1
|
Chen C, Fu Q, Wang L, Tanaka S, Imajo M. Establishment of a novel mouse model of colorectal cancer by orthotopic transplantation. BMC Cancer 2025; 25:405. [PMID: 40050746 PMCID: PMC11884030 DOI: 10.1186/s12885-025-13834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents a major malignancy that poses a significant threat to human health worldwide. The establishment of a reliable and pathologically relevant orthotopic model of CRC is crucial for gaining a deeper understanding of its molecular mechanisms and for developing more effective therapies. Nonetheless, the development of such models is fraught with challenges primarily owing to the technical complexities associated with the transplantation of CRC cells into the intestinal epithelium. METHODS The luminal surface of the cecum was externalized to visualize the entire process involved in the transplantation of CRC cells into the cecal epithelium of BALB/c athymic nude mice. The cecal epithelium was mechanically removed, preserving the integrity of the submucosal layer. Caco-2 CRC cells were subsequently inoculated onto the epithelium-depleted surface of the cecum to reproduce the development of CRC within the epithelial layer. The successful removal of the epithelium and transplantation of Caco-2 cells were verified through the use of appropriate fluorescent labeling techniques and examination with a fluorescence stereoscopic microscope. RESULTS Following orthotopic transplantation, Caco-2 cells formed tumors in the cecum, where tumors progressed from a flat monolayer epithelium to thickened aberrant crypt foci, and then to protruding polyps, aided by mesenchymal cells infiltrating the tumors to form a stalk region, and eventually to large tumors invading the submucosa. Throughout this process, Caco-2 cells retained stem cell and fetal intestinal signatures, regardless of their location within the tumors or their proliferative status. Histopathological analysis further suggested that interactions between the transplanted Caco-2 cells and the surrounding normal epithelial and mesenchymal cells play critical roles in tumor development and in the elimination of normal epithelial cells from the tumor in this model. CONCLUSIONS This study established a novel orthotopic model of CRC within the mouse cecum. Tumor development and progression in this model include sequential morphological changes from a flat monolayer to large invasive tumors. The establishment of this orthotopic CRC model, which mimics tumor development in a more natural microenvironment, provides new opportunities to investigate the molecular mechanisms underlying CRC and to evaluate novel anticancer therapies in pathologically relevant contexts.
Collapse
Affiliation(s)
- Cewen Chen
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Qiaochu Fu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
2
|
Cyr M, Chabaytah N, Babik J, Behmand B, St-Jean G, Enger SA. Establishing a standardized murine orthotopic intra-rectal model for the study of colorectal adenocarcinoma. J Gastrointest Oncol 2024; 15:2578-2587. [PMID: 39816036 PMCID: PMC11732354 DOI: 10.21037/jgo-24-515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 01/18/2025] Open
Abstract
Background Orthotopic models offer a more accurate representation of colorectal cancer (CRC) compared to subcutaneous models. Despite promising results from the reported intra-rectal models, establishing a standardized method for CRC research remains challenging due to model variability, hindering comprehensive studies on CRC pathogenesis and treatment modalities, such as brachytherapy. This study aimed to establish a standardized workflow for an orthotopic intra-rectal animal model to induce the growth of colorectal adenocarcinoma in male and female mice. Methods HT-29 colorectal adenocarcinoma cells were injected into the rectal mucosa of female (n=21) and male (n=26) non-obese diabetic severe combined immunodeficiency (NOD SCID) gamma (NSG) mice. Mice were placed on a 45° wedge elevating their pelvis for better visualization of the anus. Tumor growth and localization were monitored using a 7-T magnetic resonance imaging (MRI) scanner with rapid acquisition with relaxation echo (RARE) sequence at weeks 1, 2, and 3 post-cell instillation. Once tumors reached 5-8 mm in diameter, the mice were euthanized. Histopathology and immunohistochemical analyses confirmed the tumors' morphology, including necrosis, vascularity (CD-31) and apoptosis (cleaved caspase-3). Results There was a 92% and 95% tumor growth success rate in male and female mice, respectively. Tumors grew to 5-8 mm in diameter within ~20 days. No significant difference in tumor size was observed between genders. Tumor morphology was consistent across cases. Most tumors exhibited a lack of central blood vessels, accompanied by varying degrees of necrosis and apoptosis, whereas external portions were highly vascularized. Conclusions An orthotopic intra-rectal model was successfully developed. This model will be used in future studies to evaluate the efficacy of CRC treatments.
Collapse
Affiliation(s)
- Mélodie Cyr
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Naim Chabaytah
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Joud Babik
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Behnaz Behmand
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Guillaume St-Jean
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC, Canada
| | - Shirin A. Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
3
|
Houvast RD, Badr N, March T, de Muynck LDAN, Sier VQ, Schomann T, Bhairosingh S, Baart VM, Peeters JAHM, van Westen GJP, Plückthun A, Burggraaf J, Kuppen PJK, Vahrmeijer AL, Sier CFM. Preclinical evaluation of EpCAM-binding designed ankyrin repeat proteins (DARPins) as targeting moieties for bimodal near-infrared fluorescence and photoacoustic imaging of cancer. Eur J Nucl Med Mol Imaging 2024; 51:2179-2192. [PMID: 37642704 PMCID: PMC11178671 DOI: 10.1007/s00259-023-06407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer. METHODS EpCAM-binding DARPins Ac2, Ec4.1, and non-binding control DARPin Off7 were conjugated to IRDye 800CW and their binding efficacy was evaluated on EpCAM-positive HT-29 and EpCAM-negative COLO-320 human colon cancer cell lines. Thereafter, NIRF and PA imaging of all three conjugates were performed in HT-29_luc2 tumor-bearing mice. At 24 h post-injection, tumors and organs were resected and tracer biodistributions were analyzed. RESULTS Ac2-800CW and Ec4.1-800CW specifically bound to HT-29 cells, but not to COLO-320 cells. Next, 6 nmol and 24 h were established as the optimal in vivo dose and imaging time point for both DARPin tracers. At 24 h post-injection, mean tumor-to-background ratios of 2.60 ± 0.3 and 3.1 ± 0.3 were observed for Ac2-800CW and Ec4.1-800CW, respectively, allowing clear tumor delineation using the clinical Artemis NIRF imager. Biodistribution analyses in non-neoplastic tissue solely showed high fluorescence signal in the liver and kidney, which reflects the clearance of the DARPin tracers. CONCLUSION Our encouraging results show that EpCAM-binding DARPins are a promising class of targeting moieties for pan-carcinoma targeting, providing clear tumor delineation at 24 h post-injection. The work described provides the preclinical foundation for DARPin-based bimodal NIRF/PA imaging of cancer.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | - Nada Badr
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Taryn March
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vincent Q Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo Schomann
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadhvi Bhairosingh
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zurich, Switzerland
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Centre for Human Drug Research, Leiden, the Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Sharma S, Singh N, Turk AA, Wan I, Guttikonda A, Dong JL, Zhang X, Opyrchal M. Molecular insights into clinical trials for immune checkpoint inhibitors in colorectal cancer: Unravelling challenges and future directions. World J Gastroenterol 2024; 30:1815-1835. [PMID: 38659481 PMCID: PMC11036501 DOI: 10.3748/wjg.v30.i13.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
Colorectal cancer (CRC) is a complex disease with diverse etiologies and clinical outcomes. Despite considerable progress in development of CRC therapeutics, challenges remain regarding the diagnosis and management of advanced stage metastatic CRC (mCRC). In particular, the five-year survival rate is very low since mCRC is currently rarely curable. Over the past decade, cancer treatment has significantly improved with the introduction of cancer immunotherapies, specifically immune checkpoint inhibitors. Therapies aimed at blocking immune checkpoints such as PD-1, PD-L1, and CTLA-4 target inhibitory pathways of the immune system, and thereby enhance anti-tumor immunity. These therapies thus have shown promising results in many clinical trials alone or in combination. The efficacy and safety of immunotherapy, either alone or in combination with CRC, have been investigated in several clinical trials. Clinical trials, including KEYNOTE-164 and CheckMate 142, have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab, respectively, for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC. Unfortunately, these drugs benefit only a small percentage of patients, with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients. To this end, primary and secondary resistance to immunotherapy remains a significant issue, and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response. This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC. The underlying rationale, challenges faced, and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.
Collapse
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Anita Ahmed Turk
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Isabella Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Akshay Guttikonda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julia Lily Dong
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mateusz Opyrchal
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
5
|
Song Y, Kerr TD, Sanders C, Dai L, Baxter SS, Somerville B, Baugher RN, Mellott SD, Young TB, Lawhorn HE, Plona TM, Xu B, Wei L, Hu Q, Liu S, Hutson A, Karim B, Burkett S, Difilippantonio S, Pinto L, Gebert J, Kloor M, Lipkin SM, Sei S, Shoemaker RH. Organoids and metastatic orthotopic mouse model for mismatch repair-deficient colorectal cancer. Front Oncol 2023; 13:1223915. [PMID: 37746286 PMCID: PMC10516605 DOI: 10.3389/fonc.2023.1223915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Genome integrity is essential for the survival of an organism. DNA mismatch repair (MMR) genes (e.g., MLH1, MSH2, MSH6, and PMS2) play a critical role in the DNA damage response pathway for genome integrity maintenance. Germline mutations of MMR genes can lead to Lynch syndrome or constitutional mismatch repair deficiency syndrome, resulting in an increased lifetime risk of developing cancer characterized by high microsatellite instability (MSI-H) and high mutation burden. Although immunotherapy has been approved for MMR-deficient (MMRd) cancer patients, the overall response rate needs to be improved and other management options are needed. Methods To better understand the biology of MMRd cancers, elucidate the resistance mechanisms to immune modulation, and develop vaccines and therapeutic testing platforms for this high-risk population, we generated organoids and an orthotopic mouse model from intestine tumors developed in a Msh2-deficient mouse model, and followed with a detailed characterization. Results The organoids were shown to be of epithelial origin with stem cell features, to have a high frameshift mutation frequency with MSI-H and chromosome instability, and intra- and inter-tumor heterogeneity. An orthotopic model using intra-cecal implantation of tumor fragments derived from organoids showed progressive tumor growth, resulting in the development of adenocarcinomas mixed with mucinous features and distant metastasis in liver and lymph node. Conclusions The established organoids with characteristics of MSI-H cancers can be used to study MMRd cancer biology. The orthotopic model, with its distant metastasis and expressing frameshift peptides, is suitable for evaluating the efficacy of neoantigen-based vaccines or anticancer drugs in combination with other therapies.
Collapse
Affiliation(s)
- Yurong Song
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Travis D. Kerr
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Chelsea Sanders
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences Program, Frederick, MD, United States
| | - Lisheng Dai
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Shaneen S. Baxter
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Brandon Somerville
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Ryan N. Baugher
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Stephanie D. Mellott
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Todd B. Young
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Heidi E. Lawhorn
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Teri M. Plona
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Bingfang Xu
- Frederick National Laboratory for Cancer Research, Genomics Laboratory, Frederick, MD, United States
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra Burkett
- Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, MD, United States
| | - Simone Difilippantonio
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences Program, Frederick, MD, United States
| | - Ligia Pinto
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
6
|
Baart VM, van Manen L, Bhairosingh SS, Vuijk FA, Iamele L, de Jonge H, Scotti C, Resnati M, Cordfunke RA, Kuppen PJK, Mazar AP, Burggraaf J, Vahrmeijer AL, Sier CFM. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol Imaging Biol 2023; 25:122-132. [PMID: 34642899 PMCID: PMC9970952 DOI: 10.1007/s11307-021-01657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. PROCEDURES Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. RESULTS Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. CONCLUSIONS In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.
