1
|
Norambuena JA, Poblete-Grant P, Beltrán JF, De los Ríos-Escalante P, Aranzaez-Ríos C, Farías JG. Proteomic Profile of Daphnia pulex in Response to Heavy Metal Pollution in Lakes of Northern Patagonia. Int J Mol Sci 2025; 26:417. [PMID: 39796269 PMCID: PMC11720286 DOI: 10.3390/ijms26010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on Daphnia pulex by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic). Results showed substantial differences in protein expression, with 17 proteins upregulated and 181 downregulated in Llanquihue, linked to elevated levels of copper, manganese, dissolved solids, phosphate, and nitrogen. These stressors caused metabolic damage and environmental stress in D. pulex. Our findings highlight the importance of monitoring pollution's effects on Northern Patagonian ecosystems, especially on keystone species like D. pulex, essential for ecosystem stability. This research provides fresh molecular-ecological insights into pollution's impacts, a perspective rarely addressed in this region. Understanding these effects is critical for conserving natural resources and offers pathways to study adaptive mechanisms in keystone species facing pollution. This approach also informs strategies for ecosystem management and restoration, addressing both immediate and long-term challenges in Northern Patagonian aquatic environments.
Collapse
Affiliation(s)
- Juan-Alejandro Norambuena
- Ph.D. Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Manuel Montt, 56, P.O. Box 15-D, Temuco 4813302, Chile;
| | - Patricia Poblete-Grant
- Centre of Plants, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
| | - Patricio De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Manuel Montt, 56, P.O. Box 15-D, Temuco 4813302, Chile;
- Nucleus of Environmental Studies, UC Temuco, Manuel Montt, 56, P.O. Box 15-D, Temuco 4813302, Chile
| | - Cristian Aranzaez-Ríos
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
| |
Collapse
|
2
|
Zhou L, Lian C, He Y, Chi X, Chen H, Zhong Z, Wang M, Cao L, Wang H, Zhang H, Li C. Toxicology assessment of deep-sea mining impacts on Gigantidas platifrons: A comparative in situ and laboratory metal exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173184. [PMID: 38750754 DOI: 10.1016/j.scitotenv.2024.173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 μg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yameng He
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
3
|
de Albuquerque VJ, Folador A, Müller C, Pompermaier A, Hartmann M, Hartmann PA. How do different concentrations of aluminum and zinc affect the survival, body size, morphology and immune system of Physalaemus cuvieri (Fitzinger, 1826) tadpole? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:342-356. [PMID: 38310537 DOI: 10.1080/15287394.2024.2311828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.
Collapse
Affiliation(s)
| | - Alexandre Folador
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Caroline Müller
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Aline Pompermaier
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Marília Hartmann
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| | - Paulo Afonso Hartmann
- Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil
| |
Collapse
|
4
|
Bultelle F, Le Saux A, David E, Tanguy A, Devin S, Olivier S, Poret A, Chan P, Louis F, Delahaut L, Pain-Devin S, Péden R, Vaudry D, Le Foll F, Rocher B. Cadmium Highlights Common and Specific Responses of Two Freshwater Sentinel Species, Dreissena polymorpha and Dreissena rostriformis bugensis. Proteomes 2024; 12:10. [PMID: 38651369 PMCID: PMC11036304 DOI: 10.3390/proteomes12020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel's use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L-1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM.
Collapse
Affiliation(s)
- Florence Bultelle
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Aimie Le Saux
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Elise David
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | - Arnaud Tanguy
- UMR 7144, CNRS, Station Biologique de Roscoff, Sorbonne University, 29680 Roscoff, France;
| | - Simon Devin
- LIEC, CNRS, UFR SCIFA, Lorraine University, 57000 Metz, France; (S.D.)
| | - Stéphanie Olivier
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Agnès Poret
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Philippe Chan
- INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
- PISSARO IRIB, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
| | - Fanny Louis
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
- LIEC, CNRS, UFR SCIFA, Lorraine University, 57000 Metz, France; (S.D.)
