1
|
Zhang Y, Wang H, Zhan Z, Gan L, Bai O. Mechanisms of HDACs in cancer development. Front Immunol 2025; 16:1529239. [PMID: 40260239 PMCID: PMC12009879 DOI: 10.3389/fimmu.2025.1529239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Haotian Wang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Zhumei Zhan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Out Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Yagcioglu S, Ersoy N, Demir K, Birler S, Pabuccuoglu S. Can roscovitine and trichostatin A be alternatives to standard protocols for cell cycle synchronization of ovine adult and foetal fibroblast cells? Reprod Domest Anim 2023; 58:1251-1260. [PMID: 37392470 DOI: 10.1111/rda.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Synchronization of donor cells is an important step for the success of somatic cell nuclear transfer application and facilitates the development of embryos. Contact inhibition, serum starvation and different chemical agents are used in synchronizing different types of somatic cells. In this study, to synchronize the primary ovine adult (POF) and foetal (POFF) fibroblast cells to G0/G1 phases, the contact inhibition, the serum starvation, roscovitine and trichostatin A (TSA) methods were used. In the first part of the study, roscovitine (10, 15, 20 and 30 μM) and TSA (25, 50, 75 and 100 nM) were applied for 24 h to determine the optimal concentration for POF and POFF cells. In the second part, optimal concentrations of roscovitine and TSA for these cells were compared with contact inhibition and serum starvation methods. Cell cycle distribution and apoptotic activity analysis were performed by flow cytometry to compare this synchronization methods. Serum starvation method resulted in higher cell synchronization rate in both cells compared to other groups. Although contact inhibition and TSA also achieved high success rates of synchronized cell value, it was observed that the difference between serum starvation and these groups was significant (p < .05). When the apoptosis rates of the two cell types were examined, it was observed that the early apoptotic cells in contact inhibition and late apoptotic cells in the serum starvation were higher than the other groups (p < .05). Although the 10 and 15 μM concentrations of roscovitine gave the lowest apoptosis rates, it was observed that it failed to synchronize both the ovine fibroblast cells to G0/G1 phase. As a result, it was concluded that while roscovitine was not successful to synchronize both the POFF and POF cell lines, TSA (50 nM for POF cells and 100 nM for POFF cells) can be used efficiently as an alternative to the contact inhibition and the serum starvation methods.
Collapse
Affiliation(s)
- Selin Yagcioglu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Nur Ersoy
- Department of Reproduction and Artificial Insemination, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Kamber Demir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Sema Birler
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Serhat Pabuccuoglu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| |
Collapse
|
3
|
Targeting HDACs in Pancreatic Neuroendocrine Tumor Models. Cells 2021; 10:cells10061408. [PMID: 34204116 PMCID: PMC8228033 DOI: 10.3390/cells10061408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Compared to pancreatic adenocarcinoma (PDAC), pancreatic neuroendocrine tumors (PanNET) represent a rare and heterogeneous tumor entity. In addition to surgical resection, several therapeutic approaches, including biotherapy, targeted therapy or chemotherapy are applicable. However, primary or secondary resistance to current therapies is still challenging. Recent genome-wide sequencing efforts in PanNET identified a large number of mutations in pathways involved in epigenetic modulation, including acetylation. Therefore, targeting epigenetic modulators in neuroendocrine cells could represent a new therapeutic avenue. Detailed information on functional effects and affected signaling pathways upon epigenetic targeting in PanNETs, however, is missing. The primary human PanNET cells NT-3 and NT-18 as well as the murine insulinoma cell lines beta-TC-6 (mouse) and RIN-T3 (rat) were treated with the non-selective histone-deacetylase (HDAC) inhibitor panobinostat (PB) and analyzed for functional effects and affected signaling pathways by performing Western blot, FACS and qPCR analyses. Additionally, NanoString analysis of more than 500 potentially affected targets was performed. In vivo immunohistochemistry (IHC) analyses on tumor samples from xenografts and the transgenic neuroendocrine Rip1Tag2-mouse model were investigated. PB dose dependently induced cell cycle arrest and apoptosis in neuroendocrine cells in human and murine species. HDAC inhibition stimulated redifferentiation of human primary PanNET cells by increasing mRNA-expression of somatostatin receptors (SSTRs) and insulin production. In addition to hyperacetylation of known targets, PB mediated pleitropic effects via targeting genes involved in the cell cycle and modulation of the JAK2/STAT3 axis. The HDAC subtypes are expressed ubiquitously in the existing cell models and in human samples of metastatic PanNET. Our results uncover epigenetic HDAC modulation using PB as a promising new therapeutic avenue in PanNET, linking cell-cycle modulation and pathways such as JAK2/STAT3 to epigenetic targeting. Based on our data demonstrating a significant impact of HDAC inhibition in clinical relevant in vitro models, further validation in vivo is warranted.