Collapse
Affiliation(s)
- Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Floris A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Luisa Iamele
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Hugo de Jonge
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Massimo Resnati
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| |
Collapse
|
7
|
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, Conway JF, Lu B, Li S. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2023; 18:193-204. [PMID: 36424448 PMCID: PMC9974593 DOI: 10.1038/s41565-022-01266-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2022] [Indexed: 05/14/2023]
Abstract
Activation of scramblases is one of the mechanisms that regulates the exposure of phosphatidylserine to the cell surface, a process that plays an important role in tumour immunosuppression. Here we show that chemotherapeutic agents induce overexpression of Xkr8, a scramblase activated during apoptosis, at the transcriptional level in cancer cells, both in vitro and in vivo. Based on this finding, we developed a nanocarrier for co-delivery of Xkr8 short interfering RNA and the FuOXP prodrug to tumours. Intravenous injection of our nanocarrier led to significant inhibition of tumour growth in colon and pancreatic cancer models along with increased antitumour immune response. Targeting Xkr8 in combination with chemotherapy may represent a novel strategy for the treatment of various types of cancers.
Collapse
Affiliation(s)
- Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzhe Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - LinXinTian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Runzi Sun
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Zheng Z, Wei J, Hou X, Jia F, Zhang Z, Guo H, Yuan F, He F, Ke Z, Wang Y, Zhao L. A High Hepatic Uptake of Conjugated Bile Acids Promotes Colorectal Cancer-Associated Liver Metastasis. Cells 2022; 11:cells11233810. [PMID: 36497071 PMCID: PMC9736302 DOI: 10.3390/cells11233810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The liver is the most common site for colorectal cancer (CRC)-associated metastasis. There remain unsatisfactory medications in liver metastasis given the incomplete understanding of pathogenic mechanisms. Herein, with an orthotopic implantation model fed either regular or high-fat diets (HFD), more liver metastases were associated with an expansion of conjugated bile acids (BAs), particularly taurocholic acid (TCA) in the liver, and an increased gene expression of Na+-taurocholate cotransporting polypeptide (NTCP). Such hepatic BA change was more apparently shown in the HFD group. In the same model, TCA was proven to promote liver metastases and induce a tumor-favorable microenvironment in the liver, characterizing a high level of fibroblast activation and increased proportions of myeloid-derived immune cells. Hepatic stellate cells, a liver-residing source of fibroblasts, were dose-dependently activated by TCA, and their conditioned medium significantly enhanced the migration capability of CRC cells. Blocking hepatic BA uptake with NTCP neutralized antibody can effectively repress TCA-triggered liver metastases, with an evident suppression of tumor microenvironment niche formation. This study points to a new BA-driven mechanism of CRC-associated liver metastases, suggesting that a reduction of TCA overexposure by limiting liver uptake is a potential therapeutic option for CRC-associated liver metastasis.
Collapse
Affiliation(s)
- Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhou Zhang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
9
|
Dai W, Wu J, Peng X, Hou W, Huang H, Cheng Q, Liu Z, Luyten W, Schoofs L, Zhou J, Liu S. CDK12 orchestrates super-enhancer-associated CCDC137 transcription to direct hepatic metastasis in colorectal cancer. Clin Transl Med 2022; 12:e1087. [PMID: 36254394 PMCID: PMC9577262 DOI: 10.1002/ctm2.1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic metastasis is the primary and direct cause of death in individuals with colorectal cancer (CRC) attribute to lack of effective therapeutic targets. The present study aimed to identify potential druggable candidate targets for patients with liver metastatic CRC. METHODS The transcriptional profiles of super-enhancers (SEs) in primary and liver metastatic CRC were evaluated in publicly accessible CRC datasets. Immunohistochemistry of human CRC tissues was conducted to determine the expression level of CDK12. Cellular proliferation, survival and stemness were examined upon CDK12 inhibition by shCDK12 or a selective CDK12 inhibitor named SR-4835 with multiple in vitro and in vivo assays. RNA sequencing and bioinformatics analyses were carried out to investigate the mechanisms of CDK12 inhibition in CRC cells. RESULTS We identified CDK12 as a driver gene for direct hepatic metastasis in CRC. Suppression of CDK12 led to robust inhibition of proliferation, survival and stemness. Mechanistically, CDK12 intervention preferentially repressed the transcription of SE-associated genes. Integration of the SE landscape and RNA sequencing, BCL2L1 and CCDC137 were identified as SE-associated oncogenic genes to strengthen the abilities of cellular survival, proliferation and stemness, eventually increasing liver metastasis of CRC. CONCLUSIONS Our data highlight the potential of CDK12 and SE-associated oncogenic transcripts as therapeutic targets for patients with liver metastatic CRC.
Collapse
Affiliation(s)
- Wei Dai
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Junhong Wu
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Xiaopeng Peng
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Wen Hou
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Hao Huang
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Qilai Cheng
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Zhiping Liu
- Center for ImmunologyGannan Medical UniversityGanzhouJiangxiChina
| | | | | | - Jingfeng Zhou
- Department of Hematology and OncologyInternational Cancer CenterShenzhen Key LaboratoryShenzhen University General HospitalShenzhen University Clinical Medical AcademyShenzhen University Health Science CenterShenzhenChina
| | - Shenglan Liu
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
10
|
Simó-Riudalbas L, Offner S, Planet E, Duc J, Abrami L, Dind S, Coudray A, Coto-Llerena M, Ercan C, Piscuoglio S, Andersen CL, Bramsen JB, Trono D. Transposon-activated POU5F1B promotes colorectal cancer growth and metastasis. Nat Commun 2022; 13:4913. [PMID: 35987910 PMCID: PMC9392749 DOI: 10.1038/s41467-022-32649-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe treatment of colorectal cancer (CRC) is an unmet medical need in absence of early diagnosis. Here, upon characterizing cancer-specific transposable element-driven transpochimeric gene transcripts (TcGTs) produced by this tumor in the SYSCOL cohort, we find that expression of the hominid-restricted retrogene POU5F1B through aberrant activation of a primate-specific endogenous retroviral promoter is a strong negative prognostic biomarker. Correlating this observation, we demonstrate that POU5F1B fosters the proliferation and metastatic potential of CRC cells. We further determine that POU5F1B, in spite of its phylogenetic relationship with the POU5F1/OCT4 transcription factor, is a membrane-enriched protein that associates with protein kinases and known targets or interactors as well as with cytoskeleton-related molecules, and induces intracellular signaling events and the release of trans-acting factors involved in cell growth and cell adhesion. As POU5F1B is an apparently non-essential gene only lowly expressed in normal tissues, and as POU5F1B-containing TcGTs are detected in other tumors besides CRC, our data provide interesting leads for the development of cancer therapies.
Collapse
|
11
|
Ren T, Jia H, Wu Q, Zhang Y, Ma Q, Yao D, Gao X, Xie D, Xu Z, Zhao Q, Zhang Y. Inhibition of Angiogenesis and Extracellular Matrix Remodeling: Synergistic Effect of Renin-Angiotensin System Inhibitors and Bevacizumab. Front Oncol 2022; 12:829059. [PMID: 35847929 PMCID: PMC9283643 DOI: 10.3389/fonc.2022.829059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Bevacizumab (Bev) is a humanized vascular endothelial growth factor monoclonal antibody that is used with chemotherapeutic drugs for the treatment of metastatic colorectal cancer (mCRC). Bev-induced hypertension (HT) is the most common adverse reaction during clinical practice. However, at present, appropriate antihypertensive agents for Bev-induced HT are unavailable. In this study, retrospective analysis of clinical data from mCRC patients who received renin-angiotensin system inhibitors (RASIs) showed significant survival benefits of overall survival (OS) and progression-free survival (PFS) over patients who received calcium channel blockers (CCBs) and patients who received no antihypertensive drug (NO: Y2020046 retrospectively registered). An experiment of HCT116 colon cancer cell xenografts in mice confirmed that combined treatment of Bev and lisinopril (Lis), a RASI, synergistically inhibited subcutaneous tumor growth and enhanced the concentration of 5-fluorouracil (5-Fu) in tumor tissues. Our results showed that the addition of Lis did not interfere with the vascular normalization effect promoted by Bev, but also inhibited collagen and hyaluronic acid (HA) deposition and significantly downregulated the expression of TGF-β1 and downstream SMAD signaling components which were enhanced by Bev, ultimately remodeling primary extracellular matrix components. In conclusion, RASIs and Bev have synergistic effect in the treatment of colorectal cancer and RASIs might be an optimal choice for the treatment of Bev-induced HT.
Collapse
Affiliation(s)
- Tianshu Ren
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Hui Jia
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yan Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qun Ma
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Dong Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Danni Xie
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Yingshi Zhang,
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Yingshi Zhang,
| |
Collapse
|
12
|
A Micro-Immunotherapy Sequential Medicine MIM-seq Displays Immunomodulatory Effects on Human Macrophages and Anti-Tumor Properties towards In Vitro 2D and 3D Models of Colon Carcinoma and in an In Vivo Subcutaneous Xenograft Colon Carcinoma Model. Int J Mol Sci 2022; 23:ijms23116059. [PMID: 35682738 PMCID: PMC9181410 DOI: 10.3390/ijms23116059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, the immunomodulatory effects of a sequential micro-immunotherapy medicine, referred as MIM-seq, were appraised in human primary M1 and M2 macrophages, in which the secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-12, IL-23, and tumor necrosis factor (TNF)-alpha, was inhibited. In addition, the potential anti-proliferative effects of MIM-seq on tumor cells was assessed in three models of colorectal cancer (CRC): an in vitro two-dimensions (2D) model of HCT-116 cells, an in vitro tri-dimensional (3D) model of spheroids, and an in vivo model of subcutaneous xenografted mice. In these models, MIM-seq displayed anti-proliferative effects when compared with the vehicle. In vivo, the tumor growth was slightly reduced in MIM-seq-treated animals. Moreover, MIM-seq could slightly reduce the growth of our spheroid models, especially under serum-deprivation. When MIM-seq was combined with two well-known anti-cancerogenic agents, either resveratrol or etoposide, MIM-seq could even further reduce the spheroid’s volume, pointing up the need to further assess whether MIM-seq could be beneficial for CRC patients as an adjuvant therapy. Altogether, these data suggest that MIM-seq could have anti-tumor properties against CRC and an immunomodulatory effect towards the mediators of inflammation, whose systemic dysregulation is considered to be a poor prognosis for patients.
Collapse
|
13
|
de Paiva IM, Vakili MR, Soleimani AH, Tabatabaei Dakhili SA, Munira S, Paladino M, Martin G, Jirik FR, Hall DG, Weinfeld M, Lavasanifar A. Biodistribution and Activity of EGFR Targeted Polymeric Micelles Delivering a New Inhibitor of DNA Repair to Orthotopic Colorectal Cancer Xenografts with Metastasis. Mol Pharm 2022; 19:1825-1838. [PMID: 35271294 PMCID: PMC9175178 DOI: 10.1021/acs.molpharmaceut.1c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The disruption of polynucleotide kinase/phosphatase (PNKP) in colorectal cancer (CRC) cells deficient in phosphatase and tensin homolog (PTEN) is expected to lead to the loss of cell viability by a process known as synthetic lethality. In previous studies, we have reported on the encapsulation of a novel inhibitor of PNKP, namely, A83B4C63, in polymeric micelles and its activity in slowing the growth of PTEN-deficient CRC cells as well as subcutaneous xenografts. In this study, to enhance drug delivery and specificity to CRC tumors, the surface of polymeric micelles carrying A83B4C63 was modified with GE11, a peptide targeting epidermal growth factor receptor (EGFR) overexpressed in about 70% of CRC tumors. Using molecular dynamics (MD) simulations, we assessed the binding site and affinity of GE11 for EGFR. The GE11-modified micelles, tagged with a near-infrared fluorophore, showed enhanced internalization by EGFR-overexpressing CRC cells in vitro and a trend toward increased primary tumor homing in an orthotopic CRC xenograft in vivo. In line with these observations, the GE11 modification of polymeric micelles was shown to positively contribute to the improved therapeutic activity of encapsulated A83B4C63 against HCT116-PTEN-/- cells in vitro and that of orthotopic CRC xenograft in vivo. In conclusion, our results provided proof of principle evidence for the potential benefit of EGFR targeted polymeric micellar formulations of A83B4C63 as monotherapeutics for aggressive and metastatic CRC tumors but at the same time highlighted the need for the development of EGFR ligands with improved physiological stability and EGFR binding.
