1
|
Serumula MD, Pepeta BN, Moyo M, Suinyuy TN, Nsahlai IV. Effect of Vachellia tortilis Leaf Meal and Sunflower Oil Inclusion in Supplementary Diets of Lambs on In Vitro Short-Chain Fatty Acid and Gas Production and In Vivo Growth Performance. Animals (Basel) 2025; 15:863. [PMID: 40150392 PMCID: PMC11939537 DOI: 10.3390/ani15060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
This study examined the effect of dietary Vachellia tortilis leaf meal and sunflower oil inclusion in supplementary diets on in vitro short-chain fatty acid (SCFA) and gas production and the in vivo growth performance of lambs. Four concentrate dietary treatments comprising control (CL), Vachellia tortilis leaf meal (VT), sunflower oil (SFO), and Vachellia tortilis leaf meal sunflower oil (VSFO) were formulated. Eight Merino lambs were blocked into two live weight blocks where animals within each block were randomly assigned to dietary treatments, making two animals per treatment. Lambs were offered a concentrate diet of 480 g/day per head, with urea-treated hay fed as a basal diet. Dietary effects were evaluated for in vitro short-chain fatty acid and gas production and 28-day growth performance of lambs over three study periods. The inclusion of VT and SFO showed no statistically significant effect on total SCFAs, acetate to propionate (A:P) ratio, methane (CH4), and carbon dioxide (CO2) production (p > 0.05), which might be attributable to low experimental units. The hourly A:P ratio and CH4 yield were the highest (p < 0.05) at 16 h of incubation. The inclusion of VT showed no statistically significant effect on growth performance and gas production due to the small sample size. Therefore, VT can be explored as a supplementary protein source in lamb diets given the impression of not showing any causative adverse effects on growth performance and in vitro gas production, although further research with larger sample sizes is needed to confirm these findings.
Collapse
Affiliation(s)
- Mahlogonolo Daniel Serumula
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa; (M.D.S.); (B.N.P.); (M.M.)
| | - Bulelani Nangamso Pepeta
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa; (M.D.S.); (B.N.P.); (M.M.)
- Faculty of Natural and Agricultural Sciences, Department of Animal Sciences, University of Pretoria, Private Bag X20, Pretoria 0002, South Africa
| | - Mehluli Moyo
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa; (M.D.S.); (B.N.P.); (M.M.)
| | - Terence Nkwanwir Suinyuy
- School of Biology and Environmental Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Ignatius Verla Nsahlai
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa; (M.D.S.); (B.N.P.); (M.M.)
| |
Collapse
|
2
|
Sun J, Wang Z, Yan X, Zhao Y, Tan L, Miao X, Zhao R, Huo W, Chen L, Li Q, Liu Q, Wang C, Guo G. Indole-3-acetic acid enhances ruminal microbiota for aflatoxin B1 removal in vitro fermentation. Front Vet Sci 2024; 11:1450241. [PMID: 39758608 PMCID: PMC11695288 DOI: 10.3389/fvets.2024.1450241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Aflatoxin B1 (AFB1) has been recognized as a serious health risk for ruminant animals. From a molecular perspective, indole-3-acid (IAA) possesses the potential to enhance the removal of AFB1 by rumen microbiota. Therefore, this study aims to investigate the impact of different concentrations of IAA on the removal of AFB1 by rumen microbiota using an in vitro technique. Experiment 1: interaction between AFB1 and rumen fermentation. Experiment 2: The study used a randomized design with five IAA levels (0, 15, 150, 1,500, and 7,500 mg/kg) to examine the effect of IAA on AFB1 removal and its impact on rumen fermentation. The results showed: (1) the content of AFB1 