| | - Laurence Delahaut
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | | | - Romain Péden
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | - David Vaudry
- INSERM U982 DC2N, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
| | - Frank Le Foll
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Béatrice Rocher
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| |
Collapse
|
5
|
Hossain MA, Chowdhury T, Chowdhury G, Schneider P, Hussain M, Das B, Iqbal MM. Impact of Pb Toxicity on the Freshwater Pearl Mussel, Lamellidens marginalis: Growth Metrics, Hemocyto-Immunology, and Histological Alterations in Gill, Kidney, and Muscle Tissue. TOXICS 2023; 11:475. [PMID: 37368575 DOI: 10.3390/toxics11060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Pb is one of the most extensively used harmful heavy metals in Bangladesh, and its occurrence in waters affects aquatic organisms significantly. The tropical pearl mussel, Lamellidens marginalis, was exposed to different concentrations (T1 21.93 mgL-1, T2 43.86 mgL-1, and T3 87.72 mgL-1) of Pb(NO3)2 and was evaluated against a control C 0 mgL-1 of Pb(NO3)2, followed by a 96 h acute toxicity test. The LC50 value was recorded as 219.32 mgL-1. The physicochemical parameters were documented regularly for each treatment unit. The values of % SGR, shell weight, soft tissue wet weight, and weight gain remained statistically higher for the control group in comparison with the treatment. No mortality was noted for control units, while a gradually decreased survival rate was recorded for the different treatment groups. Fulton's condition factor was recorded as highest in the control and lowest in the T3 unit, while the condition indices did not vary between the control and treatment groups. The hemocyte was accounted as maximum in the control and T1, while minimum in T2 and T3. The serum lysosomal parameters also followed a similar pattern, and a significantly low level of lysosomal membrane stability, and serum lysosome activity was noted for T3 and T2 units in comparison to the control group. The histology of the gill, kidney, and muscle was well structured in the control group, while distinct pathologies were observed in the gill, kidney, and muscle tissue of different treatment groups. The quantitative comparison revealed that the intensity of pathological alteration increased as the dosage of Pb increased. The current study, therefore, indicated that intrusion of Pb(NO3)2 in the living medium significantly alters growth performance and hemocyte counts, and chronic toxicity induces histomorphological abnormalities in vital organs.
Collapse
Affiliation(s)
- Mohammad Amzad Hossain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Toma Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Gourab Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Petra Schneider
- Department for Water, Environment, Civil Engineering and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Bipresh Das
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
6
|
Kukavica B, Davidović-Plavšić B, Savić A, Dmitrović D, Šukalo G, Đurić-Savić S, Vučić G. Oxidative Stress and Neurotoxicity of Cadmium and Zinc on Artemia franciscana. Biol Trace Elem Res 2023; 201:2636-2649. [PMID: 35831694 DOI: 10.1007/s12011-022-03352-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Despite not being redox-active metals, Cd and Zn can disrupt cellular redox homeostasis by acting pro-oxidatively. The aim of this study was to examine the effects of exposure to Zn (14 and 72 mg/L) and Cd (7.7 and 77 mg/L) for 24 and 48 h on oxidative and antioxidative parameters and the activity of glutathione-S-transferase in Artemia franciscana tissue. In addition, the neurotoxicity of the metals was examined by determining the activity of acetylcholinesterase (AChE). In A. franciscana tissue, Cd (0.0026 ± 0.0001 mg/L) was detected only after 48 h of exposure to 77 mg/L Cd. After 24 h, the 14- and 72-mg/L Zn treatments resulted in significant increases in the Zn concentration (0.54 ± 0.026 mg/L (p < 0.01) and 0.68 ± 0.035 (p < 0.0001), respectively) in A. franciscana tissue compared with the control level, and significant increases were also detected after 48 h (0.59 ± 0.02 (p < 0.0001) and 0.79 ± 0.015 (p < 0.0001), respectively). The malondialdehyde (MDA) concentration in the metal-treated samples was increased after 24 h of exposure, whereas after 48 h, an increase in the MDA concentration was detected only with 7.7. mg/L Cd. A significant increase in the H2O2 concentration after 24 h was measured only after treatment with 72 mg/L Zn. The treatment with 7.7 mg/L Cd for 24 h induced a significant increase in the AChE activity, whereas 48 h of treatment with 77 mg/L Cd and 14 mg/L Zn significantly inhibited AChE. The results indicate that lipid peroxidation resulting from metal toxicity may constitute the basis of neurotoxicity.