Collapse
Affiliation(s)
- Igor Moura de Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Amir Hasan Soleimani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | | | - Sirazum Munira
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada.,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada
| |
Collapse
|
14
|
Stamatakis K, Torres-Gérica P, Jiménez-Segovia A, Ramos-Muñoz E, Crespo-Toro L, Fuentes P, Toribio ML, Callejas-Hernández F, Carrato A, García Bermejo ML, Fresno M. Cyclooxygenase 2 Effector Genes as Potential Inflammation-Related Biomarkers for Colorectal Cancer Circulating Tumor Cells Detection by Liquid Biopsy. Front Pharmacol 2022; 12:806395. [PMID: 35153760 PMCID: PMC8831911 DOI: 10.3389/fphar.2021.806395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase 2 (COX2) has been implicated in cancer development and metastasis. We have identified several COX2-regulated inflammation-related genes in human colorectal cancer cells and shown that some of them play important roles in tumor progression. In this work, we have studied the COX2-regulated genes in the mouse colorectal cancer cell line CT26, to find that many are also regulated by COX2 over-expression. On the other hand, we generated a CT26 cell line expressing Gfp and Luciferase, to study tumor growth and metastasis in immunocompetent Balb/c mice. We then collected solid tissue, and blood samples, from healthy and tumor-bearing mice. Using the Parsortix® cell separation system and taking advantage of the fact that the tumor cells expressed Gfp, we were able to identify circulating tumor cells (CTCs) in some of the mice. We compared the mRNA expression levels of Ptgs2 and effector genes in the samples obtained from tumor-bearing or healthy mice, namely, tumor or healthy colon, Ficoll purified buffy coat, and Parsortix-isolated cells to find different patterns between healthy, tumor-bearing mice with or without CTCs. Although for genes like Il15 we did not observe any difference between healthy and tumor-bearing mice in Ficoll or Parsortix samples; others, such as Egr1, Zc3h12a, Klf4, or Nfat5, allowed distinguishing for cancer or CTC presence. Gene expression analysis in Ficoll or Parsortix processed samples, after liquid biopsy, may offer valuable diagnostic and prognostic information and thus should be further studied.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Konstantinos Stamatakis, ; Manuel Fresno,
| | - Patricia Torres-Gérica
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Jiménez-Segovia
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Patricia Fuentes
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
| | - María L. Toribio
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfredo Carrato
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Konstantinos Stamatakis, ; Manuel Fresno,
| |
Collapse
|
15
|
Drury J, Rychahou PG, Kelson CO, Geisen ME, Wu Y, He D, Wang C, Lee EY, Evers BM, Zaytseva YY. Upregulation of CD36, a Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis by Increasing MMP28 and Decreasing E-Cadherin Expression. Cancers (Basel) 2022; 14:252. [PMID: 35008415 PMCID: PMC8750155 DOI: 10.3390/cancers14010252] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Altered fatty acid metabolism continues to be an attractive target for therapeutic intervention in cancer. We previously found that colorectal cancer (CRC) cells with a higher metastatic potential express a higher level of fatty acid translocase (CD36). However, the role of CD36 in CRC metastasis has not been studied. Here, we demonstrate that high expression of CD36 promotes invasion of CRC cells. Consistently, CD36 promoted lung metastasis in the tail vein model and GI metastasis in the cecum injection model. RNA-Seq analysis of CRC cells with altered expression of CD36 revealed an association between high expression of CD36 and upregulation of MMP28, a novel member of the metallopeptidase family of proteins. Using shRNA-mediated knockdown and overexpression of CD36, we confirmed that CD36 regulates MMP28 expression in CRC cells. siRNA-mediated knockdown of MMP28 decreases invasion of CRC cells, suggesting that MMP28 regulates the metastatic properties of cells downstream of CD36. Importantly, high expression of MMP28 leads to a significant decrease in active E-cadherin and an increase in the products of E-cadherin cleavage, CTF1 and CTF2. In summary, upregulation of CD36 expression promotes the metastatic properties of CRC via upregulation of MMP28 and an increase in E-cadherin cleavage, suggesting that targeting the CD36-MMP28 axis may be an effective therapeutic strategy for CRC metastasis.
Collapse
Affiliation(s)
- James Drury
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| | - Piotr G. Rychahou
- Department of Surgery and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.G.R.); (B.M.E.)
| | - Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| | - Yuanyuan Wu
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Y.W.); (D.H.); (C.W.)
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Y.W.); (D.H.); (C.W.)
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Y.W.); (D.H.); (C.W.)
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - B. Mark Evers
- Department of Surgery and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.G.R.); (B.M.E.)
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| |
Collapse
|
16
|
The Class I HDAC Inhibitor, MS-275, Prevents Oxaliplatin-Induced Chronic Neuropathy and Potentiates Its Antiproliferative Activity in Mice. Int J Mol Sci 2021; 23:ijms23010098. [PMID: 35008525 PMCID: PMC8745279 DOI: 10.3390/ijms23010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Oxaliplatin, the first-line chemotherapeutic agent against colorectal cancer (CRC), induces peripheral neuropathies, which can lead to dose limitation and treatment discontinuation. Downregulation of potassium channels, which involves histone deacetylase (HDAC) activity, has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. MS-275, a class I histone deacetylase inhibitor (HDACi), prevents acute oxaliplatin-induced peripheral neuropathy (OIPN). Moreover, MS-275 exerts anti-tumor activity in several types of cancers, including CRC. We thus hypothesized that MS-275 could exert both a preventive effect against OIPN and potentially a synergistic effect combined with oxaliplatin against CRC development. We first used RNAseq to assess transcriptional changes occurring in DRG neurons from mice treated by repeated injection of oxaliplatin. Moreover, we assessed the effects of MS-275 on chronic oxaliplatin-induced peripheral neuropathy development in vivo on APCMin/+ mice and on cancer progression when combined with oxaliplatin, both in vivo on APCMin/+ mice and in a mouse model of an orthotopic allograft of the CT26 cell line as well as in vitro in T84 and HT29 human CRC cell lines. We found 741 differentially expressed genes (DEGs) between oxaliplatin- and vehicle-treated animals. While acute OIPN is known as a channelopathy involving HDAC activity, chronic OIPN exerts weak ion channel transcriptional changes and no HDAC expression changes in peripheral neurons from OIPN mice. However, MS-275 prevents the development of sensory neuropathic symptoms induced by repeated oxaliplatin administration in APCMin/+ mice. Moreover, combined with oxaliplatin, MS-275 also exerts synergistic antiproliferative and increased survival effects in CT26-bearing mice. Consistently, combined drug associations exert synergic apoptotic and cell death effects in both T84 and HT29 human CRC cell lines. Our results strongly suggest combining oxaliplatin and MS-275 administration in CRC patients in order to potentiate the antiproliferative action of chemotherapy, while preventing its neurotoxic effect.
Collapse
|
17
|
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021; 910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer (CC) kills countless people every year throughout the globe. It persists as one of the highly lethal diseases to be treated because the overall survival rate for CC is meagre. Early diagnosis and efficient treatments are two of the biggest hurdles in the fight against cancer. In the present work, we will review thriving strategies for CC targeted drug delivery and critically explain the most recent progressions on emerging novel nanotechnology-based drug delivery systems. Nanotechnology-based animal and human clinical trial studies targeting CC are discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics and effectiveness of anticancer drugs have facilitated the powerful targeting of specific agents for CC therapy. This review provides insight into current progress and future opportunities for nanomedicines as potential curative targets for CC treatment. This information could be used as a platform for the future expansion of multi-functional nano constructs for CC's advanced detection and functional drug delivery.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hashim Abbas
- Queens Medical Center, Nottingham University Hospitals, NHS, Nottingham, UK
| |
Collapse
|
18
|
Ünal S, Can Öztürk S, Bilgiç E, Yanık H, Korkusuz P, Aktaş Y, Benito JM, Esendağlı G, Bilensoy E. Therapeutic efficacy and gastrointestinal biodistribution of polycationic nanoparticles for oral camptothecin delivery in early and late-stage colorectal tumor-bearing animal model. Eur J Pharm Biopharm 2021; 169:168-177. [PMID: 34700001 DOI: 10.1016/j.ejpb.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world and is the second leading cause of cancer related deaths. New cases are increasingly diagnosed every day, but current therapeutic options are still insufficient for an effective treatment. In CRC treatment, there is a significant need for alternative treatment approaches that can both prevent relapse and provide strong antimetastatic effects as the intestines and colon are prone to metastasis to neighboring organs and tissues as well as the liver and the lung. In this study, optimized polycationic cyclodextrin (CD) nanoparticles for oral Camptothecin (CPT) delivery were comprehensively examined for in vivo performance in early and late stage tumor bearing mouse model in terms of antitumoral and antimetastatic efficacy of CPT bound to polycationic CD nanoparticles in comparison to free CPT. In addition, the gastrointestinal localization of a single administration of fluorescent dye loaded polycationic CD nanoparticles in the gastrointestinal tract at the end of 24 hours after oral administration was also imaged and evaluated by in vivo imaging system against fluorescent dye intensity. Results showed that survival percentage was significantly improved in CRC-bearing mice compared to oral CPT solution, with significantly reduced colorectal tumor masses and number of liver metastatic foci (p<0.05). It was also possible to differentiate between the effectiveness of nanoparticles in early or late stages of CRC. In vivo imaging studies have also confirmed that polycationic CD nanoparticles are able to deliver the therapeutic load up to the colon and tend to accumulate especially in tumor foci, indicating an effective local treatment strategy. In addition number of liver metastases were significantly decreased with the CPT-loaded polycationic CD nanoparticle formulation in both early and late stage tumor models. These findings indicated that CPT-loaded polycationic CD nanoparticles could be an efficient oral nanocarrier formulation for anticancer molecules that have limited application because of oral bioavailability and stability problems.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Süleyman Can Öztürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Elif Bilgiç
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Hamdullah Yanık
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, Sevilla 41092, Spain
| | - Güneş Esendağlı
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
19
|
Huang J, Jing M, Chen X, Gao Y, Hua H, Pan C, Wu J, Wang X, Chen X, Gao Y, Xu C, Li P. ERp29 forms a feedback regulation loop with microRNA-135a-5p and promotes progression of colorectal cancer. Cell Death Dis 2021; 12:965. [PMID: 34667160 PMCID: PMC8526686 DOI: 10.1038/s41419-021-04252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Expression of endoplasmic reticulum (ER) stress-associated genes is often dysregulated in cancer progression. ER protein 29 (ERp29) is abnormally expressed in many neoplasms and plays an important role in tumorigenesis. Here, we showed ERp29 is a novel target for microRNA-135a-5p (miR-135a-5p) to inhibit the progression of colorectal cancer (CRC); correspondingly, ERp29 acts as an oncoprotein in CRC by promoting proliferation and metastasis of CRC cells, and suppressing apoptosis of the cells. More importantly, we found that miR-135a-5p expression is reversely upregulated by ERp29 through suppressing IL-1β-elicited methylation of miR-135a-5p promoter region, a process for enterocyte to maintain a balance between miR-135a-5p and ERp29 but dysregulated in CRC. Our study reveals a novel feedback regulation loop between miR-135a-5p and ERp29 that is critical for maintaining appropriate level of each of them, but partially imbalanced in CRC, resulting in abnormal expression of miR-135a-5p and ERp29, which further accelerates CRC progression. We provide supporting evidence for ERp29 and miR-135a-5p as potential biomarkers for diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Mengxia Jing
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Xixi Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Huiying Hua
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Chun Pan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Jing Wu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Xuehua Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Yujing Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China.
| |
Collapse
|
20
|
Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B, King MR. Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. eLife 2021; 10:e67750. [PMID: 34342264 PMCID: PMC8331188 DOI: 10.7554/elife.67750] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer death, and its mortality is associated with metastasis and chemoresistance. We demonstrate that oxaliplatin-resistant CRC cells are sensitized to TRAIL-mediated apoptosis. Oxaliplatin-resistant cells exhibited transcriptional downregulation of caspase-10, but this had minimal effects on TRAIL sensitivity following CRISPR-Cas9 deletion of caspase-10 in parental cells. Sensitization effects in oxaliplatin-resistant cells were found to be a result of increased DR4, as well as significantly enhanced DR4 palmitoylation and translocation into lipid rafts. Raft perturbation via nystatin and resveratrol significantly altered DR4/raft colocalization and TRAIL sensitivity. Blood samples from metastatic CRC patients were treated with TRAIL liposomes, and a 57% reduction of viable circulating tumor cells (CTCs) was observed. Increased DR4/lipid raft colocalization in CTCs was found to correspond with increased oxaliplatin resistance and increased efficacy of TRAIL liposomes. To our knowledge, this is the first study to investigate the role of lipid rafts in primary CTCs.
