1
|
Uchimura Y, Hino K, Hattori K, Kubo Y, Owada A, Kimura T, Sugawara L, Kume S, Bellier JP, Yanagisawa D, Shiino A, Nakayama T, Daigo Y, Mashimo T, Udagawa J. Knockout of the orphan membrane transporter Slc22a23 leads to a lean and hyperactive phenotype with a small hippocampal volume. PLoS One 2024; 19:e0309461. [PMID: 39197039 PMCID: PMC11356391 DOI: 10.1371/journal.pone.0309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy predisposes offspring to the development of lifestyle-related noncommunicable diseases and psychiatric disorders later in life. However, the molecular mechanisms underlying this predisposition are not well understood. In our previous study, using rats as model animals, we showed that behavioral impairments are induced by prenatal undernutrition. In this study, we identified solute carrier 22 family member 23 (Slc22a23) as a gene that is irreversibly upregulated in the rat brain by undernutrition during fetal development. Because the substrate of the SLC22A23 transporter has not yet been identified and the biological role of the Slc22a23 gene in vivo is not fully understood, we generated pan-Slc22a23 knockout rats and examined their phenotype in detail. The Slc22a23 knockout rats showed a lean phenotype, an increase in spontaneous locomotion, and improved endurance, indicating that they are not overweight and are even healthier in an ad libitum feeding environment. However, the knockout rats had reduced hippocampal volume, and the behavioral analysis suggested that they may have impaired cognitive function regarding novel objects.
Collapse
Affiliation(s)
- Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kosuke Hattori
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Airi Owada
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoko Kimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lucia Sugawara
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akihiko Shiino
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takahisa Nakayama
- Division of Human Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology, Cancer Center and Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
2
|
Thomas MF, Slowikowski K, Manakongtreecheep K, Sen P, Samanta N, Tantivit J, Nasrallah M, Zubiri L, Smith NP, Tirard A, Ramesh S, Arnold BY, Nieman LT, Chen JH, Eisenhaure T, Pelka K, Song Y, Xu KH, Jorgji V, Pinto CJ, Sharova T, Glasser R, Chan P, Sullivan RJ, Khalili H, Juric D, Boland GM, Dougan M, Hacohen N, Li B, Reynolds KL, Villani AC. Single-cell transcriptomic analyses reveal distinct immune cell contributions to epithelial barrier dysfunction in checkpoint inhibitor colitis. Nat Med 2024; 30:1349-1362. [PMID: 38724705 PMCID: PMC11673812 DOI: 10.1038/s41591-024-02895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/01/2024] [Indexed: 05/23/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.
Collapse
Affiliation(s)
- Molly Fisher Thomas
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA.
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA.
| | - Kamil Slowikowski
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Kasidet Manakongtreecheep
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nandini Samanta
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Mazen Nasrallah
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Medicine, North Shore Physicians Group, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Leyre Zubiri
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Eisenhaure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Vjola Jorgji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Glasser
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Harvard Medical School, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo Li
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Kerry L Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cazals A, Rau A, Estellé J, Bruneau N, Coville JL, Menanteau P, Rossignol MN, Jardet D, Bevilacqua C, Bed’Hom B, Velge P, Calenge F. Comparative analysis of the caecal tonsil transcriptome in two chicken lines experimentally infected with Salmonella Enteritidis. PLoS One 2022; 17:e0270012. [PMID: 35976909 PMCID: PMC9384989 DOI: 10.1371/journal.pone.0270012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Managing Salmonella enterica Enteritidis (SE) carriage in chicken is necessary to ensure human food safety and enhance the economic, social and environmental sustainability of chicken breeding. Salmonella can contaminate poultry products, causing human foodborne disease and economic losses for farmers. Both genetic selection for a decreased carriage and gut microbiota modulation strategies could reduce Salmonella propagation in farms. Two-hundred and twenty animals from the White Leghorn inbred lines N and 61 were raised together on floor, infected by SE at 7 days of age, transferred into isolators to prevent oro-fecal recontamination and euthanized at 12 days post-infection. Caecal content DNA was used to measure individual Salmonella counts (ISC) by droplet digital PCR. A RNA sequencing approach was used to measure gene expression levels in caecal tonsils after infection of 48 chicks with low or high ISC. The analysis between lines identified 7516 differentially expressed genes (DEGs) corresponding to 62 enriched Gene Ontology (GO) Biological Processes (BP) terms. A comparison between low and high carriers allowed us to identify 97 DEGs and 23 enriched GO BP terms within line 61, and 1034 DEGs and 288 enriched GO BP terms within line N. Among these genes, we identified several candidate genes based on their putative functions, including FUT2 or MUC4, which could be involved in the control of SE infection, maybe through interactions with commensal bacteria. Altogether, we were able to identify several genes and pathways associated with differences in SE carriage level. These results are discussed in relation to individual caecal microbiota compositions, obtained for the same animals in a previous study, which may interact with host gene expression levels for the control of the caecal SE load.
