1
|
Sun Q, Lv Y, Sun W. Inhibition of DNAJC12 Inhibited Tumorigenesis of Rectal Cancer via Downregulating HSPA4 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1027895. [PMID: 36185081 PMCID: PMC9519347 DOI: 10.1155/2022/1027895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Background Dysregulation of DnaJ heat shock protein family (HSP40) member C12 (DNAJC12) is implicated in the malignancy progression of multiple cancers. The current study aimed to determine the biology function and mechanism of DNAJC12 in rectal cancer (RC). Methods RC tissues, adjacent tissues, RC cell lines, and normal colorectal epithelial cell lines were collected to analyze DNAJC12 expression. The abilities of DNAJC12 on proliferation, migration, and apoptosis of RC cells were detected by CCK-8, wound healing, and flow cytometry assays. Co-IP assays were carried out to confirm the association between DNAJC12 and HSPA4. The effect of DNAJC12 on tumor growth was detected by using the xenograft model of nude mice. Results Elevation of DNAJC12 was uncovered in RC tissues and cell lines. DNAJC12 upregulation facilitated RC cell proliferation and migration and induced apoptosis, while DNAJC12 interference showed the opposite results. Besides, HSAP4 served as a potential binding protein for DNAJC12. Rescue experiments revealed that elevated of HSAP4 restored the impact of DNAJC12 silencing on the cell functions. Finally, DNAJC12 silencing hampered tumor growth of RC in vivo. Conclusion In summary, this study highlighted a key player of DNAJC12 in modulating the malignant biological progression of RC via DNAJC12/HSPA4 axis, displaying a potential therapeutic target for RC.
Collapse
Affiliation(s)
- Qi Sun
- Third Ward of Cancer Center, The PLA Navy Anqing Hospital, Anqing 246003, Anhui, China
| | - Yan Lv
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Weihua Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| |
Collapse
|
2
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
3
|
Silencing of nuclear factor kappa b 1 gene expression inhibits colony formation, cell migration and invasion via the downregulation of interleukin 1 beta and matrix metallopeptidase 9 in renal cell carcinoma. Mol Biol Rep 2019; 47:1143-1151. [PMID: 31820316 DOI: 10.1007/s11033-019-05212-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023]
Abstract
Renal cell carcinoma (RCC) is a highly deadly urological tumor due to its high metastatic incidence and its notorious chemoresistance. The nuclear transcription factor kappa B (NF-κB) family has been associated with apoptosis resistance and cellular invasion in RCC. The purpose of this study was to evaluate the impact of NF-κB1 gene silencing on the colony formation, cell migration and invasion abilities of the RCC cell line. Renca-mock and Renca-shRNA-NF-κB1 cells were used in this work. NF-κB1 downregulation was assessed by western blotting. The mRNA expression levels of interleukin-1 beta (IL-1β) and MMP-9 were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). The IL-1β levels in the culture media were determined by a commercial ELISA kit. The MMP-9 protein expression and gelatinolytic activity were evaluated by western blotting and zymography, respectively, and the migration and invasion abilities were analysed. The expression levels of p105 and p50 in Renca-shRNA-NF-κBmoc1 cells were significantly reduced compared with those in the Renca-mock cells. The colony numbers of shRNA-NF-кB1 cells were lower than the colony numbers of the Renca-mock cells. NF-κB1 knockdown inhibited the cell migration and invasion of Renca-shRNA-NF-κB1 cells. These cells also exhibited reduced levels of IL-1β. The MMP-9 expression and activity levels were significantly reduced in Renca-shRNA-NF-κB1 cells. Taken together, these results indicate that the downregulation of NF-κB1 suppresses the tumourigenicity of RCC by reducing MMP-9 expression and activity; thus, NF-κB1 could be a molecular target for RCC treatment.