Collapse
Affiliation(s)
- Biljana Kukavica
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.
| | - Biljana Davidović-Plavšić
- Departmant of Chemistry, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ana Savić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Dejan Dmitrović
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Goran Šukalo
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Goran Vučić
- Faculty of Technology, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
7
|
Ekelund Ugge GMO, Sahlin U, Jonsson A, Berglund O. Transcriptional Responses as Biomarkers of General Toxicity: A Systematic Review and Meta-analysis on Metal-Exposed Bivalves. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:628-641. [PMID: 36200657 DOI: 10.1002/etc.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Through a systematic review and a series of meta-analyses, we evaluated the general responsiveness of putative transcriptional biomarkers of general toxicity and chemical stress. We targeted metal exposures performed on bivalves under controlled laboratory conditions and selected six transcripts associated with general toxicity for evaluation: catalase, glutathione-S-transferase, heat shock proteins 70 and 90, metallothionein, and superoxide dismutase. Transcriptional responses (n = 396) were extracted from published scientific articles (k = 22) and converted to log response ratios (lnRRs). By estimating toxic units, we normalized different metal exposures to a common scale, as a proxy of concentration. Using Bayesian hierarchical random effect models, we then tested the effects of metal exposure on lnRR, both for metal exposure in general and in meta-regressions using toxic unit and exposure time as independent variables. Corresponding analyses were also repeated with transcript and tissue as additional moderators. Observed patterns were similar for general and for transcript- and tissue-specific responses. The expected overall response to arbitrary metal exposure was an lnRR of 0.50, corresponding to a 65% increase relative to a nonexposed control. However, when accounting for publication bias, the estimated "true" response showed no such effect. Furthermore, expected response magnitude increased slightly with exposure time, but there was little support for general monotonic concentration dependence with regard to toxic unit. Altogether, the present study reveals potential limitations that need consideration prior to applying the selected transcripts as biomarkers in environmental risk assessment. Environ Toxicol Chem 2023;42:628-641. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gustaf M O Ekelund Ugge
- Department of Biology, Lund University, Lund, Sweden
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Ullrika Sahlin
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Adorno HA, Souza IDC, Monferrán MV, Wunderlin DA, Fernandes MN, Monteiro DA. A multi-biomarker approach to assess the sublethal effects of settleable atmospheric particulate matter from an industrial area on Nile tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159168. [PMID: 36195137 DOI: 10.1016/j.scitotenv.2022.159168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Iron and steel industries discharge a large amount of atmospheric particulate matter (PM) containing metals and metallic nanoparticles (NPs) that contaminate not only the air, but also settle into the aquatic environments. However, the effects of settleable atmospheric particulate matter (SePM) on aquatic fauna are still poorly understood. This study aimed to evaluate the sublethal effects of a short-term exposure to a realistic concentration of SePM on Nile tilapia (Oreochromis niloticus) using a multi-biomarker approach: relative ventricular mass (RVM) and heart function, blood oxidative stress, stress indicators, hemoglobin concentration, metallic NPs internalization, and metal bioaccumulation. Exposed fish exhibited reduced hemoglobin content and elevated plasma cortisol and glucose levels, reflecting stressed states. Furthermore, SePM caused blood oxidative stress increasing lipid and protein oxidation, decreasing glutathione levels, and inhibiting superoxide and glutathione reductase activities. SePM exposure also increased RVM and improved cardiac performance, increasing myocardial contractile force and rates of contraction and relaxation. In the heart tissue there was a significant accumulation of Fe > Zn > > Cr > Cu > Rb > Ni > V > Mn > Se > Mo > As. On the other hand, in the erythrocytes there was significant accumulation of Sn > Zn > > Cr > Ti > Mn = Ni > Nb > As > Bi. The highest bioaccumulation factors were found for Cr, Zn and Ni in both tissues. NPs (Ti, Sn, Al, Fe, Cu, Si, Zn) were also detected in ventricular myocardium of fish exposed and nanocrystallographic analysis revealed a predominance of anatase phase of TiO2-NP, which is regarded to be more cytotoxic. The association between blood oxidative stress and energy expenditure to sustain increased cardiac pumping capacity under stress condition suggests that SePM has negative impacts on fish physiological performance, threatening their survival, growth rate and/or population establishment.
Collapse
Affiliation(s)
- Henrique Aio Adorno
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
9
|
Telahigue K, Antit M, Rabeh I, Chouba L, Kheriji S, Cafsi ME, Hajji T, Mhadhbi L. Heavy Metal Bioaccumulation and Oxidative Stress Profile in Brachidontes pharaonis (Bivalvia: Mytilidae) from the Tunisian Coast: Insight into Its Relevance as Bioindicator of Marine Pollution. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:831-838. [PMID: 35951059 DOI: 10.1007/s00128-022-03593-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
This study aims to verify the relevance of Brachidontes pharaonis to assess the ecotoxicological status of polluted sites. For this, the levels of some heavy metals (i.e. Zn, Cu, Pb, and Cd) and a battery of biomarkers including metallothionein (MT), malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were assessed in mussels collected from the harbor of Rades (North), and the harbor of Zarzis (South). Moreover, abiotic parameters including temperature, salinity, pH, and dissolved oxygen were assessed. Results from the ICP-OES showed that the southern population exhibited a higher metal pollution index with significantly higher Zn, Cu, and Pb concentrations. Moreover, the specimens from Zarzis displayed significantly higher levels of MDA, MT, GSH, GPx, SOD, and CAT reflecting higher levels of oxidative and chemical stress. These results emphasize the potential utility of B. pharaonis for the monitoring of heavily impacted sites.