Collapse
Affiliation(s)
- Anaïs Cazals
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Peronne, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Nicolas Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jean-Luc Coville
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bertrand Bed’Hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Philippe Velge
- UMR ISP, INRAE, Université F. Rabelais, Nouzilly, France
| | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
4
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
5
|
Engelhart DC, Granados JC, Shi D, Saier MH, Baker ME, Abagyan R, Nigam SK. Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21:E1791. [PMID: 32150922 PMCID: PMC7084758 DOI: 10.3390/ijms21051791] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The SLC22 family of OATs, OCTs, and OCTNs is emerging as a central hub of endogenous physiology. Despite often being referred to as "drug" transporters, they facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups, with four new subgroups arising from the previously defined OAT subclade: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Using data from GWAS, in vivo models, and in vitro assays, we developed an SLC22 transporter-metabolite network and similar subgroup networks, which suggest how multiple SLC22 transporters with mono-, oligo-, and multi-specific substrate specificity interact to regulate metabolites. Subgroup associations include: OATS1 with signaling molecules, uremic toxins, and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. Our data suggest that the SLC22 family can work among itself, as well as with other ADME genes, to optimize levels of numerous metabolites and signaling molecules, involved in organ crosstalk and inter-organismal communication, as proposed by the remote sensing and signaling theory.
Collapse
Affiliation(s)
- Darcy C. Engelhart
- Department of Biology, University of California San Diego, San Diego, CA 92093, USA;
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA;
| | - Da Shi
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA; (D.S.); (R.A.)
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Michael E. Baker
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
| | - Ruben Abagyan
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA; (D.S.); (R.A.)
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Lai Y, Xue J, Liu CW, Gao B, Chi L, Tu P, Lu K, Ru H. Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn's Disease. Molecules 2019; 24:E449. [PMID: 30691236 PMCID: PMC6385106 DOI: 10.3390/molecules24030449] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
: Inflammatory bowel disease (IBD) has stimulated much interest due to its surging incidences and health impacts in the U.S. and worldwide. However, the exact cause of IBD remains incompletely understood, and biomarker is lacking towards early diagnostics and effective therapy assessment. To tackle these, the emerging high-resolution mass spectrometry (HRMS)-based metabolomics shows promise. Here, we conducted a pilot untargeted LC/MS metabolomic profiling in Crohn's disease, for which serum samples of both active and inactive cases were collected, extracted, and profiled by a state-of-the-art compound identification workflow. Results show a distinct metabolic profile of Crohn's from control, with most metabolites downregulated. The identified compounds are structurally diverse, pointing to important pathway perturbations ranging from energy metabolism (e.g., β-oxidation of fatty acids) to signaling cascades of lipids (e.g., DHA) and amino acid (e.g., L-tryptophan). Importantly, an integral role of gut microbiota in the pathogenesis of Crohn's disease is highlighted. Xenobiotics and their biotransformants were widely detected, calling for massive exposomic profiling for future cohort studies as such. This study endorses the analytical capacity of untargeted metabolomics for biomarker development, cohort stratification, and mechanistic interpretation; the findings might be valuable for advancing biomarker research and etiologic inquiry in IBD.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, CB #7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, CB #7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, CB #7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bei Gao
- NIH West Coast Metabolomics Center, University of California at Davis, Davis, CA 95616, USA.
| | - Liang Chi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, CB #7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, CB #7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, CB #7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Naito T, Yokoyama N, Kakuta Y, Ueno K, Kawai Y, Onodera M, Moroi R, Kuroha M, Kanazawa Y, Kimura T, Shiga H, Endo K, Nagasaki M, Masamune A, Kinouchi Y, Shimosegawa T. Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. J Gastroenterol Hepatol 2018; 33:1873-1881. [PMID: 29603369 DOI: 10.1111/jgh.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Patients with inflammatory bowel disease (IBD) are at a high risk of low bone mineral density (BMD). Reportedly, clinical and genetic factors cause low BMD in Caucasians; however, studies in non-Caucasian populations remain scarce. METHODS Clinical risk factors for low BMD were investigated in 266 Japanese patients with IBD, and a genome-wide association analysis (GWAS) was performed using linear regression with associated clinical factors as covariates. Genotyping was performed using a population-optimized genotyping array (Japonica array® ). After quality control, the genotype data of 4 384 682 single-nucleotide polymorphisms (SNPs) from 254 patients with IBD were used for GWAS. RESULTS Body mass index, age, and disease duration were independently associated with the BMD of the femoral neck (P = 1.41E - 13, 1.04E - 5, and 1.58E - 3, respectively), and body mass index and sex were associated with the BMD of the lumbar spine (P = 6.90E - 10 and 6.84E - 3, respectively). In GWAS, 118 and 42 candidate SNPs of the femoral neck and lumbar spine, respectively, were identified. Among 118, 111 candidate SNPs of the femoral neck were located within the SLC22A23 gene, which is a known IBD susceptibility gene (minimum P = 1.42E - 07). Among 42, 18 candidate SNPs of the lumbar spine were located within the MECOM gene, which is associated with osteopenia (minimum P = 5.86E - 07). Interestingly, none of the known loci showed a significant association with BMD. CONCLUSIONS Although clinical risk factors for low BMD in IBD were similar to those in the general population, genetic risk factors were rather different.