Collapse
|
4
|
Soleimani A, Zahiri E, Ehtiati S, Norouzi M, Rahmani F, Fiuji H, Avan A, Ferns GA, Khazaei M, Hashemy SI, Hassanian SM. Therapeutic potency of heat-shock protein-70 in the pathogenesis of colorectal cancer: current status and perspectives. Biochem Cell Biol 2018; 97:85-90. [PMID: 30273495 DOI: 10.1139/bcb-2018-0177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heat-shock protein-70 (HSP70) is critical to the folding, stability, and activity of several client proteins including many responsible for cancer cell proliferation, apoptosis, drug toxicity, and metastasis. Up-regulation of HSP70 is positively associated with increased tumorigenicity as well as poor survival in colon cancer patients, supporting the diagnostic, prognostic, and therapeutic potencies of HSP70 in colorectal cancer. The administration of specific pharmacological inhibitors or gene knock-down for HSP70 suppresses tumor progression and enhances tumor cell chemosensitivity. This review summarizes the different tumorigenic properties of HSP70 and the potential therapeutic potency of HSP70 inhibitors in terms of a novel strategy for colorectal cancer therapy, for a better understanding, and hence better management of this disease.
Collapse
Affiliation(s)
- Atena Soleimani
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Zahiri
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Ehtiati
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Norouzi
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,b Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- c Department of Biochemistry, Payame-Noor University, Mashhad, Iran
| | - Amir Avan
- d Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,e Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- f Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- d Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,g Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- a Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,d Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wang S, Mo Y, Midorikawa K, Zhang Z, Huang G, Ma N, Zhao W, Hiraku Y, Oikawa S, Murata M. The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget 2016; 6:35893-907. [PMID: 26486082 PMCID: PMC4742149 DOI: 10.18632/oncotarget.5651] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy with poor prognosis that is endemic to Southeast Asia. We profiled microRNAs (miRNAs) of NPCs using microarrays and confirmed the results by quantitative RT-PCR. The results revealed that seven miRNAs were significantly up-regulated, and six miRNAs were down-regulated, in NPC tissues relative to noncancerous nasopharyngeal epithelia (NNE). Expression of miR-497 was also significantly reduced in the plasma of NPC patients relative to the plasma of noncancerous control patients. The concordant down-regulation of miR-497 in tissues and plasma suggested that miR-497 could be used as a diagnostic biomarker for NPC. Functional analyses of the effect of miR-497 on cancer phenotypes revealed that transfection of miR-497 mimic into NPC cells suppressed cell growth and migration and induced apoptosis. Subcutaneous xenografts of transfected cells in nude mice demonstrated that miR-497 significantly inhibited tumor growth. Two potential targets of miR-497, ANLN (anillin, actin-binding protein) and HSPA4L (heat shock 70 kDa protein 4–like), both of which were overexpressed in NPC tissues, were negatively regulated by miR-497 mimic in NPC cell lines. Silencing of ANLN and HSPA4L suppressed cell proliferation and migration and induced apoptosis in NPC cells. Our findings indicate that miR-497 is a potent tumor suppressor that inhibits cancer phenotypes by targeting ANLN and HSPA4L in NPC.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Zhe Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Ma
- Faculty of Nursing Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Weilin Zhao
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
6
|
Zhang M, Kenny SJ, Ge L, Xu K, Schekman R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 2015; 4:e11205. [PMID: 26523392 PMCID: PMC4728131 DOI: 10.7554/elife.11205] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022] Open
Abstract
Recent evidence suggests that autophagy facilitates the unconventional secretion of the pro-inflammatory cytokine interleukin 1β (IL-1β). Here, we reconstituted an autophagy-regulated secretion of mature IL-1β (m-IL-1β) in non-macrophage cells. We found that cytoplasmic IL-1β associates with the autophagosome and m-IL-1β enters into the lumen of a vesicle intermediate but not into the cytoplasmic interior formed by engulfment of the autophagic membrane. In advance of secretion, m-IL-1β appears to be translocated across a membrane in an event that may require m-IL-1β to be unfolded or remain conformationally flexible and is dependent on two KFERQ-like motifs essential for the association of IL-1β with HSP90. A vesicle, possibly a precursor of the phagophore, contains translocated m-IL-1β and later turns into an autophagosome in which m-IL-1β resides within the intermembrane space of the double-membrane structure. Completion of IL-1β secretion requires Golgi reassembly and stacking proteins (GRASPs) and multi-vesicular body (MVB) formation.