Collapse
Affiliation(s)
- Joshua D Greenlee
- Vanderbilt University, Department of Biomedical Engineering PMBNashvilleUnited States
| | - Maria Lopez-Cavestany
- Vanderbilt University, Department of Biomedical Engineering PMBNashvilleUnited States
| | - Nerymar Ortiz-Otero
- Vanderbilt University, Department of Biomedical Engineering PMBNashvilleUnited States
| | - Kevin Liu
- Vanderbilt University, Department of Biomedical Engineering PMBNashvilleUnited States
| | - Tejas Subramanian
- Vanderbilt University, Department of Biomedical Engineering PMBNashvilleUnited States
| | - Burt Cagir
- Donald Guthrie Foundation (DGF) for Research and Education SayreSayreUnited States
| | - Michael R King
- Vanderbilt University, Department of Biomedical Engineering PMBNashvilleUnited States
| |
Collapse
|
21
|
Lu Z, Ortiz A, Verginadis II, Peck AR, Zahedi F, Cho C, Yu P, DeRita RM, Zhang H, Kubanoff R, Sun Y, Yaspan AT, Krespan E, Beiting DP, Radaelli E, Ryeom SW, Diehl JA, Rui H, Koumenis C, Fuchs SY. Regulation of intercellular biomolecule transfer-driven tumor angiogenesis and responses to anticancer therapies. J Clin Invest 2021; 131:144225. [PMID: 33998600 PMCID: PMC8121529 DOI: 10.1172/jci144225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome. Knockout of endothelial CH25H stimulated angiogenesis and tumor growth in mice. Pharmacologic inhibition of ICBT by reserpine compensated for CH25H loss, elicited angiostatic effects (alone or combined with sunitinib), augmented the therapeutic effect of radio-/chemotherapy, and prevented metastatic disease induced by these regimens. We propose inhibiting ICBT to improve the overall efficacy of anticancer therapies and limit their prometastatic side effects.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angelica Ortiz
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ioannis I. Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R. Peck
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Farima Zahedi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel M. DeRita
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Kubanoff
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrew T. Yaspan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandra W. Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. Alan Diehl
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Ma S, McGuire MH, Mangala LS, Lee S, Stur E, Hu W, Bayraktar E, Villar-Prados A, Ivan C, Wu SY, Yokoi A, Dasari SK, Jennings NB, Liu J, Lopez-Berestein G, Ram P, Sood AK. Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype. Cell Rep 2021; 34:108726. [PMID: 33567287 PMCID: PMC7957825 DOI: 10.1016/j.celrep.2021.108726] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/14/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor and stromal interactions consist of reciprocal signaling through cytokines, growth factors, direct cell-cell interactions, and extracellular vesicles (EVs). Small EVs (≤200 nm) have been considered critical messengers of cellular communication during tumor development. Here, we demonstrate that gain-of-function (GOF) p53 protein can be packaged into small EVs and transferred to fibroblasts. GOF p53 protein is selectively bound by heat shock protein 90 (HSP90), a chaperone protein, and packaged into small EVs. Inhibition of HSP90 activity blocks packaging of GOF, but not wild-type, p53 in small EVs. GOF p53-containing small EVs result in their conversion to cancer-associated fibroblasts. In vivo studies reveal that GOF p53-containing small EVs can enhance tumor growth and promote fibroblast transformation into a cancer-associated phenotype. These findings provide a better understanding of the complex interactions between cancer and stromal cells and may have therapeutic implications. Ma et al. report that gain-of-function (GOF) p53 protein can be packaged into small EVs and transferred to stromal fibroblasts. The packaging of GOF p53 into small EVs is regulated by HSP90. Small EVs with GOF p53 activate Nrf2-mediated pathways in fibroblasts and induce their conversion to a cancer-associated phenotype.
Collapse
Affiliation(s)
- Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Michael H McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wen Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Akira Yokoi
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jinsong Liu
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
23
|
Gmeiner WH, Dominijanni A, Haber AO, Ghiraldeli LP, Caudell DL, D'Agostino R, Pasche BC, Smith TL, Deng Z, Kiren S, Mani C, Palle K, Brody JR. Improved Antitumor Activity of the Fluoropyrimidine Polymer CF10 in Preclinical Colorectal Cancer Models through Distinct Mechanistic and Pharmacologic Properties. Mol Cancer Ther 2020; 20:553-563. [PMID: 33361273 DOI: 10.1158/1535-7163.mct-20-0516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy regimens that include 5-fluorouracil (5-FU) are central to colorectal cancer treatment; however, risk/benefit concerns limit 5-FU's use, necessitating development of improved fluoropyrimidine (FP) drugs. In our study, we evaluated a second-generation nanoscale FP polymer, CF10, for improved antitumor activity. CF10 was more potent than the prototype FP polymer F10 and much more potent than 5-FU in multiple colorectal cancer cell lines including HCT-116, LS174T, SW480, and T84D. CF10 displayed improved stability to exonuclease degradation relative to F10 and reduced susceptibility to thymidine antagonism due to extension of the polymer with arabinosyl cytidine. In colorectal cancer cells, CF10 strongly inhibited thymidylate synthase (TS), induced Top1 cleavage complex formation and caused replication stress, while similar concentrations of 5-FU were ineffective. CF10 was well tolerated in vivo and invoked a reduced inflammatory response relative to 5-FU. Blood chemistry parameters in CF10-treated mice were within normal limits. In vivo, CF10 displayed antitumor activity in several colorectal cancer flank tumor models including HCT-116, HT-29, and CT-26. CF10's antitumor activity was associated with increased plasma levels of FP deoxynucleotide metabolites relative to 5-FU. CF10 significantly reduced tumor growth and improved survival (84.5 days vs. 32 days; P < 0.0001) relative to 5-FU in an orthotopic HCT-116-luc colorectal cancer model that spontaneously metastasized to liver. Improved survival in the orthotopic model correlated with localization of a fluorescent CF10 conjugate to tumor. Together, our preclinical data support an early-phase clinical trial of CF10 for treatment of colorectal cancer.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony Dominijanni
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alex O Haber
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lais P Ghiraldeli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David L Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ralph D'Agostino
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhiyong Deng
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sezgin Kiren
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, Texas
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, Texas
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
24
|
Establishment of an Endoscopy-Guided Minimally Invasive Orthotopic Mouse Model of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12103007. [PMID: 33081354 PMCID: PMC7650778 DOI: 10.3390/cancers12103007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Open orthotopic mouse models of colorectal cancer have disadvantages such as the requirement for advanced surgical skills or the trauma caused by laparotomy. To overcome these limitations, this study aimed to evaluate the establishment of an endoscopy-guided minimally invasive model without laparotomy. Different concentrations of the murine CRC cell lines CT26 and MC38 were endoscopically injected into the colorectal wall of BALB/C and C57BL/6J mice, respectively. Consistent tumor growth with the presence of tumor-infiltrating lymphocytes, lympho-vascular invasion, and early spontaneous lymph node, peritoneal, and hepatic metastases were observed. Analysis of the learning curve demonstrated that this model is easy to learn and quick to establish. It enables intra-individual follow-up endoscopies, and features tumors to study mechanisms of metastasis and the interaction with the immune system. The application of specific cell lines and concentrations enables a controlled local tumor growth and metastatic formation within short observation periods. Abstract Open orthotopic mouse models of colorectal cancer have disadvantages such as the requirement for advanced surgical skills or the trauma caused by laparotomy. To overcome these drawbacks, this study aimed to evaluate the establishment of a minimally invasive model using murine colonoscopy. CT26 and MC38 CRC cells of different concentrations were injected into BALB/C and C57BL/6J mice, respectively. Follow-up endoscopies were performed to assign an endoscopic score to tumor growth. Gross autopsy, histologic and immuno-histochemical evaluation, and immune scoring were performed. To describe the learning curve of the procedures, a performance score was given. Local tumor growth with colorectal wall infiltration, luminal ulceration, the presence of tumor-infiltrating lymphocytes, lympho-vascular invasion, and early spontaneous lymph node, peritoneal, and hepatic metastases were observed. The tumors showed cytoplasmic immuno-staining for CK20. Compared to the MC38/C57BL/6J model, tumorigenicity and immunogenicity of the CT26/BALB/C model were higher. Tumor volume correlated with the endoscopic score. This endoscopy-guided orthotopic mouse model is easy to learn and quick to establish. It features early metastasis and enables the study of interactions with the immune system. When specific cell concentrations and cell lines are applied, controlled local tumor growth and metastasis can be achieved within short observation periods.
Collapse
|
25
|
Smith T, Affram K, Nottingham EL, Han B, Amissah F, Krishnan S, Trevino J, Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep 2020; 10:16989. [PMID: 33046724 PMCID: PMC7552424 DOI: 10.1038/s41598-020-73218-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/08/2020] [Indexed: 01/19/2023] Open
Abstract
5-Fluorouracil (5-FU) is a standard treatment option for colorectal cancer (CRC) but its rapid metabolism and systemic instability (short half-life) has hindered its therapeutic efficacy. The objective of this study was to develop a novel drug delivery system, solid lipid nanoparticle (SLN), capable of delivering high payload of 5-FU to treat CRC. The rational was to improve 5FU-nanocarrier compatibility and therapeutic efficacy. The SLN-loaded 5-FU was developed by utilizing a Strategic and unique Method to Advance and Refine the Treatment (SMART) of CRC through hot and cold homogenization approach. The SLN was made of unique PEGylated lipids and combination of the surfactants. Cytotoxicity studies, clonogenic assay, flow cytometry and confocal imaging were conducted to evaluate the effectiveness and cellular uptake of 5FU-SLN4 in HCT-116 cancer cells. Pharmacokinetic (PK) parameters and receptor expressions were determined while tumor efficacy studies were conducted on mouse bearing subcutaneous HCT-116 cancer. Among the all the formulations, 5FU-SLN4 was the most effective with particle size of was 263 ± 3 nm, zeta potential was 0.1 ± 0.02 and entrapment efficiency of 81 ± 10%. The IC50 value of 5FU-SLN4 (7.4 ± 0.02 µM) was 2.3 fold low compared with 5-FU (17.7 ± 0.03 µM). For tumor efficacy studies, 5FU-SLN4 significantly inhibited tumor growth in comparison to 5-FU while area-under plasma concentration-time curve (AUC) of 5FU-SLN4 was 3.6 fold high compared with 5-FU. HER2 receptors expression were markedly reduced in 5-FU-SLN4 treated mice compared with 5FU and liver and kidney tissues showed no toxicity at dose of 20 mg/kg. 5FU-SLN4 was highly cytotoxic against HCT-116 cells and significantly inhibited subcutaneous tumor growth in mice compared with 5-FU. This emphasizes the significance of developing a smart nano-delivery system to optimize the delivery efficiency of anticancer drugs to tumors.