gradually decreased, removal rate of up to 75.73% after 24 h. AFB1 exposure altered the rumen fermentation pattern, with significantly decreased in the acetic acid/propionic acid ratio (p < 0.05). It significantly reduced the relative proportions of R. amylophilus, P. ruminicola, and F. succinogenes (p < 0.05). (2) As the content of IAA increased, AFB1 exposure decreased. A total of 15 and 150 mg/kg IAA significantly mitigated the negative impact of AFB1 on key rumen bacteria (R. amylophilus, P. ruminicola and F. succinogenes), increased acetate levels and acetate/propionate ratio (p < 0.05). However, 1,500 mg/kg IAA lowered levels of propionate and isovalerate, adversely affected enzyme activities (pectinase, xylan and Carboxymethyl-cellulase) and relative proportions of microbiota (R. flavefaciens, P. ruminicola and F. succinogenes). In conclusion, IAA significantly removed AFB1, and in the range of 150 mg/kg of IAA reduced the negative effects of AFB1 on in vitro fermentation characteristics and fermentation end-products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Tan J, Wang Y, Niu H, Li L, Zhao H, Fang L, Jiang L, Zhao Y. Metagenomic insights into the mechanistic differences of plant polyphenols and nitrocompounds in reducing methane emissions using the rumen simulation technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176135. [PMID: 39260513 DOI: 10.1016/j.scitotenv.2024.176135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Methane (CH4) emissions from ruminants contribute significantly to greenhouse gas levels and also result in considerable feed energy losses. Plant polyphenols and nitrocompounds are two typical types of methane inhibitors. The study investigates the mechanistic differences between 2-nitroethanol (NE) and proanthocyanidins (PAC) in reducing methane emissions from ruminant livestock using the rumen simulation technique (RUSITEC) combined with metagenomic analyses. The experiment was performed as a complete randomized block design with 3 runs. Run was used as a blocking factor. The treatments included a control (CON) with no additive, NE at 0.5 g/kg dry matter (DM), and PAC at 20 g/kg DM, all incubated in vitro for 24 h (h) with eight replicates per treatment. The results showed that NE significantly reduced CH4 production by 94.9 % (P < 0.01) and total volatile fatty acid (TVFA) concentration by 11.1 % (P < 0.05) compared to the control. NE also decreased the acetate-to-propionate ratio (A/P) from 1.93 to 1.60 (P < 0.01), indicating a shift towards more efficient fermentation. In contrast, PAC reduced methane production by 11.7 % (P < 0.05) and decreased the A/P (P < 0.05) while maintaining microbial diversity and fermentation stability, with no significant impact on TVFA concentration (P > 0.05). Metagenomic analysis revealed that NE markedly suppressed the abundance of key genera involved in carbohydrate metabolism, including Prevotella and Bacteroides, leading to reduced acetate and butyrate pathways. NE also selectively inhibited methanogenic archaea, particularly Methanobrevibacter spp., which are integral to the hydrogenotrophic pathway (P < 0.01). On the other hand, PAC showed selective inhibition of Methanosphaera spp., targeting the methylotrophic pathway (P < 0.01). These findings provide valuable insights into the distinct microbial and metabolic pathways modulated by NE and PAC, offering potential strategies for developing effective dietary interventions to mitigate methane emissions in ruminant livestock.
Collapse
Affiliation(s)
- Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Haoyu Niu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Beijing Beinong Enterprise Management Co., Ltd, Beijing 102206, China.