Collapse
Affiliation(s)
- Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naonobu Yokoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Ueno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Motoyuki Onodera
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoya Kimura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Endo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Ferguson LR. Why might the finding of a new genetic association with inflammatory bowel disease be of potential value in disease control? Am J Clin Nutr 2017; 106:1335-1336. [PMID: 29117969 PMCID: PMC5698846 DOI: 10.3945/ajcn.117.169623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition and Dietetics and Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Amir Shaghaghi M, Zhouyao H, Tu H, El-Gabalawy H, Crow GH, Levine M, Bernstein CN, Eck P. The SLC2A14 gene, encoding the novel glucose/dehydroascorbate transporter GLUT14, is associated with inflammatory bowel disease. Am J Clin Nutr 2017; 106:1508-1513. [PMID: 28971850 PMCID: PMC5698836 DOI: 10.3945/ajcn.116.147603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 09/01/2017] [Indexed: 01/16/2023] Open
Abstract
Background: Variations in intestinal antioxidant membrane transporters are implicated in the initiation and progression of inflammatory bowel disease (IBD). Facilitated glucose transporter member 14 (GLUT14), encoded by the solute carrier family 2 member 14 (SLC2A14) gene, is a putative transporter for dehydroascorbic acid and glucose. Although information on the gene is limited, shorter and longer GLUT14 isoforms have been identified. We hypothesized that GLUT14 mediates glucose and dehydroascorbic acid uptake. If this function could be validated, then genetic variations may associate with IBD.Objective: This study aimed to determine the substrate(s) for the GLUT14 protein and interrogated genetic associations of SLC2A14 with IBD.Design: The uptake of radiolabeled substrates into Xenopus laevis oocytes expressing the 2 GLUT14 isoforms was assessed. Examination of gene-targeted genetic association in the Manitoba Inflammatory Bowel Disease Cohort Study was conducted through the genotyping of single nucleotide polymorphisms (SNPs) representing linkage blocks of the SLC2A14 gene.Results: Both GLUT14 isoforms mediated the uptake of dehydroascorbic acid and glucose into X. laevis oocytes. Three alleles in the SLC2A14 gene associated independently with IBD. The odds of having ulcerative colitis (UC) or Crohn disease (CD) were elevated in carriers of the SLC2A14 SNP rs2889504-T allele (OR: 3.60; 95% CI: 1.95, 6.64 and OR: 4.68; 95% CI: 2.78, 8.50, respectively). Similarly, the SNP rs10846086-G allele was associated with an increased risk of both UC and CD (OR: 2.91; 95% CI: 1.49, 5.68 and OR: 3.00; 95% CI: 1.55, 5.78, respectively). Moreover, the SNP rs12815313-T allele associated with increased susceptibility to CD and UC (OR: 2.12; 95% CI: 1.33, 3.36 and OR: 1.61; 95% CI: 1.01, 2.57, respectively).Conclusion: These findings strengthen the hypothesis that genetically determined local dysregulation of dietary vitamin C or antioxidants transport contributes to IBD development. These transporter proteins are targetable by dietary interventions, opening the avenue to a precision intervention for patients of specific genotypes with IBD. This trial was registered at clinicaltrials.gov as NCT03262649.
Collapse
Affiliation(s)
| | | | - Hongbin Tu
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | | | | | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | - Charles N Bernstein
- Internal Medicine, and,IBD Clinical and Research Centre, University of Manitoba, Winnipeg, Canada; and
| | - Peter Eck
- Departments of Human Nutritional Sciences,
| |
Collapse
|
10
|
Nałęcz KA. Solute Carriers in the Blood–Brain Barier: Safety in Abundance. Neurochem Res 2016; 42:795-809. [DOI: 10.1007/s11064-016-2030-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|