Collapse
Affiliation(s)
- Taylor Smith
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA
| | - Kevin Affram
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA
| | - Ebony L Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | - Felix Amissah
- College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | | | - Jose Trevino
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
26
|
Chen L, Long X, Duan S, Liu X, Chen J, Lan J, Liu X, Huang W, Geng J, Zhou J. CSRP2 suppresses colorectal cancer progression via p130Cas/Rac1 axis-meditated ERK, PAK, and HIPPO signaling pathways. Am J Cancer Res 2020; 10:11063-11079. [PMID: 33042270 PMCID: PMC7532686 DOI: 10.7150/thno.45674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a major cause of death in patients with colorectal cancer (CRC). Cysteine-rich protein 2 (CSRP2) has been recently implicated in the progression and metastasis of a variety of cancers. However, the biological functions and underlying mechanisms of CSRP2 in the regulation of CRC progression are largely unknown. Methods: Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB) were used to detect the expression of CSRP2 in CRC tissues and paracancerous tissues. CSRP2 function in CRC was determined by a series of functional tests in vivo and in vitro. WB and immunofluorescence were used to determine the relation between CSRP2 and epithelial-mesenchymal transition (EMT). Co-immunoprecipitation and scanning electron microscopy were used to study the molecular mechanism of CSRP2 in CRC. Results: The CSRP2 expression level in CRC tissues was lower than in adjacent normal tissues and indicated poor prognosis in CRC patients. Functionally, CSRP2 could suppress the proliferation, migration, and invasion of CRC cells in vitro and inhibit CRC tumorigenesis and metastasis in vivo. Mechanistic investigations revealed a physical interaction between CSRP2 and p130Cas. CSRP2 could inhibit the activation of Rac1 by preventing the phosphorylation of p130Cas, thus activating the Hippo signaling pathway, and simultaneously inhibiting the ERK and PAK/LIMK/cortactin signaling pathways, thereby inhibiting the EMT and metastasis of CRC. Rescue experiments showed that blocking the p130Cas and Rac1 activation could inhibit EMT induced by CSRP2 silencing. Conclusion: Our results suggest that the CSRP2/p130Cas/Rac1 axis can inhibit CRC aggressiveness and metastasis through the Hippo, ERK, and PAK signaling pathways. Therefore, CSRP2 may be a potential therapeutic target for CRC.
Collapse
|
27
|
Chan YT, Cheung F, Zhang C, Fu B, Tan HY, Norimoto H, Wang N, Feng Y. Ancient Chinese Medicine Herbal Formula Huanglian Jiedu Decoction as a Neoadjuvant Treatment of Chemotherapy by Improving Diarrhea and Tumor Response. Front Pharmacol 2020; 11:252. [PMID: 32210825 PMCID: PMC7076183 DOI: 10.3389/fphar.2020.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diarrhea is a major gastrointestinal complication in cancer patients receiving chemotherapy. Prognosis and treatment of chemotherapy-induced diarrhea (CID) remain unsatisfactory. This study aims to explore the potential of an ancient Chinese Medicine herbal formula Huanglian Jiedu Decoction (HLJDD) as an adjuvant treatment on CID. METHOD HLJDD extract was prepared by GMP manufacturing standard with quality and stability being checked. 5-fluorouracil (5-Fu) and irinotecan (CPT-11)-induced diarrhea model in mice was established and pre-, co- and post-treatment of HLJDD was implemented. Mechanism of action was explored by detecting related protein expression. In addition, the effect of HLJDD on diarrhea and tumor response induced by clinical regimens FOLFOX and FOLFIRI was measured in murine orthotopic colorectal cancer model. RESULTS HLJDD exhibited consistency in quality and stability after 24-month storage. Pre-treatment of HLJDD, but not co-treatment or post-treatment, could significantly improve the diarrhea score, body weight loss and intestinal damage in 5-Fu- and CPT-11-treated mice. Pre-treatment of HLJDD reduced cell apoptosis in the intestine of chemotherapy-treated mice, and promoted renewal of intestinal cell wall. CD44 was predicted as the potential target of HLJDD-containing compounds in CID. HLJDD pre-treatment induced presentation of CD44-postive cells in the intestine of chemotherapy-treated mice, and initiated expression of stemness-associated genes. Transcriptional products of the downstream Wnt signaling of CD44 were elevated. Furthermore, pre-treatment of HLJDD could significantly improve the tumor response of clinical chemotherapy regimens FOLFOX and FOLFIRI in orthotopic colorectal cancer, and reduce diarrhea and intestinal damage. Conclusion: Our study suggests the potential of HLJDD as a neoadjuvant treatment of chemotherapy by reducing diarrhea and improving tumor response.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fan Cheung
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bowen Fu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
28
|
Oliveira RC, Abrantes AM, Tralhão JG, Botelho MF. The role of mouse models in colorectal cancer research-The need and the importance of the orthotopic models. Animal Model Exp Med 2020; 3:1-8. [PMID: 32318654 PMCID: PMC7167241 DOI: 10.1002/ame2.12102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is a worldwide health burden, with high incidence and mortality, especially in the advanced stages of the disease. Preclinical models are very important and valuable to discover and validate early and specific biomarkers as well as new therapeutic targets. In order to accomplish that, the animal models must replicate the clinical evolution of the disease in all of its phases. In this article, we review the existent mouse models, with their strengths and weaknesses in the replication of human cancer disease progression, with major focus on orthotopic models.
Collapse
Affiliation(s)
- Rui C. Oliveira
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Pathology DepartmentUniversity Hospital (CHUC)CoimbraPortugal
| | - Ana Margarida Abrantes
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| | - José Guilherme Tralhão
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
- Surgery A DepartmentFaculty of MedicineUniversity Hospital (CHUC)CoimbraPortugal
| | - Maria Filomena Botelho
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| |
Collapse
|
29
|
Tan Y, Hu Y, Xiao Q, Tang Y, Chen H, He J, Chen L, Jiang K, Wang Z, Yuan Y, Ding K. Silencing of brain-expressed X-linked 2 (BEX2) promotes colorectal cancer metastasis through the Hedgehog signaling pathway. Int J Biol Sci 2020; 16:228-238. [PMID: 31929751 PMCID: PMC6949152 DOI: 10.7150/ijbs.38431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer is increasing, and cancer metastasis is one of the major causes of poor outcomes. BEX2 has been reported to be involved in tumor development in several types of cancer, but its role in metastatic colorectal cancer remains largely undefined. Herein, we demonstrated that BEX2 knockout resulted in enhanced migratory and metastatic potential in colorectal cancer cells both in vitro and in vivo, and re-expression of BEX2 in knockout cells could reverse the enhanced migratory capacity. RNA-Seq results indicated that the hedgehog signaling pathway was activated after BEX2 knockout; moreover, the hedgehog signaling inhibitors, GANT61 and GDC-0449 could reverse the migratory enhancement of BEX2-/- colorectal cancer cells. We also demonstrated that the nuclear translocation of Zic2 after BEX2 silencing could activate the hedgehog signaling pathway, while Zic2 knockdown abrogated the migratory enhancement of BEX2-/- cells and inhibited the hedgehog signaling pathway. In summary, our findings suggest that BEX2 negatively modulates the hedgehog signaling pathway by retaining Zic2 in the cytoplasm in colorectal cancer cells, thereby inhibiting migration and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Yinuo Tan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yeting Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qian Xiao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yang Tang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haiyan Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jinjie He
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Liubo Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kai Jiang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhanhuai Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kefeng Ding
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
30
|
Maitra R, Thavornwatanayong T, Venkatesh MK, Chandy C, Vachss D, Augustine T, Guzik H, Koba W, Liu Q, Goel S. Development and Characterization of a Genetic Mouse Model of KRAS Mutated Colorectal Cancer. Int J Mol Sci 2019; 20:E5677. [PMID: 31766149 PMCID: PMC6888417 DOI: 10.3390/ijms20225677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with KRAS mutated colorectal cancer (CRC) represent a cohort with unmet medical needs, with limited options of FDA-approved therapies. Representing 40-45% of all CRC patients, they are considered ineligible to receive anti-EGFR monoclonal antibodies that have added a significant therapeutic benefit for KRAS wild type CRC patients. Although several mouse models of CRC have been developed during the past decade, one genetically resembling the KRAS mutated CRC is yet to be established. In this study C57 BL/6 mice with truncated adenomatous polyposis coli (APC) floxed allele was crossed with heterozygous KRAS floxed outbred mice to generate an APCf/f KRAS+/f mouse colony. In another set of breeding, APC floxed mice were crossed with CDX2-Cre-ERT2 mice and selected for APCf/f CDX2-Cre-ERT2 after the second round of inbreeding. The final model of the disease was generated by the cross of the two parental colonies and viable APC f/f KRAS +/f CDX2-Cre-ERT2 (KPC: APC) were genotyped and characterized. The model animals were tamoxifen (TAM) induced to generate tumors. Micro-positron emission tomography (PET) scan was used to detect and measure tumor volume and standard uptake value (SUV). Hematoxylin and eosin (H&E) staining was performed to establish neoplasm and immunohistochemistry (IHC) was performed to determine histological similarities with human FFPE biopsies. The MSI/microsatellite stable (MSS) status was determined. Finally, the tumors were extensively characterized at the molecular level to establish similarities with human CRC tumors. The model KPC: APC animals are conditional mutants that developed colonic tumors upon induction with tamoxifen in a dose-dependent manner. The tumors were confirmed to be malignant within four weeks of induction by H&E staining and higher radioactive [18F] fluoro-2-deoxyglucose (FDG) uptake (SUV) in micro-PET scan. Furthermore, the tumors histologically and molecularly resembled human colorectal carcinoma. Post tumor generation, the KPC: APC animals died of cachexia and rectal bleeding. Implications: This model is an excellent preclinical platform to molecularly characterize the KRAS mutated colorectal tumors and discern appropriate therapeutic strategies to improve disease management and overall survival.
Collapse
Affiliation(s)
- Radhashree Maitra
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Thongthai Thavornwatanayong
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
| | - Madhu Kumar Venkatesh
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
| | - Carol Chandy
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
| | - Dov Vachss
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
| | - Titto Augustine
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Wade Koba
- Department of Radiology (Nuclear Medicine), Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Qiang Liu
- Department of Surgical Pathology, Montefiore Medical Center, Bronx, NY 10467, USA;
| | - Sanjay Goel
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (T.T.); (M.K.V.); (C.C.); (D.V.); (T.A.)
| |
Collapse
|
31
|
Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, Delman D, Graham K, Gladney WL, Hua X, Black TA, Chien AL, Majmundar KS, Thompson JC, Yee SS, O'Hara MH, Aggarwal C, Xin D, Shaked A, Gao M, Liu D, Borad MJ, Ramanathan RK, Carpenter EL, Ji A, de Beer MC, de Beer FC, Webb NR, Beatty GL. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 2019; 567:249-252. [PMID: 30842658 PMCID: PMC6430113 DOI: 10.1038/s41586-019-1004-y] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.