Collapse
|
4
|
Kakiuchi A, Kakuki T, Ohwada K, Kurose M, Kondoh A, Obata K, Nomura K, Miyata R, Kaneko Y, Konno T, Kohno T, Himi T, Takano KI, Kojima T. HDAC inhibitors suppress the proliferation, migration and invasiveness of human head and neck squamous cell carcinoma cells via p63‑mediated tight junction molecules and p21‑mediated growth arrest. Oncol Rep 2021; 45:46. [PMID: 33649777 PMCID: PMC7934225 DOI: 10.3892/or.2021.7997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
In human head and neck squamous cell carcinoma (HNSCC), the invasion and metastatic properties of cancer cells are promoted by junctional adhesion molecule-A (JAM-A) and claudin-1; these are epithelial tight junction molecules regulated by histone deacetylases (HDACs) and transcription factor p63. HDAC expression is reportedly upregulated in HNSCC, and HDAC inhibitors suppress cancer cell proliferation by initiating proliferative arrest or apoptosis. However, little is known of the anti-cancer mechanisms of HDAC inhibitors in HNSCC. Thus, in the present study, the HNSCC Detroit 562 cell line and primary cultured HNSCC cells were treated with HDAC inhibitors to investigate their effects in HNSCC. Higher expression of p63, HDAC1, JAM-A and claudin-1 was observed in HNSCC tissues compared with the adjacent dysplastic regions. In Detroit 562 cells, treatment with trichostatin A (TSA), an inhibitor of HDAC1 and 6, downregulated the expression of p63, JAM-A and claudin-1, and upregulated that of acetylated tubulin; conversely, p63 knockdown resulted in the downregulation of JAM-A and claudin-1. Collectively, inhibiting HDAC suppressed the migration and invasiveness of cancer cells. In addition, treatment with TSA suppressed cancer cell proliferation via G2/M arrest, as well as upregulating p21 and downregulating cyclin D1 expression. TSA also downregulated the expression of epidermal growth factor receptor (EGFR) and phospho-ERK1/2. p63 knockdown and treatment with an EGFR inhibitor induced G1 arrest and downregulated EGFR and phospho-ERK1/2 levels, respectively. HDAC inhibition also suppressed the migration and invasiveness of primary cultured HNSCC cells. Collectively, the results of the present study indicate that HDAC inhibitors suppress the proliferation, migration and invasiveness of HNSCC by downregulating the p63-mediated tight junction molecules JAM-A and claudin-1, and inducing p63 or p21-mediated growth arrest.
Collapse
Affiliation(s)
- Akito Kakiuchi
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Takuya Kakuki
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Kizuku Ohwada
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Makoto Kurose
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Atsushi Kondoh
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Kazufumi Obata
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Ryo Miyata
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Yakuto Kaneko
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060‑8556, Japan
| |
Collapse
|
5
|
Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of Genistein in Comparison with Trichostatin A on Reactivation of DNMTs Genes in Hepatocellular Carcinoma. J Clin Transl Hepatol 2018; 6:141-146. [PMID: 29951358 PMCID: PMC6018304 DOI: 10.14218/jcth.2018.00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Background and Aims: DNA methylation and histone modification are epigenetic modifications essential for normal function of mammalian cells. The processes are mediated by biochemical interactions between DNA methyltransferases (DNMTs) and histone deacetylases. Promoter hypermethylation and deacetylation of tumor suppressor genes play major roles in cancer induction, through transcriptional silencing of these genes. DNA hypermethylation is carried out by a family of DNMTs including DNMT1, DNMT3a and DNMT3b. In hepatocellular carcinoma, a significant positive correlation between over-expression of these genes and cancer induction has been reported. The DNA demethylating agent genistein (GE) has been demonstrated to reduce different cancers. Previously, we reported that GE can induce apoptosis and inhibit proliferation in hepatocellular carcinoma PLC/PRF5 and HepG2 cell lines. Besides, histone deacetylase inhibitors, such as trichostatin A (TSA), were successfully used to inhibit cancer cell growth. The present study was designed to assess the effect of GE in comparison with TSA on DNMT1, DNMT3a and DNMT3b gene expression, cell growth inhibition and apoptosis induction in the HepG2 cell line. Methods: Cells were seeded and treated with various doses of GE and TSA. The MTT assay, flow cytometry assay, and real-time RT-PCR were used to determine viability, apoptosis, and DNMT1, DNMT3a and DNMT3b gene expression respectively. Results: Both agents inhibited cell growth, induced apoptosis and reactivated DNMT1, DNMT3a and DNMT3b gene expression. Furthermore, TSA demonstrated a significantly greater apoptotic effect than the other agent, whereas GE improved gene expression more significantly than TSA. Conclusions: Our findings suggest that GE and TSA can significantly inhibit cell growth, induce apoptosis and restore DNMT1, DNMT3a and DNMT3b gene reactivation.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
- *Correspondence to: Fraidoon Kavoosi, Jahrom University of Medical Sciences, Jahrom, Fars province, 74148-46199, Iran. Tel: +98-9173914117, E-mail:
| | - Abazar Roustazadeh
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| | - Fatemeh Golestan
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| |
Collapse
|
6
|
Neethu PV, Suthindhiran K, Jayasri MA. Methanolic Extract of Costus pictus D. DON Induces Cytotoxicity in Liver Hepatocellular Carcinoma Cells Mediated by Histone Deacetylase Inhibition. Pharmacogn Mag 2017; 13:S533-S538. [PMID: 29142410 PMCID: PMC5669093 DOI: 10.4103/pm.pm_524_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Indexed: 01/04/2023] Open
Abstract
Background Leaves of Costus pictus D. Don, (insulin plant) are used as dietary supplement for the treatment of diabetes. Objective The antidiabetic activity of this plant is well documented, but its activity on different cell types and mechanism remains unknown. Thus, the present study evaluates the cytotoxicity of C. pictus methanolic extract (CPME) against various cancer and normal cells. Materials and Methods Dried leaves of C. pictus were extracted using methanol and were subjected to histone deacetylase (HDAC) inhibition and toxicity studies. Results The CPME displayed a selective toxicity toward tested cancer cells in a dose- and time-dependent manner. CPME exhibited significant cytotoxicity on Liver hepatocellular carcinoma cells (Hep G2) (half maximal inhibitory concentration IC50 = 6.7 mg/ml). Since CPME demonstrates both antidiabetic, anticancer activity, and HDAC enzyme play a detrimental role in both the complications, we have evaluated the CPME-induced HDAC regulation on Hep G2 cell lines. CPME showed a notable HDAC inhibition (55%). Furthermore, CPME did not show any genotoxicity or membrane instability at the tested concentrations. Conclusion CPME demonstrates selective cytotoxicity toward tumor cells at a lower concentration through HDAC inhibition. SUMMARY C. pictus is used as munching supplementary food for the treatment of diabetesCPME selectively induces cytotoxicity in cancer cells leaving normal cells healthySelective toxicity to cancer cells are attributed by the inhibition of HDAC enzymeCPME did not show any genotoxicity and membrane instability in blood cellsCPME could be potential source of HDAC inhibitor. Abbreviations used: A549: Human lung carcinoma cells, CPME: Costus pictus methanolic extract, DMEM: Dulbecco's modified eagle's medium, DMSO: Dimethyl sulfoxide, ELISA: Enzyme-linked immunosorbent assay, 5-FU: 5-Fluorouracil, Hep G2: Liver hepatocellular carcinoma cells, HEK-293: Human embryonic kidney cells, Hela: Human cervical carcinoma cells, HT-29: Human colorectal adenocarcinoma cells, HDAC: Histone deacetylase, IC50: Half maximal inhibitory concentration, MCF-7: Human breast adenocarcinoma cells, MDA-MB-435S: Human breast cancer cells, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, NFF: Neonatal foreskin fibroblasts, PHA: Phytohemagglutinin, PBS: Phosphate buffer saline, RPMI-1640: Roswell Park Memorial Institute Medium.
Collapse
Affiliation(s)
- P V Neethu
- Department of Biomedical Sciences, Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - K Suthindhiran
- Department of Biomedical Sciences, Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - M A Jayasri
- Department of Biomedical Sciences, Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Tarhouni-Jabberi S, Zakraoui O, Ioannou E, Riahi-Chebbi I, Haoues M, Roussis V, Kharrat R, Essafi-Benkhadir K. Mertensene, a Halogenated Monoterpene, Induces G2/M Cell Cycle Arrest and Caspase Dependent Apoptosis of Human Colon Adenocarcinoma HT29 Cell Line through the Modulation of ERK-1/-2, AKT and NF-κB Signaling. Mar Drugs 2017; 15:E221. [PMID: 28726723 PMCID: PMC5532663 DOI: 10.3390/md15070221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022] Open
Abstract
Conventional treatment of advanced colorectal cancer is associated with tumor resistance and toxicity towards normal tissues. Therefore, development of effective anticancer therapeutic alternatives is still urgently required. Nowadays, marine secondary metabolites have been extensively investigated due to the fact that they frequently exhibit anti-tumor properties. However, little attention has been given to terpenoids isolated from seaweeds. In this study, we isolated the halogenated monoterpene mertensene from the red alga Pterocladiella capillacea (S.G. Gmelin) Santelices and Hommersand and we highlight its inhibitory effect on the viability of two human colorectal adenocarcinoma cell lines HT29 and LS174. Interestingly, exposure of HT29 cells to different concentrations of mertensene correlated with the activation of MAPK ERK-1/-2, Akt and NF-κB pathways. Moreover, mertensene-induced G2/M cell cycle arrest was associated with a decrease in the phosphorylated forms of the anti-tumor transcription factor p53, retinoblastoma protein (Rb), cdc2 and chkp2. Indeed, a reduction of the cellular level of cyclin-dependent kinases CDK2 and CDK4 was observed in mertensene-treated cells. We also demonstrated that mertensene triggers a caspase-dependent apoptosis in HT29 cancer cells characterized by the activation of caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP). Besides, the level of death receptor-associated protein TRADD increased significantly in a concentration-dependent manner. Taken together, these results demonstrate the potential of mertensene as a drug candidate for the treatment of colon cancer.