Collapse
Affiliation(s)
- Khaoula Telahigue
- Laboratory of Ecology, Biology and Physiology of Aquatic organisms, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Mouna Antit
- Laboratory of Ecology, Biology and Physiology of Aquatic organisms, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Imen Rabeh
- Laboratory of Ecology, Biology and Physiology of Aquatic organisms, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Lassaad Chouba
- National Institute of Marine Science and Technology (INSTM), La Goulette Center, 2060 Tunis. Univ., 2025, Carthage, Tunisia
| | - Souhaila Kheriji
- Laboratory of Ecology, Biology and Physiology of Aquatic organisms, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - M'hamed El Cafsi
- Laboratory of Ecology, Biology and Physiology of Aquatic organisms, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Tarek Hajji
- BVBGR-LR11ES31, Higher Institute of Biotechnology - Sidi Thabet, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| | - Lazhar Mhadhbi
- Laboratory of Ecology, Biology and Physiology of Aquatic organisms, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
10
|
Zapata Vívenes E, Sánchez G, Nusetti O, Marcano LDV. Modulation of innate immune responses in the flame scallop Ctenoides scaber (Born, 1778) caused by exposure to used automobile crankcase oils. FISH & SHELLFISH IMMUNOLOGY 2022; 130:342-349. [PMID: 36122641 DOI: 10.1016/j.fsi.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The used automobile crankcase oils are potential sources of contaminant elements for the coastal-marine ecosystems, affecting mainly the immunological system of organisms that feed by filtration, e. g. scallops. This study examined the effects of a water-soluble fraction of used automobile crankcase oils (WSF-UACO) on innate cellular- and humoral immune responses of the flame scallop Ctenoides scaber. The scallops were exposed to ascending concentrations of 0, 0.001, 0.01, and 0.1 of WSF-UACO under a static system of aquaria during 7 and 13 d. The viability, haemocyte total count (HTC), lysosomal membrane destabilization (LMD), phagocytosis, and protein concentration in hemolymph samples withdrawn taken from the blood sinus as well as lysozyme activity of the digestive gland were measured as immune endpoints. A decrease in cellular immune competence in scallops exposed to WSF-UACO was observed, with significant impairment of viability, HTC, and phagocytosis. LMD index increased about exposure concentrations, and plasma protein concentrations augmented to 0.01 and 0.1% during 13 d. Lysozyme activity increased in scallops exposed to WSF-UVCO during 7 d, to level off in the chronic period. Lysozyme activity and enhanced plasma proteins could act as compensatory responses when cell parameters tend to fall, helping to the regulation of microbial microflora and possible invasion of pathogenic microbes as well as defense against xenobiotics. The results demonstrate that the immunological responses of C. scaber are highly sensitive to the complex chemical mixture of contaminants, and it could be used for evaluating biological risks of hazardous xenobiotics in tropical marine environments. Republic of Ecuador.
Collapse
Affiliation(s)
- Edgar Zapata Vívenes
- Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador.
| | - Gabriela Sánchez
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Osmar Nusetti
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Leida Del Valle Marcano
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| |
Collapse
|
11
|
Ekelund Ugge GMO, Jonsson A, Walstad A, Berglund O. Evaluation of transcriptional biomarkers using a high-resolution regression approach: Concentration-dependence of selected transcripts in copper-exposed freshwater mussels (Anodonta anatina). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103795. [PMID: 34971800 DOI: 10.1016/j.etap.2021.103795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
We tested concentration-dependence of selected gene transcripts (cat, gst, hsp70, hsp90, mt and sod) for evaluation as biomarkers of chemical stress. Contrary to the common approach of factorial designs and few exposure concentrations, we used regression across a high-resolution concentration series. Specifically, freshwater mussels (Anodonta anatina) were acutely (96 h) exposed to Cu (13 nominal concentrations, measuring 0.13-1 600 µg/L), and transcripts were measured by RT-qPCR. In digestive glands, cat, hsp90 and mt decreased with water Cu (p < 0.05), but response magnitudes saturated at < 2-fold decreases. In gills, gst, hsp70, hsp90 and mt increased with water Cu (p < 0.05). While hsp70, hsp90 and mt exceeded 2-fold increases within the exposure range, high Cu concentrations were required (38-160 µg/L). Although gill responses were generally more robust compared to digestive glands, overall small response magnitudes and moderate sensitivity may set limit for potential application as general biomarkers of chemical stress.