Collapse
Affiliation(s)
- Jae W Lee
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paige M Porrett
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacy K Thomas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chad A Komar
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey H Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Graham
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Whitney L Gladney
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xia Hua
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor A Black
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Austin L Chien
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna S Majmundar
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Thompson
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charu Aggarwal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Xin
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abraham Shaked
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Ramesh K Ramanathan
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
- Merck Research Labs, Rahway, NJ, USA
| | - Erica L Carpenter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ailing Ji
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Maria C de Beer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Frederick C de Beer
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Liu Z, Liu J, Dong X, Hu X, Jiang Y, Li L, Du T, Yang L, Wen T, An G, Feng G. Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J Cell Mol Med 2019; 23:2083-2092. [PMID: 30637914 PMCID: PMC6378212 DOI: 10.1111/jcmm.14117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Tn antigen is a truncated O-glycan, frequently detected in colorectal cancer (CRC), but its precise role in CRC metastasis is not well addressed. Here we investigated the effects of Core 1 β3Gal-T specific molecular chaperone (Cosmc) deletion-mediated Tn antigen exposure on CRC metastasis and its underlying mechanism. We first used CRISPR/Cas9 technology to knockout Cosmc, which is required for normal O-glycosylation, and thereby obtained Tn-positive CRC cells. We then investigated the biological consequences of Tn antigen expression in CRC. The results showed that Tn-positive cells exhibited an enhanced metastatic capability both in vitro and in vivo. A further analysis indicated that Tn antigen expression induced typical activation of epithelial-mesenchymal transition (EMT). Mechanistically, we found that H-Ras, which is known to drive EMT, was markedly up-regulated in Tn-positive cells, whereas knockdown of H-Ras suppressed Tn antigen induced activation of EMT. Furthermore, we confirmed that LS174T cells (Tn-positive) transfected with wild-type Cosmc, thus expressing no Tn antigen, had down-regulation of H-Ras expression and subsequent inhibition of EMT process. In addition, analysis of 438 samples in TCGA cohort demonstrated that Cosmc expression was reversely correlated with H-Ras, underscoring the significance of Tn antigen-H-Ras signalling in CRC patients. These data demonstrated that Cosmc deletion-mediated Tn antigen exposure promotes CRC metastasis, which is possibly mediated by H-Ras-induced EMT activation.
Collapse
Affiliation(s)
- Zhe Liu
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Jian Liu
- Medical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Xichen Dong
- Medical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Xin Hu
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Yuliang Jiang
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Lina Li
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Tan Du
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Lei Yang
- Medical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Tao Wen
- Medical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Guangyu An
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Guosheng Feng
- Department of OncologyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
33
|
Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH, Wang X, Tang I, Zheng E, Qiu W, Wainberg ZA, Nel AE, Meng H. Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS NANO 2019; 13:38-53. [PMID: 30525443 PMCID: PMC6554030 DOI: 10.1021/acsnano.8b06164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Irinotecan is a key chemotherapeutic agent for the treatment of colorectal (CRC) and pancreatic (PDAC) cancer. Because of a high incidence of bone marrow and gastrointestinal (GI) toxicity, Onivyde (a liposome) was introduced to provide encapsulated irinotecan (Ir) delivery in PDAC patients. While there is an ongoing clinical trial (NCT02551991) to investigate the use of Onivyde as a first-line option to replace irinotecan in FOLFIRINOX, the liposomal formulation is currently prescribed as a second-line treatment option (in combination with 5-fluorouracil and leucovorin) for patients with metastatic PDAC who failed gemcitabine therapy. However, the toxicity of Onivyde remains a concern that needs to be addressed for use in CRC as well. Our goal was to custom design a mesoporous silica nanoparticle (MSNP) carrier for encapsulated irinotecan delivery in a robust CRC model. This was achieved by developing an orthotopic tumor chunk model in immunocompetent mice. With a view to increase the production volume and to expand the disease applications, the carrier design was improved by using an ethanol exchange method for coating of a supported lipid bilayer (LB) that entraps a protonating agent. The encapsulated protonating agent was subsequently used for remote loading of irinotecan. The excellent irinotecan loading capacity and stability of the LB-coated MSNP carrier, also known as a "silicasome", previously showed improved efficacy and reduced toxicity when compared to an in-house liposomal carrier in a PDAC model. Intravenous injection of the silicasomes in a well-developed orthotopic colon cancer model in mice demonstrated improved pharmacokinetics and tumor drug content over free drug and Onivyde. Moreover, improved drug delivery was accompanied by substantially improved efficacy, increased survival, and reduced bone marrow and GI toxicity compared to the free drug and Onivyde. We also confirmed that the custom-designed irinotecan silicasomes outperform Onivyde in an orthotopic PDAC model. In summary, the Ir-silicasome appears to be promising as a treatment option for CRC in humans based on improved efficacy and the carrier's favorable safety profile.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Ryan Chan
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Ying Ji
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Jianqin Lu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Michael Okene
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Joshua Lin
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Paulina Lin
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Ivanna Tang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Emily Zheng
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Waveley Qiu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Zev A. Wainberg
- Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Ye YP, Jiao HL, Wang SY, Xiao ZY, Zhang D, Qiu JF, Zhang LJ, Zhao YL, Li TT, Li-Liang, Liao WT, Ding YQ. Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:299. [PMID: 30514346 PMCID: PMC6277997 DOI: 10.1186/s13046-018-0958-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/20/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common digestive malignant tumors, and DMTN is a transcriptionally differentially expressed gene that was identified using CRC mRNA sequencing data from The Cancer Genome Atlas (TCGA). Our preliminary work suggested that the expression of DMTN was downregulated in CRC, and the Rac1 signaling pathway was significantly enriched in CRC tissues with low DMTN expression. However, the specific functions and underlying molecular mechanisms of DMTN in the progression of CRC and the upstream factors regulating the downregulation of the gene remain unclear. Methods DMTN expression was analyzed in CRC tissues, and the relationship between DMTN expression and the clinicopathological parameters was analyzed. In vitro and in vivo experimental models were used to detect the effects of DMTN dysregulation on invasion and metastasis of CRC cells. GSEA assay was performed to explore the mechanism of DMTN in invasion and metastasis of CRC. Westernblot, Co-IP and GST-Pull-Down assay were used to detect the interaction between DMTN and ARHGEF2, as well as the activation of the RAC1 signaling. Bisulfite genomic sequence (BSP) assay was used to test the degree of methylation of DMTN gene promoter in CRC tissues. Results We found that the expression of DMTN was significantly decreased in CRC tissues, and the downregulation of DMTN was associated with advanced progression and poor survival and was regarded as an independent predictive factor of CRC patient prognosis. The overexpression of DMTN inhibited, while the knockdown of DMTN promoted, invasion and metastasis in CRC cells. Moreover, hypermethylation and the deletion of DMTN relieved binding to the ARHGEF2 protein, activated the Rac1 signaling pathway, regulated actin cytoskeletal rearrangements, and promoted the invasion and metastasis of CRC cells. Conclusion Our study demonstrated that the downregulation of DMTN promoted the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through RAC1 signaling activation, potentially providing a new therapeutic target to enable cancer precision medicine for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0958-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhi-Yuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jun-Feng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ya-Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ting-Ting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li-Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
35
|
Shi G, Yang Q, Zhang Y, Jiang Q, Lin Y, Yang S, Wang H, Cheng L, Zhang X, Li Y, Wang Q, Liu Y, Wang Q, Zhang H, Su X, Dai L, Liu L, Zhang S, Li J, Li Z, Yang Y, Yu D, Wei Y, Deng H. Modulating the Tumor Microenvironment via Oncolytic Viruses and CSF-1R Inhibition Synergistically Enhances Anti-PD-1 Immunotherapy. Mol Ther 2018; 27:244-260. [PMID: 30527756 DOI: 10.1016/j.ymthe.2018.11.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy based on the immune checkpoint blockade has emerged as the most promising approach for cancer therapy. However, the proportion of colorectal cancer patients who benefit from immunotherapy is small due to the immunosuppressive tumor microenvironment. Hence, combination immunotherapy is an ideal strategy to overcome this limitation. In this study, we developed a novel combination of CSF-1R (colony-stimulating factor 1 receptor) inhibitor (PLX3397), oncolytic viruses, and anti-PD-1 antibody. Our results demonstrated that the triple treatment synergistically conferred significant tumor control and prolonged the survival of mouse models of colon cancer. Approximately 43% and 82% of mice bearing the CT26 and MC38 tumor, respectively, survived long term following the triple treatment. This combination therapy reprogrammed the immunosuppressive tumor microenvironment toward a CD8+ T cell-biased anti-tumor immunity by increasing T cell infiltration in the tumor and augmenting anti-tumor CD8+ T cell function. Our results provide a robust strategy for clinical combination therapy.
Collapse
Affiliation(s)
- Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shenshen Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yimin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lei Liu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia Li
- Innovent Biologics, Inc., Suzhou, Jiangsu, China
| | - Zhi Li
- Innovent Biologics, Inc., Suzhou, Jiangsu, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China; Innovent Biologics, Inc., Suzhou, Jiangsu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
36
|
Sibinga Mulder BG, Handgraaf HJM, Vugts DJ, Sewing C, Windhorst AD, Stammes M, de Geus-Oei LF, Bordo MW, Mieog JSD, van de Velde CJH, Frangioni JV, Vahrmeijer AL. A dual-labeled cRGD-based PET/optical tracer for pre-operative staging and intraoperative treatment of colorectal cancer. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:282-291. [PMID: 30510846 PMCID: PMC6261878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
cRGD peptides target integrins associated with angiogenesis (e.g., αvβ3) and cancer, and have been used as binding ligands for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) optical imaging. This study introduces the hybrid tracer cRGD-ZW800-1-Forte-[89Zr]Zr-DFO, which is based on a novel zwitterionic fluorophore structure that reduces non-specific background uptake during molecular imaging of tumors. An in vitro binding assay was used to validate tracer performance. 10 nmol ZW800F-cRGD-Zr-DFO was injected in mice (n=7) bearing orthotopic human colorectal tumors (HT29-luc2) for tumor detection with NIRF imaging. Subsequently, ZW800F-cRGD-Zr-DFO was loaded with 89Zr and 10 nmol cRGD-ZW800-1-Forte-[89Zr]Zr-DFO (3 MBq) was injected in mice (n=8) for PET/CT imaging. Imaging and biodistribution was performed at 4 and 24 h. NIRF imaging was performed up to 168 h after administration. Sufficient fluorescent signals were measured in the tumors of mice injected with ZW800F-cRGD-Zr-DFO (emission peak ~800 nm) compared to the background. The signal remained stable for up to 7 days. The fluorescence signal of cRGD-ZW800-1-Forte-[89Zr]Zr-DFO remained intact after labeling with 89Zr. PET/CT permitted clear visualization of the colorectal tumors at 4 and 24 h. Biodistribution at 4 h showed the highest uptake of the tracer in kidneys and sufficient uptake in the tumor, remaining stable for up to 24 h. A single molecular imaging agent, ZW800F-cRGD-[89Zr]Zr-DFO, permits serial PET and NIRF imaging of colorectal tumors, with the latter permitting image-guided treatment intraoperatively. Due to its unique zwitterionic structure, the tracer is rapidly renally cleared and fluorescent background signals are low.