Collapse
Affiliation(s)
- Safa Tarhouni-Jabberi
- Institut Pasteur de Tunis, Laboratoire de Toxines Alimentaires, LR11IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002 Tunis, Tunisia.
- Faculté des Sciences de Bizerte, Université de Carthage, 1002 Tunis, Tunisia.
| | - Ons Zakraoui
- Institut Pasteur de Tunis, LR11IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Ichrak Riahi-Chebbi
- Institut Pasteur de Tunis, LR11IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| | - Meriam Haoues
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
- Institut Pasteur de Tunis, LR11IPT02 Laboratoire de Recherche sur la Transmission, le Contrôle et l'Immunobiologie des Infections, 1002 Tunis, Tunisia.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Riadh Kharrat
- Institut Pasteur de Tunis, Laboratoire de Toxines Alimentaires, LR11IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| | - Khadija Essafi-Benkhadir
- Institut Pasteur de Tunis, LR11IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| |
Collapse
|
8
|
Hrgovic I, Doll M, Kleemann J, Wang XF, Zoeller N, Pinter A, Kippenberger S, Kaufmann R, Meissner M. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer 2016; 16:763. [PMID: 27716272 PMCID: PMC5045659 DOI: 10.1186/s12885-016-2807-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023] Open
Abstract
Background The formation of new lymphatic vessels provides an additional route for tumour cells to metastasize. Therefore, inhibiting lymphangiogenesis represents an interesting target in cancer therapy. First evidence suggests that histone deacetylase inhibitors (HDACi) may mediate part of their antitumor effects by interfering with lymphangiogenesis. However, the underlying mechanisms of HDACi induced anti-lymphangiogenic properties are not fully investigated so far and in part remain unknown. Methods Human lymphatic endothelial cells (LEC) were cultured in vitro and treated with or without HDACi. Effects of HDACi on proliferation and cell cycle progress were analysed by BrdU assay and flow cytometry. Apoptosis was measured by quantifying mono- and oligonucleosomes in the cytoplasmic fraction of cell lysates. In vitro lymphangiogenesis was investigated using the Matrigel short term lymphangiogenesis assay. The effects of TSA on cell cycle regulatory proteins and apoptosis-related proteins were examined by western blotting, immunofluorescence staining and semi-quantitative RT-PCR. Protein- and mRNA half-life of p21 were analysed by western blotting and quantitative RT-PCR. The activity of the p21 promoter was determined using a dual luciferase assay and DNA-binding activity of Sp1/3 was investigated using EMSA. Furthermore, siRNA assays were performed to analyse the role of p21 and p53 on TSA-mediated anti-lymphangiogenic effects. Results We found that HDACi inhibited cell proliferation and that the pan-HDACi TSA induced G0/G1 arrest in LEC. Cell cycle arrest was accompanied by up-regulation of p21, p27 and p53. Additionally, we observed that p21 protein accumulated in cellular nuclei after treatment with TSA. Moreover, we found that p21 mRNA was significantly up-regulated by TSA, while the protein and mRNA half-life remained largely unaffected. The promoter activity of p21 was enhanced by TSA indicating a transcriptional mechanism. Subsequent EMSA analyses showed increased constitutive Sp1/3-dependent DNA binding in response to HDACi. We demonstrated that p53 was not required for TSA induced p21 expression and growth inhibition of LECs. Interestingly, siRNA-mediated p21 depletion almost completely reversed the anti-proliferative effects of TSA in LEC. In addition, TSA induced apoptosis by cytochrome c release contributed to activating caspases-9, −7 and −3 and downregulating the anti-apoptotic proteins cIAP-1 and −2. Conclusions In conclusion, we demonstrate that TSA - a pan-HDACi - has distinct anti-lymphangiogenic effects in primary human lymphatic endothelial cells by activating intrinsic apoptotic pathway and cell cycle arrest via p21-dependent pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2807-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Igor Hrgovic
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany. .,Klinik für Dermatologie, Venerologie und Allergologie, Klinikum der J. W. Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany.
