1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Wiggins KB, Winston SM, Reeves IL, Gaevert J, Spence Y, Brimble MA, Livingston B, Morton CL, Thomas PG, Sant AJ, Ross TM, Davidoff AM, Schultz-Cherry S. rAAV expressing a COBRA-designed influenza hemagglutinin generates a protective and durable adaptive immune response with a single dose. J Virol 2024; 98:e0078124. [PMID: 39078191 PMCID: PMC11338075 DOI: 10.1128/jvi.00781-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity. Following a lethal viral challenge, the rAAV-COBRA vaccine allowed for significantly reduced viral loads in the upper and lower respiratory tracts and complete protection from morbidity and mortality that lasted for at least 5 months post-vaccination. We observed no signs of antibody waning during this study. CpG motif enrichment of the antigen can act as an internal adjuvant to further enhance the immune responses to allow for lower vaccine dosages with the induction of unique interferon-producing CD4+ and CD8+ T cells specific to HA head and stem peptide sequences. Our studies highlight the utility of rAAV as an effective platform to improve seasonal influenza vaccines. IMPORTANCE Developing an improved seasonal influenza vaccine remains an ambitious goal of researchers and clinicians alike. With influenza routinely causing severe epidemics with the potential to rise to pandemic levels, it is critical to create an effective, broadly protective, and durable vaccine to improve public health worldwide. As a potential solution, we created a rAAV viral vector expressing a COBRA-optimized influenza hemagglutinin antigen with modestly enriched CpG motifs to evoke a robust and long-lasting immune response after a single intramuscular dose without needing boosts or adjuvants. Importantly, the rAAV vaccine boosted antibody breadth to future strains in ferrets with pre-existing influenza immunity. Together, our data support further investigation into the utility of viral vectors as a potential avenue to improve our seasonal influenza vaccines.
Collapse
Affiliation(s)
- Kristin B. Wiggins
- St. Jude Graduate
School of Biomedical Sciences,
Memphis, Tennessee, USA
- Department of
Host-Microbe Interactions, St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Stephen M. Winston
- St. Jude Graduate
School of Biomedical Sciences,
Memphis, Tennessee, USA
- Department of Surgery,
St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Isaiah L. Reeves
- St. Jude Graduate
School of Biomedical Sciences,
Memphis, Tennessee, USA
- Department of Surgery,
St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Jessica Gaevert
- St. Jude Graduate
School of Biomedical Sciences,
Memphis, Tennessee, USA
- Department of
Host-Microbe Interactions, St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Yunyu Spence
- Department of Surgery,
St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Mark A. Brimble
- Department of
Host-Microbe Interactions, St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Brandi Livingston
- Department of
Host-Microbe Interactions, St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Christopher L. Morton
- Department of Surgery,
St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Paul G. Thomas
- Department of
Host-Microbe Interactions, St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Andrea J. Sant
- David H. Smith Center
for Vaccine Biology and Immunology, Department of Microbiology and
Immunology, University of Rochester Medical
Center, Rochester, New
York, USA
| | - Ted M. Ross
- Department of
Infectious Biology, Cleveland Clinic,
Cleveland, Ohio, USA
- Cleveland Clinic,
Florida Research and Innovation Center,
Port St. Lucie, Florida,
USA
| | - Andrew M. Davidoff
- St. Jude Graduate
School of Biomedical Sciences,
Memphis, Tennessee, USA
- Department of Surgery,
St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| | - Stacey Schultz-Cherry
- St. Jude Graduate
School of Biomedical Sciences,
Memphis, Tennessee, USA
- Department of
Host-Microbe Interactions, St. Jude Children’s Research
Hospital, Memphis,
Tennessee, USA
| |
Collapse
|
3
|
Malaina I, Martinez L, Salcines-Cuevas D, Teran-Navarro H, Ocejo-Vinyals JG, Gonzalez-Lopez E, Soriano V, Ubeda M, Perez Pinilla MB, Martinez de la Fuente I, Alvarez-Dominguez C. Testing a vaccine candidate against Hepatitis C virus designed by combinatorial optimization. Sci Rep 2023; 13:21746. [PMID: 38066027 PMCID: PMC10709393 DOI: 10.1038/s41598-023-48458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper presents a new procedure for vaccine design against highly variable viruses such as Hepatitis C. The procedure uses an optimization algorithm to design vaccines that maximize the coverage of epitopes across different virus variants. Weighted epitopes based on the success ratio of immunological assays are used to prioritize the selection of epitopes for vaccine design. The procedure was successfully applied to design DC vaccines loaded with two HCV peptides, STG and DYP, which were shown to be safe, immunogenic, and able to induce significant levels of anti-viral cytokines, peptide-specific cellular immune responses and IgG antibodies. The procedure could potentially be applied to other highly variable viruses that currently lack effective vaccines.