Collapse
Affiliation(s)
| | | | - Danielle J Vugts
- Department of Nuclear Medicine, VU Medical CenterAmsterdam, The Netherlands
| | - Claudia Sewing
- Department of Nuclear Medicine, VU Medical CenterAmsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Nuclear Medicine, VU Medical CenterAmsterdam, The Netherlands
| | - Marieke Stammes
- Department of Radiology, Leiden University Medical CenterLeiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Nuclear Medicine, Leiden University Medical CenterLeiden, The Netherlands
- Biomedical Photonic Imaging Group, University of TwenteEnschede, The Netherlands
| | | | - J Sven D Mieog
- Department of Surgery, Leiden University Medical CenterLeiden, The Netherlands
| | | | | | | |
Collapse
|
37
|
Wang S, Yan S, Zhu S, Zhao Y, Yan J, Xiao Z, Bi J, Qiu J, Zhang D, Hong Z, Zhang L, Huang C, Li T, Liang L, Liao W, Jiao H, Ding Y, Ye Y. FOXF1 Induces Epithelial-Mesenchymal Transition in Colorectal Cancer Metastasis by Transcriptionally Activating SNAI1. Neoplasia 2018; 20:996-1007. [PMID: 30189360 PMCID: PMC6134153 DOI: 10.1016/j.neo.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Forkhead Box F1 (FOXF1) has been recently implicated in cancer progression and metastasis of lung cancer and breast cancer. However, the biological functions and underlying mechanisms of FOXF1 in the regulation of the progression of colorectal cancer (CRC) are largely unknown. We showed that FOXF1 was up-regulated in 93 paraffin-embedded archived human CRC tissue, and both high expression and nuclear location of FOXF1 were significantly associated with the aggressive characteristics and poorer survival of CRC patients. The GSEA analysis showed that the higher level of FOXF1 was positively associated with an enrichment of EMT gene signatures, and exogenous overexpression of FOXF1 induced EMT by transcriptionally activating SNAI1. Exogenous overexpression FOXF1 functionally promoted invasion and metastasis features of CRC cells, and inhibition of SNAI1 attenuates the invasive phenotype and metastatic potential of FOXF1-overexpressing CRC cells. Furthermore, the results of the tissue chip showed that the expression of FOXF1 was positively correlated with SNAI1 in CRC tissues chip. These results suggested that FOXF1 plays a critical role in CRC metastasis by inducing EMT via transcriptional activation of SNAI1, highlighting a potential new therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shanshan Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shaowei Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junyu Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhiyuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jiaxin Bi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zexuan Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lingjie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
38
|
Rapic S, Vangestel C, Verhaeghe J, Van den Wyngaert T, Hinz R, Verhoye M, Pauwels P, Staelens S, Stroobants S. Characterization of an Orthotopic Colorectal Cancer Mouse Model and Its Feasibility for Accurate Quantification in Positron Emission Tomography. Mol Imaging Biol 2018; 19:762-771. [PMID: 28194632 DOI: 10.1007/s11307-017-1051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Quantification in positron emission tomography (PET) imaging of an orthotopic mouse model of colorectal cancer (CRC) is challenging due to difficult tumor delineation. We aimed to establish a reproducible delineation approach, evaluate its feasibility for reliable PET quantification and compare its added translational value with its subcutaneous counterpart. PROCEDURES A subcutaneous Colo205-luc2 tumor fragment harvested from a donor mouse was transplanted onto the caecum of nude mice, with (n = 10) or without (n = 10) the addition of an X-ray detectable thread. Animals underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging, complemented with X-ray computed tomography (CT) and magnetic resonance imaging (MRI, 7T). Animals without a thread underwent additional contrast enhanced (Exitron) CT imaging. Tumors were delineated on the MRI, μPET image or contrast enhanced μCT images and correlations between in vivo and ex vivo [18F]FDG tumor uptake as well as between image-derived and caliper-measured tumor volume were evaluated. Finally, cancer hallmarks were assessed immunohistochemically for the characterization of both models. RESULTS Our results showed the strongest correlation between both in vivo and ex vivo uptake (r = 0.84, p < 0.0001) and image-derived and caliper-measured tumor volume (r = 0.96, p < 0.0001) when the tumor was delineated on the MR image. Orthotopic tumors displayed an abundance of stroma, higher levels of proliferation (p = 0.0007), apoptosis (p = 0.02), and necrosis (p < 0.0001), a higher number of blood vessels (p < 0.0001); yet lower tumor hypoxia (p < 0.0001) as compared with subcutaneous tumors. CONCLUSIONS This orthotopic mouse model proved to be a promising tool for the investigation of CRC through preclinical imaging studies provided the availability of anatomical MR images for accurate tumor delineation. Furthermore, the tumor microenvironment of the orthotopic tumor resembled more that of human CRC, increasing its likelihood to advance translational nuclear imaging studies of CRC.
Collapse
Affiliation(s)
- Sara Rapic
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Rukun Hinz
- Bio-Imaging Lab (BIL), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab (BIL), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Patrick Pauwels
- Department of Pathological Anatomy, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium. .,Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium.
| |
Collapse
|
39
|
Evans JP, Winiarski BK, Sutton PA, Jones RP, Ressel L, Duckworth CA, Pritchard DM, Lin ZX, Fretwell VL, Tweedle EM, Costello E, Goldring CE, Copple IM, Park BK, Palmer DH, Kitteringham NR. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget 2018; 9:27104-27116. [PMID: 29930754 PMCID: PMC6007465 DOI: 10.18632/oncotarget.25497] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
Nrf2 is a transcription factor that regulates cellular stress response and irinotecan-metabolising pathways. Its aberrant activity has been reported in a number of cancers, although relatively few studies have explored a role for Nrf2 in colorectal cancer (CRC). This study assessed the expression of Nrf2 in patient CRC tissues and explored the effect of Nrf2 modulation alone, or in combination with irinotecan, in human (HCT116) and murine (CT26) cell lines in vitro and in an orthotopic syngeneic mouse model utilising bioluminescent imaging. Using a tissue microarray, Nrf2 was found to be overexpressed (p<0.01) in primary CRC and metastatic tissue relative to normal colon, with a positive correlation between Nrf2 expression in matched primary and metastatic samples. In vitro experiments in CRC cell lines revealed that Nrf2 siRNA and brusatol, which is known to inhibit Nrf2, decreased viability and sensitised cells to irinotecan toxicity. Furthermore, brusatol effectively abrogated CRC tumour growth in subcutaneously and orthotopically-allografted mice, resulting in an average 8-fold reduction in luminescence at the study end-point (p=0.02). Our results highlight Nrf2 as a promising drug target in the treatment of CRC.
Collapse
Affiliation(s)
- Jonathan P Evans
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Boleslaw K Winiarski
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert P Jones
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lorenzo Ressel
- Department of Veterinary Pathology, Institute of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Vicky L Fretwell
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth M Tweedle
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ian M Copple
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
40
|
Bhome R, Goh RW, Bullock MD, Pillar N, Thirdborough SM, Mellone M, Mirnezami R, Galea D, Veselkov K, Gu Q, Underwood TJ, Primrose JN, De Wever O, Shomron N, Sayan AE, Mirnezami AH. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging (Albany NY) 2017; 9:2666-2694. [PMID: 29283887 PMCID: PMC5764398 DOI: 10.18632/aging.101355] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/17/2017] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is a global disease with increasing incidence. Mortality is largely attributed to metastatic spread and therefore, a mechanistic dissection of the signals which influence tumor progression is needed. Cancer stroma plays a critical role in tumor proliferation, invasion and chemoresistance. Here, we sought to identify and characterize exosomal microRNAs as mediators of stromal-tumor signaling. In vitro, we demonstrated that fibroblast exosomes are transferred to colorectal cancer cells, with a resultant increase in cellular microRNA levels, impacting proliferation and chemoresistance. To probe this further, exosomal microRNAs were profiled from paired patient-derived normal and cancer-associated fibroblasts, from an ongoing prospective biomarker study. An exosomal cancer-associated fibroblast signature consisting of microRNAs 329, 181a, 199b, 382, 215 and 21 was identified. Of these, miR-21 had highest abundance and was enriched in exosomes. Orthotopic xenografts established with miR-21-overexpressing fibroblasts and CRC cells led to increased liver metastases compared to those established with control fibroblasts. Our data provide a novel stromal exosome signature in colorectal cancer, which has potential for biomarker validation. Furthermore, we confirmed the importance of stromal miR-21 in colorectal cancer progression using an orthotopic model, and propose that exosomes are a vehicle for miR-21 transfer between stromal fibroblasts and cancer cells.
Collapse
Affiliation(s)
- Rahul Bhome
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Rebecca W. Goh
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Marc D. Bullock
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Nir Pillar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephen M. Thirdborough
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Massimiliano Mellone
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Reza Mirnezami
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2BB, UK
| | - Dieter Galea
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2BB, UK
| | - Kirill Veselkov
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2BB, UK
| | - Quan Gu
- University of Glasgow Centre for Virus Research, 117 Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Timothy J. Underwood
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - John N. Primrose
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Olivier De Wever
- Department of Experimental Cancer Research, Ghent University, Radiotherapiepark, 9000 Ghent, Belgium
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - A. Emre Sayan
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alex H. Mirnezami
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
41
|
Kochall S, Thepkaysone ML, García SA, Betzler AM, Weitz J, Reissfelder C, Schölch S. Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer. J Vis Exp 2017. [PMID: 28745637 DOI: 10.3791/55357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the advantages of easy applicability and cost-effectiveness, subcutaneous mouse models have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Orthotopic mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in hollow organs such as the large bowel. In order to produce uniform tumors which reliably grow and metastasize, standardized techniques of tumor cell preparation and injection are critical. We have developed an orthotopic mouse model of colorectal cancer (CRC) which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor cells from either primary tumors, 2-dimensional (2D) cell lines or 3-dimensional (3D) organoids are injected into the cecum and, depending on the metastatic potential of the injected tumor cells, form highly metastatic tumors. In addition, CTCs can be found regularly. We here describe the technique of tumor cell preparation from both 2D cell lines and 3D organoids as well as primary tumor tissue, the surgical and injection techniques as well as the isolation of CTCs from the tumor-bearing mice, and present tips for troubleshooting.
Collapse
Affiliation(s)
- Susan Kochall
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - May-Linn Thepkaysone
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastián A García
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Alexander M Betzler
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ)
| | - Christoph Reissfelder
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ);
| |
Collapse
|
42
|
Handgraaf HJM, Boonstra MC, Prevoo HAJM, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten ML, Valentijn ARPM, Burggraaf J, van de Velde CJH, Frangioni JV, Vahrmeijer AL. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 2017; 8:21054-21066. [PMID: 28416744 PMCID: PMC5400565 DOI: 10.18632/oncotarget.15486] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Incomplete resections and damage to critical structures increase morbidity and mortality of patients with cancer. Targeted intraoperative fluorescence imaging aids surgeons by providing real-time visualization of tumors and vital structures. This study evaluated the tumor-targeted zwitterionic near-infrared fluorescent peptide cRGD-ZW800-1 as tracer for intraoperative imaging of multiple cancer types. cRGD-ZW800-1 was validated in vitro on glioblastoma (U-87 MG) and colorectal (HT-29) cell lines. Subsequently, the tracer was tested in orthotopic mouse models with HT-29, breast (MCF-7), pancreatic (BxPC-3), and oral (OSC-19) tumors. Dose-ranging studies, including doses of 0.25, 1.0, 10, and 30 nmol, in xenograft tumor models suggest an optimal dose of 10 nmol, corresponding to a human equivalent dose of 63 μg/kg, and an optimal imaging window between 2 and 24 h post-injection. The mean half-life of cRGD-ZW800-1 in blood was 25 min. Biodistribution at 4 h showed the highest fluorescence signals in tumors and kidneys. In vitro and in vivo competition experiments showed significantly lower fluorescence signals when U-87 MG cells (minus 36%, p = 0.02) or HT-29 tumor bearing mice (TBR at 4 h 3.2 ± 0.5 vs 1.8 ± 0.4, p = 0.03) were simultaneously treated with unlabeled cRGD. cRGD-ZW800-1 visualized in vivo all colorectal, breast, pancreatic, and oral tumor xenografts in mice. Screening for off-target interactions, cRGD-ZW800-1 showed only inhibition of COX-2, likely due to binding of cRGD-ZW800-1 to integrin αVβ3. Due to its recognition of various integrins, which are expressed on malignant and neoangiogenic cells, it is expected that cRGD-ZW800-1 will provide a sensitive and generic tool to visualize cancer during surgery.