| |
Collapse
|
4
|
Wang X, Liu H, Wang Y, Lin Y, Ni K, Yang F. Effects of lactic acid bacteria and cellulase additives on the fermentation quality, antioxidant activity, and metabolic profile of oat silage. BIORESOUR BIOPROCESS 2024; 11:92. [PMID: 39349688 PMCID: PMC11442794 DOI: 10.1186/s40643-024-00806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Oats (Avena sativa L.) are rich in nutrients and bioactive compounds, serving as a roughage source for ruminants. This study investigated the impact of lactic acid bacteria (LAB), cellulase (M), and their combinations (LM) on the fermentation quality and metabolic compounds of oat silage. Results demonstrated that all additive treatments significantly increased lactic acid content compared to the control group (P < 0.05), with the lactic acid bacteria treatment group exhibiting the lowest pH value (P < 0.05). Analysis of antioxidant activity and metabolites in oat silage over 60 days revealed 374 differential metabolites with 113 up-regulated and 261 down-regulated, and all treatment groups showing higher antioxidant activity than raw oat materials (P < 0.05). Although no significant differences in antioxidant activity were observed among the various treatment groups in this experiment, notable changes in metabolic pathways were identified. Furthermore, two metabolites (carboxylic acids and derivatives and benzene and substituted derivatives) were identified through non-targeted metabolomics technology, both of which are strongly associated with the antioxidant activity of oat silage. This finding provides a theoretical basis for the efficient use of oat silage in animal husbandry.
Collapse
Affiliation(s)
- Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Han Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Cuchillo-Hilario M, Fournier-Ramírez MI, Díaz Martínez M, Montaño Benavides S, Calvo-Carrillo MC, Carrillo Domínguez S, Carranco-Jáuregui ME, Hernández-Rodríguez E, Mora-Pérez P, Cruz-Martínez YR, Delgadillo-Puga C. Animal Food Products to Support Human Nutrition and to Boost Human Health: The Potential of Feedstuffs Resources and Their Metabolites as Health-Promoters. Metabolites 2024; 14:496. [PMID: 39330503 PMCID: PMC11434278 DOI: 10.3390/metabo14090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Recent attention has been given to animal feeding and its impact on human nutrition. Animal feeding is essential for meeting human dietary needs, making it a subject of significant interest and investigation. This review seeks to outline the current understanding of this disciplinary area, with a focus on key research areas and their potential implications. The initial part of the paper discusses the importance of animal feed resources and recognizes their crucial role in guaranteeing sufficient nutrition for both humans and animals. Furthermore, we analyzed the categorization of animal feeds based on the guidelines established by the National Research Council. This approach offers a valuable structure for comprehending and classifying diverse types of animal feed. Through an examination of this classification, we gain an understanding of the composition and nutritional content of various feedstuffs. We discuss the major categories of metabolites found in animal feed and their impact on animal nutrition, as well as their potential health advantages for humans. Flavonoids, polyphenols, tannins, terpenoids, vitamins, antioxidants, alkaloids, and essential oils are the primary focus of the examination. Moreover, we analyzed their possible transference into animal products, and later we observed their occurrence in foods from animal sources. Finally, we discuss their potential to promote human health. This review offers an understanding of the connections among the major metabolites found in feedstuffs, their occurrence in animal products, and their possible impact on the health of both animals and humans.
Collapse
Affiliation(s)
- Mario Cuchillo-Hilario
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Mareli-Itzel Fournier-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Margarita Díaz Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Sara Montaño Benavides
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Concepción Calvo-Carrillo
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Silvia Carrillo Domínguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Elena Carranco-Jáuregui
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Elizabeth Hernández-Rodríguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Patricia Mora-Pérez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Yesica R Cruz-Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| |
Collapse
|
6
|
Wanapat M, Dagaew G, Sommai S, Matra M, Suriyapha C, Prachumchai R, Muslykhah U, Phupaboon S. The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review. J Anim Sci Biotechnol 2024; 15:58. [PMID: 38689368 PMCID: PMC11062008 DOI: 10.1186/s40104-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, University of Technology Thanyaburi, Rajamangala Pathum Thani, 12130, Thailand
| | - Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Duarte RDC, Iannetta PPM, Gomes AM, Vasconcelos MW. More than a meat- or synthetic nitrogen fertiliser-substitute: a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes. FRONTIERS IN PLANT SCIENCE 2024; 15:1337653. [PMID: 38450400 PMCID: PMC10915056 DOI: 10.3389/fpls.2024.1337653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.