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Xiao-Fan Wang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, C218 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Nadja Zoeller
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Andreas Pinter
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe University, Theodor-Stern Kai 7, Frankfurt/Main, 60590, Germany
| |
Collapse
|
9
|
Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model. Int J Mol Sci 2015; 16:27191-207. [PMID: 26580599 PMCID: PMC4661874 DOI: 10.3390/ijms161126016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022] Open
Abstract
In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins.
Collapse
|
10
|
Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies. BMC SYSTEMS BIOLOGY 2015; 9 Suppl 5:S4. [PMID: 26356760 PMCID: PMC4565135 DOI: 10.1186/1752-0509-9-s5-s4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease. RESULTS We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations.
Collapse
|
11
|
Fang C, Zhang J, Qi D, Fan X, Luo J, Liu L, Tan Q. Evodiamine induces G2/M arrest and apoptosis via mitochondrial and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells. PLoS One 2014; 9:e115204. [PMID: 25506932 PMCID: PMC4266682 DOI: 10.1371/journal.pone.0115204] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to evaluate the ability of EVO to decrease cell viability and promote cell cycle arrest and apoptosis in small cell lung cancer (SCLC) cells. Lung cancer has the highest incidence and mortality rates among all cancers. Chemotherapy is the primary treatment for SCLC; however, the drugs that are currently used for SCLC are less effective than those used for non-small cell lung cancer (NSCLC). Therefore, it is necessary to develop new drugs to treat SCLC. In this study, the effects of evodiamine (EVO) on cell growth, cell cycle arrest and apoptosis were investigated in the human SCLC cell lines NCI-H446 and NCI-H1688. The results represent the first report that EVO can significantly inhibit the viability of both H446 and H1688 cells in dose- and time-dependent manners. EVO induced cell cycle arrest at G2/M phase, induced apoptosis by up-regulating the expression of caspase-12 and cytochrome C protein, and induced the expression of Bax mRNA and by down-regulating of the expression of Bcl-2 mRNA in both H446 and H1688 cells. However, there was no effect on the protein expression of caspase-8. Taken together, the inhibitory effects of EVO on the growth of H446 and H1688 cells might be attributable to G2/M arrest and subsequent apoptosis, through mitochondria-dependent and endoplasmic reticulum stress-induced pathways (intrinsic caspase-dependent pathways) but not through the death receptor-induced pathway (extrinsic caspase-dependent pathway). Our findings suggest that EVO is a promising novel and potent antitumor drug candidate for SCLC. Furthermore, the cell cycle, the mitochondria and the ER stress pathways are rational targets for the future development of an EVO delivery system to treat SCLC.
Collapse
Affiliation(s)
- Chunshu Fang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingqing Zhang
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Di Qi
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaoqing Fan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jianchun Luo
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ling Liu
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
12
|
Yang X, Shi Z, Zhang N, Ou Z, Fu S, Hu X, Shen Z. Suberoyl bis-hydroxamic acid enhances cytotoxicity induced by proteasome inhibitors in breast cancer cells. Cancer Cell Int 2014; 14:107. [PMID: 25729327 PMCID: PMC4342900 DOI: 10.1186/s12935-014-0107-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Suberoyl bis-hydroxamic acid (SBHA) is a histone deacetylase (HDAC) inhibitor and exerts anti-growth effects in several malignancies including breast cancer. Proteasome inhibitors such as Bortezomib and MG-132 constitute novel anticancer agents. In this study, we investigated the synergistic antitumour activity of SBHA in combination with proteasome inhibitors. METHODS MCF-7 and MDA-MB-231 breast cancer cells were treated with SBHA, Bortezomib, and MG-132 alone or in combination for 72 h. Cell proliferation, colony formation, apoptosis and gene expression changes were examined. RESULTS SBHA, Bortezomib, and MG-132 alone significantly inhibited the proliferation and colony formation and induced apoptosis in MCF-7 and MDA-MB-231 cells. Combined treatment showed a good synergistic antitumour effect against breast cancer cells. The p53 protein level was significantly elevated by combined treatment with SBHA and proteasome inhibitors. Moreover, combined treatment increased the expression of Bax, Bcl-xS, and Bak and decreased the expression of Bcl-2. Combination of SBHA with proteasome inhibitors causes synergistic anticancer effects on breast cancer cells. The potential molecular mechanism may involve induction of p53 and modulation of the Bcl-2 family proteins. CONCLUSION These findings warrant further investigation of the therapeutic benefits of combination of SBHA with proteasome inhibitors in breast cancer.