Collapse
Affiliation(s)
- Iker Malaina
- Department of Mathematics, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain.
- Biocruces Health Research Institute, Bilbao, Spain.
| | - Luis Martinez
- Department of Mathematics, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
- Biocruces Health Research Institute, Bilbao, Spain
- Basque Center of Applied Mathematics (BCAM), 48009, Bilbao, Spain
| | - David Salcines-Cuevas
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja (UNIR), MEDONLINE Group, Avda. de La Paz, 137, 26006, Logroño, La Rioja, Spain
| | - Hector Teran-Navarro
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja (UNIR), MEDONLINE Group, Avda. de La Paz, 137, 26006, Logroño, La Rioja, Spain
| | - J Gonzalo Ocejo-Vinyals
- Servicio de Inmunología, Cantabria and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Avda. de Valdecilla S/N, 39008, Santander, Spain
| | - Elena Gonzalez-Lopez
- Servicio de Inmunología, Cantabria and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Avda. de Valdecilla S/N, 39008, Santander, Spain
| | - Vicente Soriano
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja (UNIR), MEDONLINE Group, Avda. de La Paz, 137, 26006, Logroño, La Rioja, Spain
| | - María Ubeda
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja (UNIR), MEDONLINE Group, Avda. de La Paz, 137, 26006, Logroño, La Rioja, Spain
| | | | | | - Carmen Alvarez-Dominguez
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja (UNIR), MEDONLINE Group, Avda. de La Paz, 137, 26006, Logroño, La Rioja, Spain.
| |
Collapse
|
4
|
Kumar P, Wang M, Kumru OS, Hickey JM, Sanmiguel J, Zabaleta N, Vandenberghe LH, Joshi SB, Volkin DB. Correlating physicochemical and biological properties to define critical quality attributes of a rAAV vaccine candidate. Mol Ther Methods Clin Dev 2023; 30:103-121. [PMID: 37746246 PMCID: PMC10512015 DOI: 10.1016/j.omtm.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 09/26/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector's physicochemical properties and biological potency. To this end, we evaluated an rAAV-based coronavirus disease 2019 (COVID-19) vaccine candidate that encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3, including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates, and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented, and data were correlated with the physicochemical analyses on thermally stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and, importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccine candidates as well as specifically for the rAAV vaccine application under study.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Michael Wang
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
5
|
Abstract
Adeno-associated virus (AAV) has a single-stranded DNA genome encapsidated in a small icosahedrally symmetric protein shell with 60 subunits. AAV is the leading delivery vector in emerging gene therapy treatments for inherited disorders, so its structure and molecular interactions with human hosts are of intense interest. A wide array of electron microscopic approaches have been used to visualize the virus and its complexes, depending on the scientific question, technology available, and amenability of the sample. Approaches range from subvolume tomographic analyses of complexes with large and flexible host proteins to detailed analysis of atomic interactions within the virus and with small ligands at resolutions as high as 1.6 Å. Analyses have led to the reclassification of glycan receptors as attachment factors, to structures with a new-found receptor protein, to identification of the epitopes of antibodies, and a new understanding of possible neutralization mechanisms. AAV is now well-enough characterized that it has also become a model system for EM methods development. Heralding a new era, cryo-EM is now also being deployed as an analytic tool in the process development and production quality control of high value pharmaceutical biologics, namely AAV vectors.