Collapse
Affiliation(s)
- Rafael D. C. Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Pietro P. M. Iannetta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Ecological Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ana M. Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
8
|
Devi S, Chauhan S, Mannan A, Singh TG. Targeting cardiovascular risk factors with eugenol: an anti-inflammatory perspective. Inflammopharmacology 2024; 32:307-317. [PMID: 38085446 DOI: 10.1007/s10787-023-01392-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 03/03/2024]
Abstract
Inflammation is a multifaceted biological reaction to a wide range of stimuli, and it has been linked to the onset and progression of chronic diseases such as heart disease, cancer, and diabetes. Inflammatory markers found in the blood, including C-reactive protein, serum amyloid A, fibrinogen, plasma viscosity, erythrocyte sedimentation rate, interleukin-6, and soluble adhesion molecules (like intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), are risk factors for cardiovascular diseases such as coronary heart disease, stroke, and peripheral arterial disease. These markers play a crucial role in understanding and assessing cardiovascular health. Due to this complicated relationship between inflammation and cardiovascular disease, anti-inflammatory agents of natural origin have been the subject of many preclinical and clinical studies in recent years. Eugenol is a natural phenolic compound found in clove oil, nutmeg oil, cinnamon oil, and bay leaf oil, as well as other essential oils. Eugenol has been shown to have anti-inflammatory properties in many forms of experimental inflammation. It may scavenge free radicals, which contribute to inflammation and tissue damage. Various studies also suggest that eugenol can limit the production of inflammatory mediators such as prostaglandins, cytokines, and chemokines. Animal models of arthritis, colitis, and lung damage, as well as human clinical studies, have shown that eugenol has phenomenal anti-inflammatory properties. These properties suggest that eugenol may be able to reduce the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
9
|
Safdar M, Hassan F, Khan MS, Khan AH, Junejo Y, Ozaslan M, Arain MA, Behan AA. In silico analysis of polyphenols modulate bovine PPARγ to increase milk fat synthesis in dairy cattle via the MAPK signaling pathways. J Anim Sci 2024; 102:skae248. [PMID: 39210246 PMCID: PMC11551727 DOI: 10.1093/jas/skae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the potential phytochemicals that modulate bovine peroxisome proliferator-activated receptor gamma (PPARγ) and the mitogen-activated protein kinase (MAPK) pathways to enhance milk fat production in dairy animals. Bovine PPARγ, a key member of the nuclear hormone receptor superfamily, plays a vital role in regulating metabolic, cellular differentiation, apoptosis, and anti-inflammatory responses in livestock, while the MAPK pathway is contributory in cellular processes that impact milk fat synthesis. This approach involved an all-inclusive molecular docking analysis of 10,000 polyphenols to identify potential PPARγ ligands. From this extensive screening, top 10 compounds were selected that exhibited the highest binding affinities to bovine PPARγ. Particularly, curcumin sulfate, isoflavone, and quercetin emerged as the most promising candidates. These compounds demonstrated superior docking scores (-9.28 kcal/mol, -9.27 kcal/mol, and -7.31 kcal/mol, respectively) and lower RMSD values compared to the synthetic bovine PPARγ agonist, 2,4-thiazolidinedione (-4.12 kcal/mol), indicating a strong potential for modulating the receptor. Molecular dynamics simulations (MDS) further affirmed the stability of these polyphenols-bovine PPARγ complexes, suggesting their effective and sustained interactions. These polyphenols, known as fatty acid synthase inhibitors, are suggested to influence lipid metabolism pathways crucial to milk fat production, possibly through the downregulation of the MAPK pathway. The screened compounds showed favorable pharmacokinetic profiles, including nontoxicity, carcinogenicity, and high gastrointestinal absorption, positioning them as viable candidates for enhancing dairy cattle health and milk production. These findings may open new possibilities for the use of phytochemicals as feed additives in dairy animals, suggesting a novel approach to improve milk fat synthesis through the dual modulation of bovine PPARγ and MAPK pathways.