Collapse
Affiliation(s)
- Min Zhang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Liang Ge
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
7
|
Choi DW, Lim MS, Lee JW, Chun W, Lee SH, Nam YH, Park JM, Choi DH, Kang CD, Lee SJ, Park SC. The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression. Biomol Ther (Seoul) 2015; 23:128-33. [PMID: 25767680 PMCID: PMC4354313 DOI: 10.4062/biomolther.2014.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022] Open
Abstract
Although coffee is known to have antioxidant, anti-inflammatory, and antitumor properties, there have been few reports about the effect and mechanism of coffee compounds in colorectal cancer. Heat shock proteins (HSPs) are molecular chaperones that prevent cell death. Their expression is significantly elevated in many tumors and is accompanied by increased cell proliferation, metastasis and poor response to chemotherapy. In this study, we investigated the cytotoxicity of four bioactive compounds in coffee, namely, caffeine, caffeic acid, chlorogenic acid, and kahweol, in HT-29 human colon adenocarcinoma cells. Only kahweol showed significant cytotoxicity. Specifically, kahweol increased the expression of caspase-3, a pro-apoptotic factor, and decreased the expression of anti-apoptotic factors, such as Bcl-2 and phosphorylated Akt. In addition, kahweol significantly attenuated the expression of HSP70. Inhibition of HSP70 activity with triptolide increased kahweol-induced cytotoxicity. In contrast, overexpression of HSP70 significantly reduced kahweol-induced cell death. Taken together, these results demonstrate that kahweol inhibits colorectal tumor cell growth by promoting apoptosis and suppressing HSP70 expression.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Man Sup Lim
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea ; Department of Surgery, Hallym University Sacred Heart Hospital, Anyang 431-796, Republic of Korea
| | - Jae Won Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Sang Hyuk Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Yang Hoon Nam
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Jin Myung Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Dae Hee Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Chang Don Kang
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Sung Joon Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Sung Chul Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
8
|
Morisaki T, Yashiro M, Kakehashi A, Inagaki A, Kinoshita H, Fukuoka T, Kasashima H, Masuda G, Sakurai K, Kubo N, Muguruma K, Ohira M, Wanibuchi H, Hirakawa K. Comparative proteomics analysis of gastric cancer stem cells. PLoS One 2014; 9:e110736. [PMID: 25379943 PMCID: PMC4224387 DOI: 10.1371/journal.pone.0110736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer progression, metastasis, and recurrence. To date, the specific markers of CSCs remain undiscovered. The aim of this study was to identify novel biomarkers of gastric CSCs for clinical diagnosis using proteomics technology. CSC-like SP cells, OCUM-12/SP cells, OCUM-2MD3/SP cells, and their parent OCUM-12 cells and OCUM-2MD3 cells were used in this study. Protein lysates from each cell line were analyzed using QSTAR Elite Liquid Chromatography with Tandem Mass Spectrometry, coupled with isobaric tags for relative and absolute quantitation technology. Candidate proteins detected by proteomics technology were validated by immunohistochemical analysis of 300 gastric cancers. Based on the results of LC-MS/MS, eight proteins, including RBBP6, GLG1, VPS13A, DCTPP1, HSPA9, HSPA4, ALDOA, and KRT18, were up-regulated in both OCUM-12/SP cells and OCUM-2MD3/SP cells when compared to their corresponding parent cells. RT-PCR analysis indicated that the expression level of RBBP6, HSPA4, DCTPP1, HSPA9, VPS13A, ALDOA, GLG1, and CK18 was high in OCUM-12/SP and OCUM-2MD3/SP, in compared with the control of parent OCUM-12 and OCUM-2MD3. These proteins were significantly associated with advanced invasion depth, lymph node metastasis, distant metastasis, or advanced clinical stage. RBBP6, DCTPP1, HSPA4, and ALDOA expression in particular were significantly associated with a poor prognosis in the 300 gastric cancer patients. RBBP6 was determined to be an independent prognostic factor. The motility-stimulating ability of OCUM-12/SP cells and OCUM-2MD3/SP cells was inhibited by RBBP6 siRNA. These findings might suggest that the eight proteins, RBBP6, GLG1, VPS13A, DCTPP1, HSPA9, HSPA4, ALDOA, and KRT18, utilizing comparative proteomics analysis, were perceived to be potential CSC markers of gastric cancer. Of the eight candidate proteins, RBBP6 was suggested to be a promising prognostic biomarker and a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Anna Kakehashi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Azusa Inagaki
