1
|
Woottum M, Yan S, Durringer A, Mézière L, Bracq L, Han M, Ndiaye-Lobry D, Chaumeil J, Pagès JC, Benichou S. HIV-1 cell-to-cell infection of macrophages escapes type I interferon and host restriction factors, and is resistant to antiretroviral drugs. PLoS Pathog 2025; 21:e1013130. [PMID: 40294108 PMCID: PMC12064042 DOI: 10.1371/journal.ppat.1013130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 05/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
HIV-1-infected macrophages participate in viral transmission, dissemination, and establishment of tissue virus reservoirs. Despite counteracting viral proteins (Vif, Vpu, Vpr and Nef), cell-free virus macrophage infection is restricted by host cell factors, including those induced by interferons. Here, we show that these viral proteins and type I interferon do not influence HIV-1 cell-to-cell transfer to macrophages by cell-cell fusion with infected T cells, still leading to the formation of multinucleated giant cells (MGCs). Accordingly, depletion of SERINC5 and APOBEC3G do not alter virus spreading and formation of virus-producing MGCs. We further show that the nuclei derived from infected T cells remains transcriptionally active in MGCs and may explain resistance to restriction factors and antiretroviral drugs. Unexpectedly, we detect viral DNA in myeloid nuclei shortly after the initial fusion with macrophages. Together, these findings unravel how HIV-1 macrophage infection by cell-cell fusion escapes type I interferon and cellular restriction factors independently of the viral auxiliary proteins, while displaying resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Sen Yan
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Agathe Durringer
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Léa Mézière
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Lucie Bracq
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Delphine Ndiaye-Lobry
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Julie Chaumeil
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| | - Jean-Christophe Pagès
- Institut RESTORE, Université Toulouse 3, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
- Service de Biologie Cellulaire, IFB, CHUT, Toulouse, France
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Rai A, Singh A, Gaur R, Verma A, Nikita, Gulati S, Malik R, Dandu H, Kumar A, Tandon R. MALAT1 is important for facilitating HIV-1 latency reversal in latently infected monocytes. Gene 2025; 936:149095. [PMID: 39549778 DOI: 10.1016/j.gene.2024.149095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) are long RNA transcripts with length >200 nucleotides that do not encode proteins. They play a crucial role in regulating HIV-1 infection, yet their involvement in myeloid cells remains underexplored. Myeloid cells are susceptible to HIV infection and contribute substantially to the latent HIV reservoir. Therefore, disruption of latency within these reservoirs is crucial for achieving a definite cure. In this study, we aimed to ascertain the role of MALAT1 lncRNA in reversal of HIV-1 latency. Latently HIV-infected cell line, U1 was treated with SAHA, followed by qRT-PCR assays to confirm HIV-1 reactivation, and MALAT1 expression was assessed. The in vitro experiments revealed a significant increase in MALAT1 expression following latency reactivation and HIV-1 infection, while its knockdown using siRNA resulted in suppression of HIV transcription, which implies that MALAT1 play a significant role in facilitating the reversal of HIV-1 latency by promoting HIV transcription. Clinical samples were analysed to measure MALAT1 and pro-inflammatory cytokines expression. The elevated MALAT1 expression in treatment-naïve subjects compared to those on ART and HIV-negative controls suggests its association with HIV replication. Moreover, correlation analysis revealed a positive association between MALAT1 expression and pro-inflammatory cytokines, TNF-α and IP-10. To conclude, MALAT1 lncRNA emerged as a crucial facilitator of HIV-1 latency reversal in latently infected monocytes by inducing the expression of pro-inflammatory factors. These findings highlight that MALAT1 could potentially be explored as the therapeutic intervention to reactivate latent cells in monocytes.
Collapse
Affiliation(s)
- Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aradhana Singh
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sameer Gulati
- Department of Medicine, Lady Hardinge Medical College, New Delhi, India
| | - Rupali Malik
- Department of Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Himanshu Dandu
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education, Manipal, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Nuwagaba J, Li JA, Ngo B, Sutton RE. 30 years of HIV therapy: Current and future antiviral drug targets. Virology 2025; 603:110362. [PMID: 39705895 PMCID: PMC11788039 DOI: 10.1016/j.virol.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation. Challenges of HAART include lifelong adherence, toxicity, drug interactions, and drug resistance. Future therapeutic strategies may focus on underexplored antiviral targets. HIV-1 Tat and Rev proteins have essential HIV-1 regulatory functions of transcriptional elongation of the viral long terminal repeat and nuclear export of intron-containing HIV-1 RNA, respectively. These non-enzymatic proteins should thus be investigated to identify small molecules that inhibit HIV-1 replication, without causing undue toxicity. Continued innovation is essential to address therapeutic gaps and bring us closer to a potential HIV-1 cure.
