-sectional phase, we established significant associations between reduced levels of Butyricicoccus, plasma acetate, and increased susceptibility to DR. This investigation not only deepens our understanding of how gut microbiota influences DR but also underscores the potential of microbial markers as early indicators of disease risk. These insights hold promise for developing targeted interventions aimed at mitigating the impact of diabetic complications. KEY POINTS: • Microbial signatures are differed in diabetic patients with and without retinopathy • DR-related taxa are linked to dietary habits and transcriptomic profiles • Lower abundances of Butyricicoccus and acetate were prospectively associated with DR.
Collapse
Affiliation(s)
- Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Sun
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Lina Lu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Min Lu
- Community Health Service Center of Jiangsu Road Subdistrict, Changning District, Shanghai, China
| | - Jieying Li
- Community Health Service Center of Jiangsu Road Subdistrict, Changning District, Shanghai, China
| | - Yingyan Ma
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fangzhou Lou
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
| |
Collapse
|
42
|
Deng M, Ye J, Zhang R, Zhang S, Dong L, Su D, Zhang M, Huang F. Shatianyu ( Citrus grandis L. Osbeck) whole fruit alleviated loperamide-induced constipation via enhancing gut microbiota-mediated intestinal serotonin secretion and mucosal barrier homeostasis. Food Funct 2024; 15:10614-10627. [PMID: 39373198 DOI: 10.1039/d4fo02765e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study aims to explore the effects of Shatianyu (Citrus grandis L. Osbeck) whole fruit powder (SWFP) enriched in flavonoids and dietary fiber on loperamide-induced constipation after a 4-week administration in the diet, together with possible microbiota-mediated mechanisms. The SWFP intervention shortened the first defecation time and increased defecation frequency; it also increased the serum serotonin (5-HT) level and decreased the LPS level in constipation mice. SWFP promoted the development of colonic enterochromaffin cells (ECs) and upregulated the expression of 5-HT synthetic rate-limiting enzyme (Tph1) in ECs. Furthermore, SWFP downregulated the expression of colonic TLR-4, TNF-α and IL-1β and upregulated the expression of tight junction proteins. Besides promoting 5-HT secretion in ECs, butyrate was proved to play a positive role in enhancing intestinal barrier homeostasis through FFAR2/3. Notably, SWFP increased both the fecal butyrate contents and colonic FFAR3 expression in a dose-related manner. Likewise, SWFP enriched butyrate-production related microbes, such as Ruminococcus_torques_group, Ruminococcus, Dubosiella and Parasutterella. Thus, SWFP might alleviate constipation by regulating the microbiota to produce butyrate, thereby enhancing colonic 5-HT secretion and the FFAR3-mediated anti-inflammatory pathway.
Collapse
Affiliation(s)
- Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Jiamin Ye
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
43
|
Zhang JQ, Zhang PF. Advances in clinical research on pharmacological management of chemotherapy-induced constipation in gastrointestinal tumor: A perspective. Medicine (Baltimore) 2024; 103:e40137. [PMID: 39432646 PMCID: PMC11495705 DOI: 10.1097/md.0000000000040137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Gastrointestinal tumors, including those of the stomach, colon, rectum, and esophagus, present significant global health challenges. Chemotherapy, essential for treating these cancers, often causes constipation, adversely affecting patients' quality of life. This study examines the mechanisms behind chemotherapy-induced constipation, such as the direct impact of chemotherapeutic drugs on intestinal function, reduced fluid intake, decreased physical activity, opioid use, and psychological stress. While traditional treatments like stimulant and osmotic laxatives are commonly used, emerging therapies such as 5-HT4 receptor agonists and probiotics show promise. Traditional Chinese medicine offers additional strategies with herbal remedies and dietary adjustments. Future research should prioritize precision medicine, combining pharmacological and non-pharmacological approaches, and developing innovative therapeutics utilizing biologics and nanotechnology. Ongoing research is crucial for improving chemotherapy-induced constipation management, aiming to enhance treatment outcomes and the quality of life for chemotherapy patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Jin-Qiang Zhang
- First Ward of General Surgery Department, The First Hospital of Yulin, Yulin, China
| | - Peng-Fei Zhang
- First Ward of General Surgery Department, The First Hospital of Yulin, Yulin, China
| |
Collapse
|
44
|
Bochereau P, Maman Haddad S, Pichon J, Rossignol C, Narcy A, Métayer-Coustard S, Berri C, Le Bihan-Duval E. Implication of digestive functions and microbiota in the establishment of muscle glycogen differences between divergent lines for ultimate pH. Sci Rep 2024; 14:24134. [PMID: 39406766 PMCID: PMC11480206 DOI: 10.1038/s41598-024-74009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Both the quality of chicken meat and the quality of chicks are influenced by the level of breast muscle glycogen reserves. In order to study the role of digestive metabolism in establishing this muscular phenotype, we compared two divergent chicken lines for the ultimate pH (pHu) of the breast meat, a proxy for glycogen reserves. Males aged 4 weeks had twice the breast muscle glycogen content in the pHu- line (low pHu) than in the pHu + line (high pHu). The increase in glycogen reserves (pHu-) was associated with a higher relative weight of the proventriculus and gizzard, as well as better apparent ileal digestibility of nitrogen and calcium. The diversity of the cecal microbiota was comparable, but three bacterial genera (Lachnospira, Lachnospiraceae UCG-010, Caproiciproducens) varied between the lines. The differences observed could lead to down-regulation of carbon fixation in prokaryotes and of the citrate cycle in the pHu + line. RNA-seq analysis of the jejunum, the major site of nutrient absorption, revealed 149 genes differentially expressed (DE) between the lines, including several genes linked to immunity, hormonal response and circadian rhythms that are less expressed in pHu + animals. Others involved in cell migration and proliferation, and more generally tissue morphogenesis, also differed between the lines. Among the DE genes, several co-localized with Quantitative Trait Loci (QTL) controlling pHu and selection signatures identified in the divergent lines, such as the gene coding for ghrelin, a hormone regulating appetite.