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Bądziul D, Jakubowicz-Gil J, Paduch R, Głowniak K, Gawron A. Combined treatment with quercetin and imperatorin as a potent strategy for killing HeLa and Hep-2 cells. Mol Cell Biochem 2014; 392:213-27. [PMID: 24682729 PMCID: PMC4148393 DOI: 10.1007/s11010-014-2032-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/14/2014] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to assess the effect of quercetin and imperatorin administered separately and in combination on apoptosis and autophagy induction in human cervical carcinoma HeLa cells and laryngeal carcinoma Hep-2 cells cultured in vitro. Conducted MTT measurements proved that quercetin and imperatorin displayed a strong antiproliferative activity manifested in markedly reduction of HeLa and Hep-2 cells viability as a result of treatment with 50 μM of each compound. Further cell staining assays revealed that concentration mentioned above generated the highest percentage of apoptotic cells especially in the case of application of both drugs for 48 h. Simultaneous quercetin and imperatorin administration induced apoptosis remarkably stronger than treatment with single drugs. Experiments at the molecular level confirmed these results accompanied with the decreased Hsp27 and Hsp72 expression and, in addition, with increased caspases activity. Autophagy was not observed and no significant changes in the expression of beclin-1 were noticed. Additionally, experiments were performed on the above-mentioned cell lines with blocked Hsp27 and Hsp72 expression. In these cells, no significant changes in the sensitivity to apoptosis induction upon quercetin and imperatorin treatment were observed. The present study has provided evidence supporting the potential of the combination of quercetin and imperatorin drugs as a novel tool to be used in anticancer therapy. Our results have also demonstrated that blocking of the Hsp27 and Hsp72 gene expression is not enough to sensitize cancer cells to programmed cell death induction in HeLa and Hep-2 cells.
Collapse
Affiliation(s)
- Dorota Bądziul
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland,
| | | | | | | | | |
Collapse
|
10
|
Fang X, Jiang Y, Feng L, Chen H, Zhen C, Ding M, Wang X. Blockade of PI3K/AKT pathway enhances sensitivity of Raji cells to chemotherapy through down-regulation of HSP70. Cancer Cell Int 2013; 13:48. [PMID: 23706027 PMCID: PMC3680239 DOI: 10.1186/1475-2867-13-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/10/2013] [Indexed: 01/08/2023] Open
Abstract
Up-regulation of heat shock protein 70 (HSP70) could be elicited primarily by heat in former studies, and this was proved to be associated with cancer progression. Burkitt's lymphoma is one of highly aggressive B-cell non-Hodgkin’s lymphoma and is one of the fastest growing human tumors. To investigate the effect of HSP70 expression on the sensitivity of human Burkitt lymphoma cells (Raji cells) to chemotherapy and its role in the involvement of PI3K/AKT pathway, we evaluated the effects of LY294002, a PI3K inhibitor, on the expression of HSP70 and cell sensitivity to adriamycin (ADM) or cisplatin (DDP). In present study, expressions of HSP70, AKT and phosphorylated AKT (p-AKT) in Raji cells were measured by Western-Blot. Apoptosis index of Raji cells was examined by flow cytometry. Cytotoxicities of adriamycin (ADM) and cisplatin (DDP) were determined by WST-8 assay. We found that hyperthermia (42 degrees for 1 hour) up-regulated the expression of HSP70 expression and blockade of PI3K/AKT pathway down-regulated HSP70 expression in Raji cells. Compared to cells treated with ADM or DDP alone, hyperthermia protected cells from chemotherapy while LY294002 enhanced sensitivity of Raji cells to chemotherapy. Our results suggested down-regulation of HSP70 expression by blockade of PI3K/AKT pathway maybe responsible for the increased sensitivity of Raji cells to chemotherapy. Targeting PI3K/AKT pathway or inhibiting HSP70 expression may be beneficial for chemotherapy treatment of Burkitt lymphoma patients.
Collapse
Affiliation(s)
- Xiaosheng Fang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, P,R, China.
| | | | | | | | | | | | | |
Collapse
|