Collapse
Affiliation(s)
- Julius Nuwagaba
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Jessica A Li
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Brandon Ngo
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Nabipur L, Mouawad M, Venketaraman V. Additive Effects of Glutathione in Improving Antibiotic Efficacy in HIV- M.tb Co-Infection in the Central Nervous System: A Systematic Review. Viruses 2025; 17:127. [PMID: 39861915 PMCID: PMC11769047 DOI: 10.3390/v17010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction. METHODS Relevant studies were identified through systematic searches of PubMed, Elsevier, WHO, and related databases. Inclusion criteria focused on preclinical and clinical research examining GSH or its precursors in HIV, TB, or co-infection, with emphasis on microbial control, immune modulation, and CNS-related outcomes. RESULTS Preclinical studies showed that GSH improves macrophage antimicrobial function, reduces oxidative stress, and limits Mycobacterium tuberculosis (M.tb) growth. Animal models demonstrated reduced bacterial burden in the lungs, liver, and spleen with GSH supplementation, along with enhanced granuloma stability. Clinical studies highlighted increased TH1 cytokine production, reduced inflammatory markers, and improved CD4+ T cell counts in HIV-M.tb co-infected patients. N-acetylcysteine (NAC), a GSH precursor, was shown to significantly enhance the efficacy of first-line TB antibiotics and mitigate treatment-associated toxicity. DISCUSSION GSH shows promise as an adjunct therapy for HIV-M.tb co-infection, particularly for cases involving the CNS, where it may improve immune recovery and reduce inflammation. However, evidence is limited by small sample sizes and a lack of randomized trials. Future research should focus on developing CNS-directed GSH formulations and evaluating its integration into current treatment protocols to address the dual burden of HIV and TB, ultimately improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (L.N.); (M.M.)
| |
Collapse
|
6
|
Muñoz-Muela E, Trujillo-Rodríguez M, Serna-Gallego A, Saborido-Alconchel A, Gasca-Capote C, Álvarez-Ríos A, Ruiz-Mateos E, Sviridov D, Murphy AJ, Lee MKS, López-Cortés LF, Gutiérrez-Valencia A. HIV-1-DNA/RNA and immunometabolism in monocytes: contribution to the chronic immune activation and inflammation in people with HIV-1. EBioMedicine 2024; 108:105338. [PMID: 39265504 PMCID: PMC11416497 DOI: 10.1016/j.ebiom.2024.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Among people living with HIV-1 (PHIV), immunological non-responders (INR) experience incomplete immune recovery despite suppressive antiretroviral treatment (ART), facing more severe non-AIDS events than immunological responders (IR) due to higher chronic immune activation and inflammation (cIA/I). We analyzed the HIV-1 reservoir and immunometabolism in monocytes as a source of cIA/I. METHODS Cross-sectional study in which 110 participants were enrolled: 25 treatment-naïve; 35 INR; 40 IR; and 10 healthy controls. Cell-associated HIV-1-DNA (HIV-DNA) and -RNA (HIV-RNA) were measured in FACS-isolated monocytes using digital droplet PCR. Intact, 5' deleted, and 3' deleted proviruses were quantified by the intact proviral DNA assay. Systemic inflammation, monocyte immunophenotype, and immunometabolism were characterized by immunoassays, flow cytometry, and real-time cellular bioenergetics measurements, respectively. FINDINGS Monocytes from INR harbor higher HIV-RNA and HIV-DNA levels than IR. HIV-RNA was found in 14/21 treatment-naïve [2512 copies/106 TBP (331-4666)], 17/33 INR [240 (148-589)], and 15/28 IR [144 (15-309)], correlating directly with sCD163, IP-10, GLUT1high cells and glucose uptake, and inversely with the CD4+/CD8+ ratio. HIV-DNA was identified in all participants with detectable HIV-RNA, with intact provirus in 9/12 treatment-naïve [13 copies/106 monocytes (7-44)], 8/14 INR [46 (18-67)], and 9/13 IR [9 (7-24)]. INR presented glucose metabolism alterations and mitochondrial impairment; decreased coupling efficiency and BHI, and increased mitochondrial dysfunction inversely correlating with the CD4+/CD8+ ratio. INTERPRETATION HIV-RNA, more than HIV-DNA, in monocytes and their altered metabolism are factors associated with the higher cIA/I that characterize INR. FUNDING This work was supported by the European Regional Development Fund, ISCIII, grant PI20/01646. Other funding sources: Instituto de Salud Carlos III through the Subprogram Miguel Servet (CP19/00159) to AGV, PFIS contracts (FI19/00304) to EMM, (FI21/00165) to ASA, and (FI19/00083) to CGC, and a mobility grant (MV21/00103) to EMM, from the Ministerio de Ciencia e Innovación, Spain. AJM was granted by a CSL Centenary Award.