Collapse
Affiliation(s)
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Joeri Kuil
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - A Rob P M Valentijn
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - John V Frangioni
- Curadel, LLC, Marlborough, MA, U.S.A.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A
| | | |
Collapse
|
43
|
Hu Y, Xiao Q, Chen H, He J, Tan Y, Liu Y, Wang Z, Yang Q, Shen X, Huang Y, Yuan Y, Ding K. BEX2 promotes tumor proliferation in colorectal cancer. Int J Biol Sci 2017; 13:286-294. [PMID: 28367093 PMCID: PMC5370436 DOI: 10.7150/ijbs.15171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
BEX2 has been suggested to promote the tumor growth in breast cancer and glioblastoma, while inhibit the proliferation of glioma cells. Thus, the role of BEX2 in tumor was still in debate. Additionally, the biological functions of BEX2 in colorectal cancer (CRC) have not yet been clarified. Here, we reported that BEX2 was overexpressed in advanced CRC from both the GSE14333 database and fresh CRC tissue specimens, and positively correlated with clinical staging. Knockdown of BEX2 significantly decreased the in vitro proliferation of SW620 colorectal cancer cells, suppressed subcutaneous xenograft growth and enhanced the survival of mice with cecal tumors. These effects were mainly mediated by the JNK/c-Jun pathway. Knockdown of BEX2 inhibited JNK/c-Jun phosphorylation, while BEX2 overexpression activated JNK/c-Jun phosphorylation. Moreover, the administration of the JNK-specific inhibitor SP600125 to SW620 with BEX2 overexpression abolished the effect of BEX2 on SW620 cell proliferation. This study reveals that BEX2 promotes colorectal cancer cell proliferation via the JNK/c-Jun pathway, suggesting BEX2 as a potential candidate target for the treatment of CRC.
Collapse
Affiliation(s)
- Yeting Hu
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Xiao
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyan Chen
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinjie He
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinuo Tan
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Liu
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhanhuai Wang
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Yang
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangfeng Shen
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Huang
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China;; Key Laboratory of Cancer Prevention and Intervention of the China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Zhang X, Zhang L, Du Y, Zheng H, Zhang P, Sun Y, Wang Y, Chen J, Ding P, Wang N, Yang C, Huang T, Yao X, Qiao Q, Gu H, Cai G, Cai S, Zhou X, Hu W. A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene 2017; 36:807-819. [PMID: 27399334 PMCID: PMC5311249 DOI: 10.1038/onc.2016.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical event in metastasis of colorectal cancer (CRC). Rho/ROCKs signaling has a pivotal role in orchestrating actin cytoskeleton, leading to EMT and cancer invasion. However, the underlying mechanisms for ROCKs activation are not fully understood. Here, we identified FOXM1D, a novel isoform of Forkhead box M1 (FOXM1) that has a pivotal role in ROCKs activation by directly interacting with coiled-coil region of ROCK2. FOXM1D overexpression significantly polymerizes actin assembly and impairs E-cadherin expression, resulting in EMT and metastasis in xenograft mouse model and knockdown of FOXM1D has the opposite effect. Moreover, a high FOXM1D level correlates closely with clinical CRC metastasis. FOXM1D-induced ROCKs activation could be abrogated by the ROCKs inhibitors Y-27632 and fasudil. These observations indicate that the FOXM1D-ROCK2 interaction is crucial for Rho/ROCKs signaling and provide novel insight into actin cytoskeleton regulation and therapeutic potential for CRC metastasis.
Collapse
Affiliation(s)
- X Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - L Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Y Du
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - H Zheng
- Department of Colorectal Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - P Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Y Sun
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Y Wang
- Department of Colorectal Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - J Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - P Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - N Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - C Yang
- Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - T Huang
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai, China
| | - X Yao
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Q Qiao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - H Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - G Cai
- Department of Colorectal Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - S Cai
- Department of Colorectal Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - X Zhou
- Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - W Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Abstract
The host microenvironment plays a prominent role in tumor growth, angiogenesis, invasion, metastasis, and response to therapy. Orthotopic tumor model mimics the natural environment of tumor development and provides an effective approach to investigate tumor pathophysiology and develop therapeutic strategies. This protocol describes the technique involving injection of colorectal cancer cell suspension into the intestinal wall of mice to establish an orthotopic colorectal tumor model.
Collapse
Affiliation(s)
- Hsin-Wei Liao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, USA.,Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, USA.,Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
46
|
Oshima G, Stack ME, Wightman SC, Bryan D, Poli E, Xue L, Skowron KB, Uppal A, Pitroda SP, Huang X, Posner MC, Hellman S, Weichselbaum RR, Khodarev NN. Advanced Animal Model of Colorectal Metastasis in Liver: Imaging Techniques and Properties of Metastatic Clones. J Vis Exp 2016. [PMID: 27929457 DOI: 10.3791/54657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Patients with a limited number of hepatic metastases and slow rates of progression can be successfully treated with local treatment approaches1,2. However, little is known about the heterogeneity of liver metastases, and animal models capable of evaluating the development of individual metastatic colonies are needed. Here, we present an advanced model of hepatic metastases that provides the ability to quantitatively visualize the development of individual tumor clones in the liver and estimate their growth kinetics and colonization efficiency. We generated a panel of monoclonal derivatives of HCT116 human colorectal cancer cells stably labeled with luciferase and tdTomato and possessing different growth properties. With a splenic injection followed by a splenectomy, the majority of these clones are able to generate hepatic metastases, but with different frequencies of colonization and varying growth rates. Using the In Vivo Imaging System (IVIS), it is possible to visualize and quantify metastasis development with in vivo luminescent and ex vivo fluorescent imaging. In addition, Diffuse Luminescent Imaging Tomography (DLIT) provides a 3D distribution of liver metastases in vivo. Ex vivo fluorescent imaging of harvested livers provides quantitative measurements of individual hepatic metastatic colonies, allowing for the evaluation of the frequency of liver colonization and the growth kinetics of metastases. Since the model is similar to clinically observed liver metastases, it can serve as a modality for detecting genes associated with liver metastasis and for testing potential ablative or adjuvant treatments for liver metastatic disease.
Collapse
Affiliation(s)
- Go Oshima
- Department of Surgery, The University of Chicago; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | | | | | - Darren Bryan
- Department of Surgery, The University of Chicago
| | | | - Lai Xue
- Department of Surgery, The University of Chicago
| | | | | | - Sean P Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | | | - Samuel Hellman
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago;
| |
Collapse
|
47
|
Tommelein J, Gremonprez F, Verset L, De Vlieghere E, Wagemans G, Gespach C, Boterberg T, Demetter P, Ceelen W, Bracke M, De Wever O. Age and cellular context influence rectal prolapse formation in mice with caecal wall colorectal cancer xenografts. Oncotarget 2016; 7:75603-75615. [PMID: 27689329 PMCID: PMC5342764 DOI: 10.18632/oncotarget.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022] Open
Abstract
In patients with rectal prolapse is the prevalence of colorectal cancer increased, suggesting that a colorectal tumor may induce rectal prolapse. Establishment of tumor xenografts in immunodeficient mice after orthotopic inoculations of human colorectal cancer cells into the caecal wall is a widely used approach for the study of human colorectal cancer progression and preclinical evaluation of therapeutics. Remarkably, 70% of young mice carrying a COLO320DM caecal tumor showed symptoms of intussusception of the large bowel associated with intestinal lumen obstruction and rectal prolapse. The quantity of the COLO320DM bioluminescent signal of the first three weeks post-inoculation predicts prolapse in young mice. Rectal prolapse was not observed in adult mice carrying a COLO320DM caecal tumor or young mice carrying a HT29 caecal tumor. In contrast to HT29 tumors, which showed local invasion and metastasis, COLO320DM tumors demonstrated a non-invasive tumor with pushing borders without presence of metastasis. In conclusion, rectal prolapse can be linked to a non-invasive, space-occupying COLO320DM tumor in the gastrointestinal tract of young immunodeficient mice. These data reveal a model that can clarify the association of patients showing rectal prolapse with colorectal cancer.
Collapse
Affiliation(s)
- Joke Tommelein
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Félix Gremonprez
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Glenn Wagemans
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Christian Gespach
- Institut National de la Santé et de la Recherche Médicale, INSERM, Department of Molecular and Clinical Oncology, Université Paris VI Pierre et Marie Curie, Paris, France
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
48
|
van Driel PBAA, Boonstra MC, Prevoo HAJM, van de Giessen M, Snoeks TJA, Tummers QRJG, Keereweer S, Cordfunke RA, Fish A, van Eendenburg JDH, Lelieveldt BPF, Dijkstra J, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Löwik CWGM, Sier CFM. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery. BMC Cancer 2016; 16:884. [PMID: 27842504 PMCID: PMC5109830 DOI: 10.1186/s12885-016-2932-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In this study EpCAM (epithelial cell adhesion molecule) is evaluated as target for FGS in combination with the novel Artemis imaging system. Methods The NIR fluorophore IRDye800CW was conjugated to the well-established EpCAM specific monoclonal antibody 323/A3 and an isotype IgG1 as control. The anti-EpCAM/800CW conjugate was stable in serum and showed preserved binding capacity as evaluated on EpCAM positive and negative cell lines, using flow cytometry and cell-based plate assays. Four clinically relevant orthotopic tumour models, i.e. colorectal cancer, breast cancer, head and neck cancer, and peritonitis carcinomatosa, were used to evaluate the performance of the anti-EpCAM agent with the clinically validated Artemis imaging system. The Pearl Impulse small animal imaging system was used as reference. The specificity of the NIRF signal was confirmed using bioluminescence imaging and green-fluorescent protein. Results All tumour types could clearly be delineated and resected 72 h after injection of the imaging agent. Using NIRF imaging millimetre sized tumour nodules were detected that were invisible for the naked eye. Fluorescence microscopy demonstrated the distribution and tumour specificity of the anti-EpCAM agent. Conclusions This study shows the potential of an EpCAM specific NIR-fluorescent agent in combination with a clinically validated intraoperative imaging system to visualize various tumours during surgery.
Collapse
Affiliation(s)
- P B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands.,Percuros BV, Enschede, The Netherlands
| | - M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M van de Giessen
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - T J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - Q R J G Tummers
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - R A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - A Fish
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - B P F Lelieveldt
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - J Dijkstra
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands.,Antibodies for Research Applications BV, Gouda, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands. .,Antibodies for Research Applications BV, Gouda, The Netherlands.
| |
Collapse
|
49
|
Highton AJ, Girardin A, Bell GM, Hook SM, Kemp RA. Chitosan gel vaccine protects against tumour growth in an intracaecal mouse model of cancer by modulating systemic immune responses. BMC Immunol 2016; 17:39. [PMID: 27756214 PMCID: PMC5069793 DOI: 10.1186/s12865-016-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background Vaccination generating a robust memory population of CD8+ T cells may provide protection against cancer. However, immune therapies for cancer are influenced by the local tumour immune microenvironment. An infiltrate of T cells into tumours of people with colorectal cancer has proven to be a significant indicator of good prognosis. Methods We used an intracaecal mouse model of cancer to determine whether a protective immune response against a mucosal gut tumour could be generated using a systemic intervention. We investigated the generation of murine memory CD8+ T cells using a sustained antigen release vaccine vehicle (chitosan gel; Gel + OVA) containing the model antigen ovalbumin, chitosan gel alone (Gel) or conventional dendritic cell vaccination (DC + OVA) using the same protein antigen. Results Following vaccination with Gel + OVA, CD8+ T cell memory populations specific for ovalbumin protein were detected. Only vaccination with Gel + OVA gave decreased tumour burden compared to unvaccinated or DC + OVA-vaccinated mice in the intracaecal cancer challenge model. Conclusion These results indicate that subcutaneous vaccination with Gel + OVA generates a population of functional CD8+ memory T cells in lymphoid tissue able to protect against intracaecal tumour challenge. Vaccination with chitosan gel may be valuable in anti-cancer treatment at both peripheral and mucosal sites. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0178-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J Highton
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Adam Girardin
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Georgia M Bell
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sarah M Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
50
|
Parayath NN, Nehoff H, Norton SE, Highton AJ, Taurin S, Kemp RA, Greish K. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model. Int J Nanomedicine 2016; 11:3979-91. [PMID: 27574427 PMCID: PMC4993259 DOI: 10.2147/ijn.s110251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oral administration of paclitaxel (PTX), a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid) (SMA). Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg) compared to the commercially available PTX formulation (PTX [Ebewe]). In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe). In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
| | | | - Samuel E Norton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew J Highton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology
- Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|