Collapse
Affiliation(s)
| | - Sarah Maman Haddad
- SIGENAE, INRAE, ENVT, GenPhyse, Université de Toulouse, 31326, Castanet Tolosan, France
| | - Julien Pichon
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France
| | | | - Agnès Narcy
- BOA, INRAE, Université de Tours, 37380, Nouzilly, France
| | | | - Cécile Berri
- BOA, INRAE, Université de Tours, 37380, Nouzilly, France.
| | | |
Collapse
|
45
|
Li S, Li Y, Cai Y, Yan Z, Wei J, Zhang H, Yue F, Chen T. Lacticaseibacillus paracasei NCU-04 relieves constipation and the depressive-like behaviors induced by loperamide in mice through the microbiome-gut-brain axis. Curr Res Food Sci 2024; 9:100875. [PMID: 39429918 PMCID: PMC11490870 DOI: 10.1016/j.crfs.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Constipation is a prevalent gastrointestinal condition that significantly affects patients' physical and mental well-being, yet current treatments often lack safety and efficacy. Emerging evidence highlights the critical role of the microbiota-gut-brain axis (MBGA) in managing constipation, paving the way for probiotics as an adjuvant treatment to improve constipation symptoms. In this study, we isolated a gut probiotic strain, Lacticaseibacillus paracasei NCU-04, and investigated its improvement effects on loperamide-induced constipation in mice. We demonstrated that L. paracasei NCU-04 exhibited excellent probiotic properties, including robust growth, strong antibacterial and antioxidant capacities, and a lack of hemolytic activity in vitro. The administration of L. paracasei NCU-04 effectively improved the defecation-related indicators such as the fecal water content, time to the first black stool defecation, and intestine transit rate, suggesting enhanced gut immobility in constipated mice. Additionally, L. paracasei NCU-04 significantly reduced colon inflammation induced by loperamide. Further, L. paracasei NCU-04 increased levels of colonic motilin, 5-hydroxytryptamine (5-HT), and c-kit, while decreased that of aquaporin 3, vasoactive intestinal peptide, and peptide YY. Notably, L. paracasei NCU-04 effectively upregulated the expression of 5-HT and its receptor (i.e., 5-HT4R) in the brains of constipated mice. High-throughput sequencing revealed that L. paracasei NCU-04 restored the diversity and composition of the gut microbiota disturbed by loperamide, and significantly increased the relative abundance of Prevotella and Lactobacillus genera in the stool, while decreased that of Odoribacter, Rikenella, and Parabacteroides. Importantly, L. paracasei NCU-04 also effectively improved the depression-like behaviors associated with constipation, possibly through 5-HT mediated MGBA. These results suggest that L. paracasei NCU-04 may offer a promising approach for treating constipation and its related depressive symptoms, supporting its potential as a functional food or adjuvant therapy for human health.