Collapse
Affiliation(s)
- Esperanza Muñoz-Muela
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain
| | - María Trujillo-Rodríguez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain
| | - Ana Serna-Gallego
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain
| | - Abraham Saborido-Alconchel
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain
| | - Carmen Gasca-Capote
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain
| | - Ana Álvarez-Ríos
- Department of Clinical Biochemistry, Virgen del Rocío University Hospital, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Luis F López-Cortés
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain.
| | - Alicia Gutiérrez-Valencia
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville/Virgen del Rocio University Hospital/CSIC/University of Seville, Spain; Primary Care Pharmacist Service, Sevilla Primary Care District, Seville, Spain
| |
Collapse
|
7
|
Jamal Eddine J, Angelovich TA, Zhou J, Byrnes SJ, Tumpach C, Saraya N, Chalmers E, Shepherd RA, Tan A, Marinis S, Gorry PR, Estes JD, Brew BJ, Lewin SR, Telwatte S, Roche M, Churchill MJ. HIV transcription persists in the brain of virally suppressed people with HIV. PLoS Pathog 2024; 20:e1012446. [PMID: 39116185 PMCID: PMC11335163 DOI: 10.1371/journal.ppat.1012446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH). HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging. Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH. These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.
Collapse
Affiliation(s)
- Janna Jamal Eddine
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Thomas A. Angelovich
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Life Sciences Discipline, Burnet Institute; Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jingling Zhou
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Sarah J. Byrnes
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nadia Saraya
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Emily Chalmers
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Rory A. Shepherd
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Abigail Tan
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stephanie Marinis
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Paul R. Gorry
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jacob D. Estes
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, United States of America
| | - Bruce J. Brew
- Peter Duncan Neurosciences Unit, Departments of Neurology and Immunology St Vincent’s Hospital, Sydney, University of New South Wales and University of Notre Dame; Sydney, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University; Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sushama Telwatte
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michael Roche
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Melissa J. Churchill
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Life Sciences Discipline, Burnet Institute; Melbourne, Australia
- Departments of Microbiology and Medicine, Monash University; Melbourne, Australia
| |
Collapse
|
8
|
Dias J, Cattin A, Bendoumou M, Dutilleul A, Lodge R, Goulet JP, Fert A, Raymond Marchand L, Wiche Salinas TR, Ngassaki Yoka CD, Gabriel EM, Caballero RE, Routy JP, Cohen ÉA, Van Lint C, Ancuta P. Retinoic acid enhances HIV-1 reverse transcription and transcription in macrophages via mTOR-modulated mechanisms. Cell Rep 2024; 43:114414. [PMID: 38943643 PMCID: PMC11341200 DOI: 10.1016/j.celrep.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
The intestinal environment facilitates HIV-1 infection via mechanisms involving the gut-homing vitamin A-derived retinoic acid (RA), which transcriptionally reprograms CD4+ T cells for increased HIV-1 replication/outgrowth. Consistently, colon-infiltrating CD4+ T cells carry replication-competent viral reservoirs in people with HIV-1 (PWH) receiving antiretroviral therapy (ART). Intriguingly, integrative infection in colon macrophages, a pool replenished by monocytes, represents a rare event in ART-treated PWH, thus questioning the effect of RA on macrophages. Here, we demonstrate that RA enhances R5 but not X4 HIV-1 replication in monocyte-derived macrophages (MDMs). RNA sequencing, gene set variation analysis, and HIV interactor NCBI database interrogation reveal RA-mediated transcriptional reprogramming associated with metabolic/inflammatory processes and HIV-1 resistance/dependency factors. Functional validations uncover post-entry mechanisms of RA action including SAMHD1-modulated reverse transcription and CDK9/RNA polymerase II (RNAPII)-dependent transcription under the control of mammalian target of rapamycin (mTOR). These results support a model in which macrophages residing in the intestine of ART-untreated PWH contribute to viral replication/dissemination in an mTOR-sensitive manner.