Collapse
Affiliation(s)
- Xinmiao Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Zeliang Shi
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Ning Zhang
- Department of Medical Oncology, Minhang Branch of Fudan, University Shanghai Cancer Center, Shanghai, China
| | - Zhouluo Ou
- Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Xichun Hu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhenzhou Shen
- Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Yang H, Salz T, Zajac-Kaye M, Liao D, Huang S, Qiu Y. Overexpression of histone deacetylases in cancer cells is controlled by interplay of transcription factors and epigenetic modulators. FASEB J 2014; 28:4265-79. [PMID: 24948597 DOI: 10.1096/fj.14-250654] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylases (HDACs) that deacetylate histone and nonhistone proteins play crucial roles in a variety of cellular processes. The overexpression of HDACs is reported in many cancer types and is directly linked to accelerated cell proliferation and survival. However, little is known about how HDAC expression is regulated in cancer cells. In this study, we found that HDAC1 and HDAC2 promoters are regulated through collaborative binding of transcription factors Sp1/Sp3 and epigenetic modulators, including histone H3K4 methyltransferase SET1 and histone acetyltransferase p300, whose levels are also elevated in colon cancer cell lines and patient samples. Interestingly, Sp1 and Sp3 differentially regulate HDAC1 and HDAC2 promoter activity. In addition, Sp1/Sp3 recruits SET1 and p300 to the promoters. SET1 knockdown (KD) results in a loss of the H3K4 trimethylation mark at the promoters, as well as destabilizes p300 at the promoters. Conversely, p300 also influences SET1 recruitment and H3K4me3 level, indicating a crosstalk between p300 and SET1. Further, SET1 KD reduces Sp1 binding to the HDAC1 promoter through the increase of Sp1 acetylation. These results indicate that interactions among transcription factors and epigenetic modulators orchestrate the activation of HDAC1 and HDAC2 promoter activity in colon cancer cells.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anatomy and Cell Biology and
| | - Tal Salz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yi Qiu
- Department of Anatomy and Cell Biology and
| |
Collapse
|
14
|
Milczarek M, Filip-Psurska B, Swiętnicki W, Kutner A, Wietrzyk J. Vitamin D analogs combined with 5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep 2014; 32:491-504. [PMID: 24919507 PMCID: PMC4091879 DOI: 10.3892/or.2014.3247] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 12/31/2022] Open
Abstract
In the present study, we evaluated the antitumor effect of two synthetic analogs of vitamin D, namely PRI-2191 [(24R)-1,24-dihydroxyvitamin D3] and PRI-2205 (5,6-trans calcipotriol), in combined human colon HT-29 cancer treatment with 5-fluorouracil (5-FU). Mice bearing HT-29 tumors transplanted subcutaneously or orthotopically were injected with vitamin D analogs and 5-FU in various schedules. A statistically significant inhibition of subcutaneous or orthotopic tumor growth was observed as a result of combined therapy. In HT-29 tumors and in cells from in vitro culture, we observed increased vitamin D receptor (VDR) expression after treatment with either PRI-2205 or 5-FU alone, or in combination. Moreover, PRI-2205 decreased the percentage of cells from intestinal tumors in G2/M and S stages and increased sub-G1. Increased VDR expression was also observed after combined treatment of mice with 5-FU and PRI-2191. Moreover, our docking studies showed that PRI-2205 has stronger affinity for VDR, DBP and CAR/RXR ligand binding domains than PRI-2191. PRI-2191 analog, used with 5-FU, increased the percentage of subcutaneous tumor cells in G0/G1 and decreased the percentage in G2/M, S and sub-G1 populations as compared to 5-FU alone. In in vitro studies, we observed increased expression of p21 and p-ERK1/2 diminution via use of both analogs as compared to use of 5-FU alone. Simultaneously, PRI-2191 antagonizes some pro-apoptotic activities of 5-FU in vitro. However, in spite of these disadvantageous effects in terms of apoptosis, the therapeutic effect expressed as tumor growth retardation by PRI-2191 is significant. Our results suggest that the mechanism of potentiation of 5-FU antitumor action by both analogs is realized via increased p21 expression and decreased p-ERK1/2 level which may lead to diminution of thymidylate synthase expression. Higher binding affinity for VDR, DBP, but also for CAR\RXR ligand binding domain of PRI-2205 may, in part, explain its very low toxicity with sustained anticancer activity.