Collapse
Affiliation(s)
- Shengjie Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yi Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yujie Cai
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zizhou Yan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fenfang Yue
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tingtao Chen
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
46
|
Venturini S, Reffo I, Avolio M, Basaglia G, Del Fabro G, Callegari A, Tonizzo M, Sabena A, Rondinella S, Mancini W, Conte C, Crapis M. The Management of Recurrent Urinary Tract Infection: Non-Antibiotic Bundle Treatment. Probiotics Antimicrob Proteins 2024; 16:1857-1865. [PMID: 37584833 DOI: 10.1007/s12602-023-10141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Recurrent urinary tract infections (rUTIs) are a common condition with high morbidity and negatively impact the quality of life. They account for approximately 25% of all antibiotic prescriptions and are a public health concern in an era of increasing multidrug-resistant organisms (MDROs). Several non-antibiotic treatment strategies have been tried to curb antimicrobial use, and many are effective to some degree, but no experience testing multimodal interventions. We created a "care bundle" consisting of behavioral interventions, vaginal and oral probiotics, D-mannose, and cranberry to be followed for six months. We enrolled women with rUTIs over three years. Changes in urinary tract infections, antibiotic use, chronic symptoms, and quality of life were compared in the six months before and after participation in the study. Forty-seven women were enrolled in the study, six of whom were excluded from the final analysis. We observed a 76% reduction in urinary tract infections (p < 0.001) and a reduction in total antibiotic exposure of more than 90% (p < 0.001); all chronic symptoms showed a trend toward reduction. Adherence to the bundle was high (87.2%). Overall, 80.5% of women experienced an improvement in their quality of life. In our experience, a bundle protocol is effective in reducing recurrences and antimicrobial use in a cohort of women with rUTIs and results in a subjective improvement in chronic symptoms and quality of life. Further research with larger sample size is needed to confirm these findings.
Collapse
Affiliation(s)
- Sergio Venturini
- Department of Infectious Diseases, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Ingrid Reffo
- Department of Anaesthesia and Intensive Care, ASFO Santa Maria dei Battuti Hospital of San Vito al Tagliamento (Pordenone), Pordenone, Italy.
| | - Manuela Avolio
- Department of Microbiology, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Giancarlo Basaglia
- Department of Microbiology, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Giovanni Del Fabro
- Department of Infectious Diseases, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Astrid Callegari
- Department of Infectious Diseases, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Maurizio Tonizzo
- Department of Internal Medicine, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Anna Sabena
- Department of Internal Medicine, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Stefania Rondinella
- Department of Internal Medicine, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Walter Mancini
- Department of Nephrology, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Carmina Conte
- Department of Nephrology, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| | - Massimo Crapis
- Department of Infectious Diseases, ASFO Santa Maria degli Angeli Hospital of Pordenone, Pordenone, Italy
| |
Collapse
|
47
|
Kwon H, Nam EH, Kim H, Jo H, Bang WY, Lee M, Shin H, Kim D, Kim J, Kim H, Lee J, Jung YH, Yang J, Won DD, Shin M. Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: a randomized, double-blind, and placebo-controlled trial. Sci Rep 2024; 14:22384. [PMID: 39333245 PMCID: PMC11437119 DOI: 10.1038/s41598-024-72887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Irritable bowel syndrome is a chronic disorder affecting the gastrointestinal tract, negatively impacting patients' quality of life. Here, we aimed to evaluate the effects of Lacticaseibacillus rhamnosus IDCC 3201 (RH 3201) on irritable bowel syndrome with constipation (IBS-C). In this randomised, double-blind, placebo-controlled trial, a total of 30 subjects with IBS-C were randomly assigned (1:1) to receive 8 weeks of probiotics administration or placebo. Concerning bowel activities, both irritant bowel movements and discomfort caused by constipation showed significant improvement with RH 3201 at 8 weeks. Symptoms including severity of abdominal bloating, frequency of abdominal bloating, and satisfaction of bowel habits based on the irritable bowel syndrome-severity scoring system also ameliorated in the probiotic group. Analysis of the fecal microbiome revealed that the abundance of Bacteroides cellulosilyticus and Akkermansia muciniphila was higher during the period of RH 3201 administration compared to the placebo. Untargeted metabolome analysis further suggested a correlation between specific metabolites, such as N-acetylornithine, xanthine, and 3-phenylpropionic acid, and the improvement of clinical symptoms. These results indicate that RH 3201 was effective in ameliorating IBS-C, potentially by enriching beneficial microbes and associated metabolites in the gut environment.
Collapse
Affiliation(s)
- Hyeji Kwon
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Hayoung Kim
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Haneul Jo
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Hyeonmin Shin
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Dana Kim
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Jeongho Kim
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Hyejin Kim
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Jongkyun Lee
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Fermentation Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea.
| | - Daeyoun David Won
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea.