Collapse
Affiliation(s)
- Jonathan Dias
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Amélie Cattin
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Maryam Bendoumou
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Antoine Dutilleul
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Robert Lodge
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | | | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Christ-Dominique Ngassaki Yoka
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Etiene Moreira Gabriel
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Ramon Edwin Caballero
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University Health Centre, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Éric A Cohen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium.
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada.
| |
Collapse
|
9
|
Alpuche-Lazcano SP, Scarborough RJ, Gatignol A. MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV. Retrovirology 2024; 21:5. [PMID: 38424561 PMCID: PMC10905857 DOI: 10.1186/s12977-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
10
|
Kim J, Bose D, Araínga M, Haque MR, Fennessey CM, Caddell RA, Thomas Y, Ferrell DE, Ali S, Grody E, Goyal Y, Cicala C, Arthos J, Keele BF, Vaccari M, Lorenzo-Redondo R, Hope TJ, Villinger F, Martinelli E. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo. Nat Commun 2024; 15:1348. [PMID: 38355731 PMCID: PMC10867093 DOI: 10.1038/s41467-024-45555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-β blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a 64Cu-DOTA-F(ab')2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Muhammad R Haque
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rachel A Caddell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| | - Yanique Thomas
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Douglas E Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Syed Ali
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Emanuelle Grody
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Thomas J Hope
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Elena Martinelli
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
12
|
Guo XY, Qu MM, Wang X, Wang ZR, Song JW, Yang BP, Guo YT, Zhang Y, Zhang C, Fan X, Xu W, Xu R, Zhang JY, Chen SY, Jiao YM, Sun LJ, Wang FS. Characteristics of blood immune cell profile and their correlation with disease progression in patients infected with HIV-1. BMC Infect Dis 2023; 23:893. [PMID: 38124099 PMCID: PMC10731693 DOI: 10.1186/s12879-023-08847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) can reduce viral load in individuals infected with human immunodeficiency virus (HIV); however, some HIV-infected individuals still cannot achieve optimal immune recovery even after ART. Hence, we described the profile of peripheral immune cells and explored the association with disease progression in patients infected with HIV-1. METHODS Mass cytometry analysis was used to characterize the circulating immune cells of 20 treatment-naïve (TNs), 20 immunological non-responders (INRs), 20 immunological responders (IRs), and 10 healthy controls (HCs). Correlation analysis was conducted between cell subpopulation percentages and indicators including HIV-1 cell-associated (CA)-RNA, DNA, CD4+ T cell count, and CD4/CD8 ratio. RESULTS Global activation, immunosenescence, and exhaustion phenotypes were observed in myeloid cells and T cells from individuals with HIV-1 infection. We also found that specific subsets or clusters of myeloid, CD4+ T, and CD8+ T cells were significantly lost or increased in TN individuals, which could be partially restored after receiving ART. The percentages of several subpopulations correlated with HIV-1 CA-RNA, DNA, CD4+ T cell count, and CD4/CD8 ratio, suggesting that changes in immune cell composition were associated with therapeutic efficacy. CONCLUSION These data provide a complete profile of immune cell subpopulations or clusters that are associated with disease progression during chronic HIV-1 infection, which will improve understanding regarding the mechanism of incomplete immune recovery in INRs.