Collapse
Affiliation(s)
- Magdalena Milczarek
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | | | - Andrzej Kutner
- Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
15
|
Sonnemann J, Marx C, Becker S, Wittig S, Palani CD, Krämer OH, Beck JF. p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer 2013; 110:656-67. [PMID: 24281001 PMCID: PMC3915118 DOI: 10.1038/bjc.2013.742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/17/2022] Open
Abstract
Background: Histone deacetylase inhibitors (HDACi) are promising antineoplastic agents, but their precise mechanisms of actions are not well understood. In particular, the relevance of p53 for HDACi-induced effects has not been fully elucidated. We investigated the anticancer effects of four structurally distinct HDACi, vorinostat, entinostat, apicidin and valproic acid, using isogenic HCT-116 colon cancer cell lines differing in p53 status. Methods: Effects were assessed by MTT assay, flow-cytometric analyses of propidium iodide uptake, mitochondrial depolarisation and cell-cycle distribution, as well as by gene expression profiling. Results: Vorinostat was equally effective in p53 wild-type and null cells, whereas entinostat was less effective in p53 null cells. Histone deacetylase inhibitors treatment suppressed the expression of MDM2 and increased the abundance of p53. Combination treatments showed that vorinostat enhanced the cytotoxic activity of TRAIL and bortezomib, independent of the cellular p53 status. Investigations into the effects of an inhibitor of the sirtuin class of HDAC, tenovin-1, revealed that tenovin-1-mediated cell death hinged on p53. Conclusion: These results demonstrate that vorinostat activates p53, but does not require p53 for inducing its anticancer action. Yet they also demonstrate that entinostat-induced cytotoxic effects partially depend on p53, indicating that different HDACi have a different requirement for p53.
Collapse
Affiliation(s)
- J Sonnemann
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
| | - C Marx
- Department of Biochemistry, Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany
| | - S Becker
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
| | - S Wittig
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
| | - C D Palani
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
| | - O H Krämer
- Department of Biochemistry, Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany
| | - J F Beck
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
| |
Collapse
|
16
|
Wei D, Wu Q, Shi H. Apoptosis and p53 expression in the placental villi of females with unexplained recurrent spontaneous abortion. Exp Ther Med 2013; 7:191-194. [PMID: 24348788 PMCID: PMC3861175 DOI: 10.3892/etm.2013.1399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/28/2013] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to explore the level of apoptosis and p53 expression in the placental villi of patients with unexplained recurrent spontaneous abortion (URSA). Fifty-three pregnant females with URSA and 32 pregnant females who required an induced abortion were selected as the subjects of this study. Placental villus tissues were collected from June 2010 to June 2012 and quantitative polymerase chain reaction (qPCR) and immunohistochemical analysis were performed to determine the mRNA and protein levels of p53 in the placental villus tissues. The level of apoptosis in the tissues was studied using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) assay. The mRNA and protein expression levels of p53 in the URSA group were significantly higher than those in the control group (P<0.05). Furthermore, the levels of apoptosis were increased markedly in the URSA group compared with the control group (P<0.05). In conclusion, the placental villi of patients with URSA express a high level of p53, which may result in cell apoptosis and lead to recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Dehua Wei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China ; Department of Gynecology and Obstetrics, Puyang People's Hospital, Puyang, Henan 457000, P.R. China
| | - Qinghua Wu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Huirong Shi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
17
|
Wang YG, Wang N, Li GM, Fang WL, Wei J, Ma JL, Wang T, Shi M. Mechanisms of trichostatin A inhibiting AGS proliferation and identification of lysine-acetylated proteins. World J Gastroenterol 2013; 19:3226-3240. [PMID: 23745024 PMCID: PMC3671074 DOI: 10.3748/wjg.v19.i21.3226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/21/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the effect of lysine acetylation in related proteins on regulation of the proliferation of gastric cancer cells, and determine the lysine-acetylated proteins and the acetylated modified sites in AGS gastric cancer cells. METHODS The CCK-8 experiment and flow cytometry were used to observe the changes in proliferation and cycle of AGS cells treated with trichostatin A (TSA). Real time polymerase chain reaction and Western blotting were used to observe expression changes in p21, p53, Bax, Bcl-2, CDK2, and CyclinD1 in gastric cancer cells exposed to TSA. Cytoplasmic proteins in gastric cancer cells before and after TSA treatment were immunoprecipitated with anti-acetylated lysine antibodies, separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis gel and silver-stained to detect the proteins by mass spectrometry after removal of the gel. The acetylated proteins in AGS cells were enriched with lysine-acetylated antibodies, and a high-resolution mass spectrometer was used to detect the acetylated proteins and modified sites. RESULTS TSA significantly inhibited AGS cell proliferation, and promoted cell apoptosis, leading to AGS cell cycle arrest in G0/G1 and G2/M phases, especially G0/G1 phase. p21, p53 and Bax gene expression levels in AGS cells were increased with TSA treatment duration; Bcl-2, CDK2, and CyclinD1 gene expression levels were decreased with TSA treatment duration. Two unknown protein bands, 72 kDa (before exposure to TSA) and 28 kDa (after exposure to TSA), were identified by silver-staining after immunoprecipitation of AGS cells with the lysine-acetylated monoclonal antibodies. Mass spectrometry showed that the 72 kDa protein band may be PKM2 and the 28 kDa protein band may be ATP5O. The acetylated proteins and modified sites in AGS cells were determined. CONCLUSION TSA can inhibit gastric cancer cell proliferation, which possibly activated signaling pathways in a variety of tumor-associated factors. ATP5O was obviously acetylated in AGS cells following TSA treatment.