Collapse
Affiliation(s)
- Gustaf M O Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden; School of Bioscience, University of Skövde, Högskolevägen 3, SE-541 46 Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, SE-541 46 Skövde, Sweden
| | - Anders Walstad
- ALS Scandinavia Toxicon AB, Rosenhällsvägen 29, SE-261 92 Härslöv, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
12
|
Ekelund Ugge GM, Jonsson A, Berglund O. Molecular biomarker responses in the freshwater mussel Anodonta anatina exposed to an industrial wastewater effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2158-2170. [PMID: 34363176 PMCID: PMC8732836 DOI: 10.1007/s11356-021-15633-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 05/27/2023]
Abstract
Using a selection of molecular biomarkers, we evaluated responses in freshwater mussels (Anodonta anatina) exposed to effluent from an industrial wastewater treatment facility. The aims of this work were to (1) assess biomarkers of general toxicity under sublethal exposure to an anthropogenic mixture of chemicals, represented by an arbitrary effluent, and (2) evaluate the potential of A. anatina as a bioindicator of pollution. Adult mussels (n = in total 32; 24 males and 8 females) were exposed (96 h) in the laboratory to a fixed dilution of effluent or to a control treatment of standardized freshwater. Metal concentrations were in general higher in the effluent, by an order of magnitude or more, compared to the control. Toxic unit estimates were used as proxies of chemical stress, and Cu, Ni, and Zn were identified as potential major contributors (Cu> Ni > Zn). Six transcriptional (cat, gst, hsp70, hsp90, mt, sod) and two biochemical (AChE, GST) biomarkers were analyzed in two tissues, gills, and digestive glands. Out of the 16 responses (eight biomarkers × two tissues), 14 effect sizes were small (within ± 28 % of control) and differences non-significant (p > 0.05). Results did however show that (1) AChE activity increased by 40% in gills of exposed mussels compared to control, (2) hsp90 expression was 100% higher in exposed female gills compared to control, and (3) three marker signals (AChE in both tissues, and hsp70 in gills) differed between sexes, independent of treatment. Results highlight a need for further investigation of molecular biomarker variability and robustness in A. anatina.
Collapse
Affiliation(s)
- Gustaf Mo Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 46, Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 46, Skövde, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| |
Collapse
|
13
|
Untargeted Metabolomics Reveals a Complex Impact on Different Metabolic Pathways in Scallop Mimachlamys varia (Linnaeus, 1758) after Short-Term Exposure to Copper at Environmental Dose. Metabolites 2021; 11:metabo11120862. [PMID: 34940620 PMCID: PMC8703567 DOI: 10.3390/metabo11120862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Ports are a good example of how coastal environments, gathering a set of diverse ecosystems, are subjected to pollution factors coming from human activities both on land and at sea. Among them, trace element as copper represents a major factor. Abundant in port ecosystem, copper is transported by runoff water and results from diverse port features (corrosion of structures, fuel, anti-fouling products, etc.). The variegated scallop Mimachlamys varia is common in the Atlantic port areas and is likely to be directly influenced by copper pollution, due to its sessile and filtering lifestyle. Thus, the aim of the present study is to investigate the disruption of the variegated scallop metabolism, under a short exposure (48 h) to a copper concentration frequently encountered in the waters of the largest marina in Europe (82 μg/L). For this, we chose a non-targeted metabolomic approach using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS), offering a high level of sensitivity and allowing the study without a priori of the entire metabolome. We described 28 metabolites clearly modulated by copper. They reflected the action of copper on several biological functions such as osmoregulation, oxidative stress, reproduction and energy metabolism.
Collapse
|
14
|
Hani YMI, Prud'Homme SM, Nuzillard JM, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116048. [PMID: 33190982 DOI: 10.1016/j.envpol.2020.116048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Sophie Martine Prud'Homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | | | - Katherine Nott
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Sébastien Ronkart
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| |
Collapse
|
15
|
Abstract
Chemical contamination of the aquatic environment, as a consequence of anthropogenic activities, remains of major worldwide concern [...]
Collapse
|