Collapse
Affiliation(s)
- Xiao-Yan Guo
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xi Wang
- Clinic of Center for Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Bao-Peng Yang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yun-Tian Guo
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yang Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Wen Xu
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
| | - Li-Jun Sun
- Clinic of Center for Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
| |
Collapse
|
13
|
Peng X, Zhu B. Machine learning identified genetic features associated with HIV sequences in the monocytes. Chin Med J (Engl) 2023; 136:3002-3004. [PMID: 38018159 PMCID: PMC10752474 DOI: 10.1097/cm9.0000000000002932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 11/30/2023] Open
Affiliation(s)
- Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
14
|
Kime J, Bose D, Arainga M, Haque MR, Fennessey CM, Caddell RA, Thomas Y, Ferrell DE, Ali S, Grody E, Goyal Y, Cicala C, Arthos J, Keele BF, Vaccari M, Lorenzo-Redondo R, Hope TJ, Villinger FJ, Marinelli E. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556422. [PMID: 38014094 PMCID: PMC10680555 DOI: 10.1101/2023.09.05.556422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of the anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirmed the latency reversal properties of in vivo TGF-β blockade, decreased viral reservoirs and stimulated immune responses. Eight SIV-infected macaques on suppressive ART were treated with 4 2-week cycles of galunisertib. ART was discontinued 3 weeks after the last dose, and macaques euthanized 6 weeks after ART-interruption(ATI). One macaque did not rebound, while the remaining rebounded between week 2 and 6 post-ATI. Galunisertib led to viral reactivation as indicated by plasma viral load and immunoPET/CT with the 64Cu-DOTA-F(ab')2-p7D3-probe. Half to 1 Log decrease in cell-associated (CA-)SIV DNA was detected in lymph nodes, gut and PBMC, while intact pro-virus in PBMC decreased by 3-fold. No systemic increase in inflammatory cytokines was observed. High-dimensions cytometry, bulk and single-cell RNAseq revealed a shift toward an effector phenotype in T and NK cells. In summary, we demonstrated that galunisertib, a clinical stage TGFβ inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Collapse
|
15
|
Moar P, Premeaux TA, Atkins A, Ndhlovu LC. The latent HIV reservoir: current advances in genetic sequencing approaches. mBio 2023; 14:e0134423. [PMID: 37811964 PMCID: PMC10653892 DOI: 10.1128/mbio.01344-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Multiple cellular HIV reservoirs in diverse anatomical sites can undergo clonal expansion and persist for years despite suppressive antiretroviral therapy, posing a major barrier toward an HIV cure. Commonly adopted assays to assess HIV reservoir size mainly consist of PCR-based measures of cell-associated total proviral DNA, intact proviruses and transcriptionally competent provirus (viral RNA), flow cytometry and microscopy-based methods to measure translationally competent provirus (viral protein), and quantitative viral outgrowth assay, the gold standard to measure replication-competent provirus; yet no assay alone can provide a comprehensive view of the total HIV reservoir or its dynamics. Furthermore, the detection of extant provirus by these measures does not preclude defects affecting replication competence. An accurate measure of the latent reservoir is essential for evaluating the efficacy of HIV cure strategies. Recent approaches have been developed, which generate proviral sequence data to create a more detailed profile of the latent reservoir. These sequencing approaches are valuable tools to understand the complex multicellular processes in a diverse range of tissues and cell types and have provided insights into the mechanisms of HIV establishment and persistence. These advancements over previous sequencing methods have allowed multiplexing and new assays have emerged, which can document transcriptional activity, chromosome accessibility, and in-depth cellular phenotypes harboring latent HIV, enabling the characterization of rare infected cells across restrictive sites such as the brain. In this manuscript, we provide a review of HIV sequencing-based assays adopted to address challenges in quantifying and characterizing the latent HIV reservoir.
Collapse
Affiliation(s)
- Preeti Moar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Andrew Atkins
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
16
|
Wu D, Si M, Xue HY, Tran NT, Khalili K, Kaminski R, Wong HL. Lipid nanocarrier targeting activated macrophages for antiretroviral therapy of HIV reservoir. Nanomedicine (Lond) 2023; 18:1343-1360. [PMID: 37815117 PMCID: PMC10652294 DOI: 10.2217/nnm-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Aim: To develop lipid nano-antiretrovirals (LNAs) for the treatment of HIV-infected macrophages. Materials & methods: LNAs were prepared with docosahexaenoic acid to facilitate brain penetration and surface-decorated with folate considering that infected macrophages often overexpress folate receptors. Results: Folate-decorated LNAs loading rilpivirine (RPV) were efficiently taken up by folate receptor-expressing cell types including activated macrophages. The intracellular Cmax of the RPV-LNAs in activated macrophages was 2.54-fold and the area under the curve was 3.4-fold versus free RPV, translating to comparable or higher (p < 0.01; RPV ≤6.5 ng/ml) activities against HIV infectivity and superior protection (p < 0.05) against HIV cytotoxicity. LNAs were also effective in monocyte-derived macrophages. Conclusion: These findings demonstrate the potential of LNAs for the treatment of infected macrophages, which are key players in HIV reservoirs.