Collapse
|
18
|
Abstract
Small cell lung cancer (SCLC) accounts for nearly 15% of human lung cancers and is one of the most aggressive solid tumors. The SCLC cells are thought to derive from self-renewing pulmonary neuroendocrine cells by oncogenic transformation. However, whether the SCLC cells possess stemness and plasticity for differentiation as normal stem cells has not been well understood thus far. In this study, we investigated the expressions of multilineage stem cell markers in the cancer cells of SCLC cell line (NCI-H446) and analyzed their clonogenicity, tumorigenicity, and plasticity for inducing differentiation. It has been found that most cancer cells of the cell line expressed multilineage stem cell markers under the routine culture conditions and generated single-cell clones in anchorage-dependent or -independent conditions. These cancer cells could form subcutaneous xenograft tumors and orthotopic lung xenograft tumors in BALB/C-nude mice. Most cells in xenograft tumors expressed stem cell markers and proliferation cell nuclear antigen Ki67, suggesting that these cancer cells remained stemness and highly proliferative ability in vivo. Intriguingly, the cancer cells could be induced to differentiate into neurons, adipocytes, and osteocytes, respectively, in vitro. During the processes of cellular phenotype-conversions, autophagy and apoptosis were two main metabolic events. There is cross-talking between autophagy and apoptosis in the differentiated cancer cells. In addition, the effects of the inhibitor and agonist for Sirtuin1/2 on the inducing osteogenic differentiation indicated that Sirtuin1/2 had an important role in this process. Taken together, these results indicate that most cancer cells of NCI-H446 cell line possess stemness and plasticity for multilineage differentiation. These findings have potentially some translational applications in treatments of SCLC with inducing differentiation therapy.
Collapse
|
19
|
Xu S, De Veirman K, Evans H, Santini GC, Vande Broek I, Leleu X, De Becker A, Van Camp B, Croucher P, Vanderkerken K, Van Riet I. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 2013; 34:699-709. [PMID: 23564084 DOI: 10.1038/aps.2012.182] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM Vorinostat, a histone deacetylase (HDAC) inhibitor currently in a clinical phase III trial for multiple myeloma (MM) patients, has been reported to cause bone loss. The purpose of this study was to test whether, and to what extent, vorinostat influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and bone formation in vivo. METHODS Bone marrow-derived MSCs were prepared from both normal donors and MM patients. The MSCs were cultured in an osteogenic differentiation induction medium to induce osteogenic differentiation, which was evaluated by alkaline phosphatase (ALP) staining, Alizarin Red S staining and the mRNA expression of osteogenic markers. Naïve mice were administered vorinostat (100 mg/kg, ip) every other day for 3 weeks. After the mice were sacrificed, bone formation was assessed based on serum osteocalcin level and histomorphometric analysis. RESULTS Vorinostat inhibited the viability of hMSCs in a concentration-dependent manner (the IC50 value was 15.57 μmol/L). The low concentration of vorinostat (1 μmol/L) did not significantly increase apoptosis in hMSCs, whereas pronounced apoptosis was observed following exposure to higher concentrations of vorinostat (10 and 50 μmol/L). In bone marrow-derived hMSCs from both normal donors and MM patients, vorinostat (1 μmol/L) significantly increased ALP activity, mRNA expression of osteogenic markers, and matrix mineralization. These effects were associated with upregulation of the bone-specifying transcription factor Runx2 and with the epigenetic alterations during normal hMSCs osteogenic differentiation. Importantly, the mice treated with vorinostat did not show any bone loss in response to the optimized treatment regimen. CONCLUSION Vorinostat, known as a potent anti-myeloma drug, stimulates MSC osteogenesis in vitro. With the optimized treatment regimen, any decrease in bone formation was not observed in vivo.
Collapse
|