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
48
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
49
|
Wang LS, Wu JX, Zhang F, Huang Y, Jiang YX, Li YH. Metabolomics and gut microbiota analysis reveal the differential efficacy of areca nut and charred areca nut in treating constipation. Front Nutr 2024; 11:1455824. [PMID: 39346640 PMCID: PMC11427381 DOI: 10.3389/fnut.2024.1455824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background Areca nut (AN) is a traditional Chinese herbal medicine used for centuries to treat gastrointestinal (GI) disorders. Charred AN (CAN) is a processed product of AN with similar therapeutic effects. This study aimed to investigate the therapeutic mechanisms of AN and CAN for constipation via metabolomics and gut microbiota analysis. Methods In this study, the rats were randomly divided into 5 groups (n = 6): control, constipation model, positive drug, AN treatment, and CAN treatment groups. Constipation was induced by intragastric administration of loperamide hydrochloride, followed by 14-day treatment with mosapride, AN, or CAN. The efficacy difference between AN and CAN was assessed by evaluating the weight gain, fecal water content, GI transit rate, colonic histopathology, serum levels of GI hormones, gut microbiota, and fecal metabolites. Results The results demonstrated that both AN and CAN could alleviate loperamide-induced constipation. Furthermore, they significantly elevated the serum levels of motilin, vasoactive intestinal peptide, substance P, and acetylcholine. 16S rRNA analysis revealed that AN regulated the relative abundance of Bacillus, UCG-005, norank_f_Muribaculaceae, Candidatus_Saccharimonas, and Ruminococcus, whereas CAN modulate the relative abundance of Lactobacillus, Bacillus, norank_f_Muribaculaceae, Ruminococcus, unclassified_f_Oscillospiraceae, and unclassified_f_Prevotellaceae. Moreover, the metabolic profile of AN- and CAN-treated rats was also different, where AN treatment involved pathways of citrate cycle (TCA) and tyrosine, alanine, aspartate, and glutamate metabolisms. Whereas CAN treatment involved pathways of steroid and primary bile acid biosynthesis, as well as pyrimidine and purine metabolisms. Spearman correlation analysis indicated a close relationship between gut microbiota and fecal metabolites. Conclusion In summary, this study revealed that AN may protect GI mucosa, enhance GI motility, and alleviate constipation symptoms by regulating the relative abundance of specific gut microbiota (Bacillus, UCG-005, norank_f_Muribaculaceae, Candidatus_Saccharimonas, Ruminococcus) as well as citrate cycle or tyrosine, alanine, aspartate, and glutamate metabolic pathways. Furthermore, CAN was observed to promote gastric emptying and intestinal propulsion, thereby alleviating constipation, by modulating the relative abundance of specific gut microbiota (Lactobacillus, Bacillus, norank_f_Muribaculaceae, Ruminococcus, unclassified_f_Oscillospiraceae, unclassified_f_Prevotellaceae) as well as steroid and primary bile acid biosynthesis, as well as pyrimidine and purine metabolic pathways.
Collapse
Affiliation(s)
| | | | - Fang Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, The Second Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou, China
| | | | | | - Yong-hui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, The Second Affiliated Hospital of Hainan Medical University, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
50
|
Liao Y, Wang Y, Huang W, Wang J, Guo M, Zhang J, Zheng H, Yan Y, Lin Z, Qiu N, Yu X, Yu Y. L. acidophilus/L. johnsonii ratio affects slow transit constipation in rats. Sci Rep 2024; 14:21088. [PMID: 39256411 PMCID: PMC11387715 DOI: 10.1038/s41598-024-71945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Slow Transit Constipation (STC) is characterized by impaired colonic motility, but its relationship with gut microbiota remains unclear. This study investigated the correlation between specific gut microbial populations and STC, focusing on the Lactobacillus acidophilus to Lactobacillus johnsonii (A/J) ratio. We used four rat groups: Control (CON), Loperamide-induced STC (LOP), antibiotic-treated (ABX), and antibiotic plus Loperamide (ABX + LOP). Fecal samples were analyzed using 16S rRNA gene sequencing, and serum metabolites were examined through LC-MS. The LOP group showed an increased A/J ratio, while ABX and ABX + LOP groups had decreased ratios. Notably, the ABX + LOP group did not develop STC symptoms. Metabolomic analysis revealed alterations in key metabolites across groups, including changes in levels of guanidinoacetate, glycine, L-glutamine, nicotine, and nicotinate D-ribonucleotide in the LOP group, and variations in L-glutamine, L-phenylalanine, L-tyrosine, histamine, D-ornithine, and lecithin in the ABX and ABX + LOP groups. Our findings suggest a correlation between the A/J ratio and STC development, offering insights into STC pathophysiology and potential microbiome-targeted therapies.
Collapse
Affiliation(s)
- Yiqi Liao
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | | | - Weirui Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Junxiang Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Mu Guo
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Jiahui Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Hanlu Zheng
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Yingxue Yan
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Zhaolong Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Nengfu Qiu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China.
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
- Fujian Center for Safety Evaluation of New Drug, Fuzhou, 350122, China.
| |
Collapse
|