Collapse
Affiliation(s)
- Scott
M. Stagg
- Department
of Biological Sciences, Florida State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Craig Yoshioka
- Department
of Biomedical Engineering, Oregon Health
& Science University, Portland Oregon 97239, United States
| | - Omar Davulcu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Michael S. Chapman
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Zhan W, Muhuri M, Tai PWL, Gao G. Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens? Front Immunol 2021; 12:673699. [PMID: 34046041 PMCID: PMC8144494 DOI: 10.3389/fimmu.2021.673699] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Conventional vaccinations and immunotherapies have encountered major roadblocks in preventing infectious diseases like HIV, influenza, and malaria. These challenges are due to the high genomic variation and immunomodulatory mechanisms inherent to these diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection, but these treatments require repeated dosing. Some recombinant viral vectors, such as those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs have emerged as favorable vectors, given their high in vivo transduction efficiency, proven clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to deliver recombinant antibodies to confer immunity against infections or to diminish the severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs enable de novo synthesis of foreign proteins with the conformation and topology that resemble those of natural pathogens. However, technical hurdles like pre-existing immunity to the rAAV capsid and production of anti-drug antibodies can reduce the efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based prophylactic and therapeutic strategies developed against infectious diseases that are currently being tested in pre-clinical and clinical studies. Technical challenges and potential solutions will also be discussed.
Collapse
Affiliation(s)
- Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Phillip W. L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang SW. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1681. [PMID: 33164326 PMCID: PMC8052270 DOI: 10.1002/wnan.1681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Infectious diseases are a major threat to global human health, yet prophylactic treatment options can be limited, as safe and efficacious vaccines exist only for a fraction of all diseases. Notably, devastating diseases such as acquired immunodeficiency syndrome (AIDS) and coronavirus disease of 2019 (COVID-19) currently do not have vaccine therapies. Conventional vaccine platforms, such as live attenuated vaccines and whole inactivated vaccines, can be difficult to manufacture, may cause severe side effects, and can potentially induce severe infection. Subunit vaccines carry far fewer safety concerns due to their inability to cause vaccine-based infections. The applicability of protein nanoparticles (NPs) as vaccine scaffolds is promising to prevent infectious diseases, and they have been explored for a number of viral, bacterial, fungal, and parasitic diseases. Many types of protein NPs exist, including self-assembling NPs, bacteriophage-derived NPs, plant virus-derived NPs, and human virus-based vectors, and these particular categories will be covered in this review. These vaccines can elicit strong humoral and cellular immune responses against specific pathogens, as well as provide protection against infection in a number of animal models. Furthermore, published clinical trials demonstrate the promise of applying these NP vaccine platforms, which include bacteriophage-derived NPs, in addition to multiple viral vectors that are currently used in the clinic. The continued investigations of protein NP vaccine platforms are critical to generate safer alternatives to current vaccines, advance vaccines for diseases that currently lack effective prophylactic therapies, and prepare for the rapid development of new vaccines against emerging infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nina Butkovich
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Enya Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Amanda M. Burkhardt
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| |
Collapse
|
8
|
Cohen AC, Roane BM, Leath CA. Novel Therapeutics for Recurrent Cervical Cancer: Moving Towards Personalized Therapy. Drugs 2020; 80:217-227. [PMID: 31939072 PMCID: PMC7033025 DOI: 10.1007/s40265-019-01249-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While screening programs and HPV vaccination have decreased the incidence of cervical cancer, still over 13,000 cases occur in the USA annually. Early-stage cervical cancer has an excellent long-term prognosis, with 5-year survival for localized disease being > 90%. Survival decreases markedly for both locally advanced and metastatic disease, and both are associated with a higher risk of recurrence. Few effective treatment options exist for persistent, recurrent, or metastatic cervical cancer. In 2014, the anti-VEGF antibody bevacizumab was approved in combination with chemotherapy based on the results of the Phase III GOG-240 study. As the majority of cervical cancers have a viral etiology, which impairs the immune system, immunotherapy using checkpoint inhibitors and other agents, appears to be a promising approach. In June 2018, the US FDA approved the anti-PD1 antibody pembrolizumab for recurrent or metastatic cervical cancer with PD-L1 expression that progressed after one or more lines of chemotherapy. Another anti-PD1 antibody, cemiplimab also shows potential in this setting, either as monotherapy or combined with radiotherapy, and it is currently being evaluated in a Phase III trial. Additional checkpoint inhibitors including nivolumab, durvalumab, atezolizumab, and camrelizumab are in different stages of clinical development for the disease. Finally, an additional targeted approach being pursued involves PARP inhibitors (rucaparib and olaparib are both in Phase II) based on earlier study results.
Collapse
Affiliation(s)
- Alexander C Cohen
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon M Roane
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Charles A Leath
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA.
| |
Collapse
|