Collapse
Affiliation(s)
- Di Wu
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Mengjie Si
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ngoc T Tran
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rafal Kaminski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
17
|
Ramirez PW, Pantoja C, Beliakova-Bethell N. An Evaluation on the Role of Non-Coding RNA in HIV Transcription and Latency: A Review. HIV AIDS (Auckl) 2023; 15:115-134. [PMID: 36942082 PMCID: PMC10024501 DOI: 10.2147/hiv.s383347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The existence of latent cellular reservoirs is recognized as the major barrier to an HIV cure. Reactivating and eliminating "shock and kill" or permanently silencing "block and lock" the latent HIV reservoir, as well as gene editing, remain promising approaches, but so far have proven to be only partially successful. Moreover, using latency reversing agents or "block and lock" drugs pose additional considerations, including the ability to cause cellular toxicity, a potential lack of specificity for HIV, or low potency when each agent is used alone. RNA molecules, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are becoming increasingly recognized as important regulators of gene expression. RNA-based approaches for combatting HIV latency represent a promising strategy since both miRNAs and lncRNAs are more cell-type and tissue specific than protein coding genes. Thus, a higher specificity of targeting the latent HIV reservoir with less overall cellular toxicity can likely be achieved. In this review, we summarize current knowledge about HIV gene expression regulation by miRNAs and lncRNAs encoded in the human genome, as well as regulatory molecules encoded in the HIV genome. We discuss both the transcriptional and post-transcriptional regulation of HIV gene expression to align with the current definition of latency, and describe RNA molecules that either promote HIV latency or have anti-latency properties. Finally, we provide perspectives on using each class of RNAs as potential targets for combatting HIV latency, and describe the complexity of the interactions between different RNA molecules, their protein targets, and HIV.
Collapse
Affiliation(s)
- Peter W Ramirez
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Christina Pantoja
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
18
|
Vargas B, Boslett J, Yates N, Sluis-Cremer N. Mechanism by Which PF-3758309, a Pan Isoform Inhibitor of p21-Activated Kinases, Blocks Reactivation of HIV-1 Latency. Biomolecules 2023; 13:100. [PMID: 36671485 PMCID: PMC9855626 DOI: 10.3390/biom13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The "block and lock" strategy is one approach that might elicit a sterilizing cure for HIV-1 infection. The "block" refers to a compound's ability to inhibit latent HIV-1 proviral transcription, while the "lock" refers to its capacity to induce permanent proviral silencing. We previously identified PF-3758309, a pan-isoform inhibitor of p21-activated kinases (PAKs), as a potent inhibitor of HIV-1 latency reversal. The goal of this study was to define the mechanism(s) involved. We found that both 24ST1NLESG cells (a cell line model of HIV-1 latency) and purified CD4+ naïve and central memory T cells express high levels of PAK2 and lower levels of PAK1 and PAK4. Knockdown of PAK1 or PAK2, but not PAK4, in 24ST1NLESG cells resulted in a modest, but statistically significant, decrease in the magnitude of HIV-1 latency reversal. Overexpression of PAK1 significantly increased the magnitude of latency reversal. A phospho-protein array analysis revealed that PF-3758309 down-regulates the NF-κB signaling pathway, which provides the most likely mechanism by which PF-3758309 inhibits latency reversal. Finally, we used cellular thermal shift assays combined with liquid chromatography and mass spectrometry to ascertain whether PF-3758309 off-target binding contributed to its activity. In 24ST1NLESG cells and in peripheral blood mononuclear cells, PF-3758309 bound to mitogen-activated protein kinase 1 and protein kinase A; however, knockdown of either of these kinases did not impact HIV-1 latency reversal. Collectively, our study suggests that PAK1 and PAK2 play a key role in the maintenance of HIV-1 latency.
Collapse
Affiliation(s)
- Benni Vargas
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James Boslett
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nathan Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Chemistry, University of Pittsburgh School of Medicine; Pittsburgh, PA 15260, USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|