Collapse
Affiliation(s)
- Muhammad Safdar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Faizul Hassan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Sajjad Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Aneeb Hassan Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Yasmeen Junejo
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, Gaziantep, Turkey
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Atique Ahmed Behan
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
10
|
Baba A, Ichikawa N, Yamanaka M, Wang D, Isa A, Hirayama T, Shimizu K, Nakagawa T. Time-dependent change in Reishi (Ganoderma lingzhi) triterpenoids in culture with rumen fluid. Anim Sci J 2024; 95:e13957. [PMID: 38783587 DOI: 10.1111/asj.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The purpose of this study was to investigate the time-dependent change in Reishi (Ganoderma lingzhi) triterpenoids in rumen fluid. G. lingzhi fruiting bodies were milled and incubated in a tube with rumen fluid for 0, 4, 8, 12, 24, and 48 h at 39°C. After incubation, all the tubes were freeze-dried and extracted by ethanol. The contents of 18 triterpenoids in the ethanol extract were quantitated by liquid chromatography-mass spectrometry (LC-MS/MS). Based on the results, triterpenoids were categorized into three groups: (1) rapid decrease, indicating reductions of more than 50% within 8 h; (2) mild decrease, with reductions of more than 50% within 48 h; and (3) minimal change, even after 48 h, there was not much change. Ganoderic acid C6, DM, H, K, and TR as well as Ganoderenic acid D were classified in (1); Ganoderic acid LM2 and T-Q as well as Ganoderiol F in (2); and Ganoderic acid A, B, C1, C2, I, and TN; Gnoderenic acid C; and Ganodermanontriol in (3). In addition, a relationship between chemical structure and metabolic speed was observed in some cases. The results of this study revealed that G. lingzhi triterpenoids are digested and metabolized at different speeds in ruminant fluid.
Collapse
Affiliation(s)
- Airi Baba
- School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Natsui Ichikawa
- School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Maho Yamanaka
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Dongmei Wang
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Akiko Isa
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takuji Hirayama
- Guraduate School of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshinori Nakagawa
- School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga, Japan
| |
Collapse
|
11
|
Sheoran S, Dey A, Sindhu S. Reduction of methane and nitrogen emission and improvement of feed efficiency, rumen fermentation, and milk production through strategic supplementation of eucalyptus (Eucalyptus citriodora) leaf meal in the diet of lactating buffalo (Bubalus bubalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125510-125525. [PMID: 37999845 DOI: 10.1007/s11356-023-31089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Buffalo plays a compelling role in reducing malnutrition and ensuring food to the people of Asian countries by its major contribution to milk and meat pool of the livestock agriculture farming system in the region. As Asia is the home for more than 90% of world buffalo population, they are also one of the largest emitters of greenhouse gasses. Eucalyptus (Eucalyptus sp.) leaves are rich sources of naturally occurring essential oils and phenolic compounds, which could modulate rumen fermentation through mitigation of methanogenesis and nitrogen excretion along with stimulation of immune system and production performances of animals. Therefore, the present study investigated the impact of dietary inclusion of eucalyptus (Eucalyptus citriodora) leaf meal (ELM) on voluntary feed intake, rumen functions, methane emission, nutrient utilization, milk yield and fatty acids profile, and immune response in lactating buffalo (Bubalus bubalis). An in vitro experiment conducted with graded dose (10-40 g/kg) inclusion of ELM into the total mixed ration to select ideal level for feeding to lactating buffaloes, an improvement (P < 0.05) in feed degradability (IVDMD), microbial biomass and ruminal volatile fatty acids concentration with reduced (P < 0.05) methane and ammonia-N production were evidenced when ELM was added at 10-20 g/kg DM, beyond which negative effects on rumen fermentation were pronounced. An in vivo experimentation was conducted with sixteen Murrah (Bubalus bubalis) buffaloes of mean live weight, 544.23 ± 10.02 kg; parity, 2-4 at initial stage (~60 days) of lactation with average milk yield of 11.43 ± 1.32 kg and were divided into two groups (CON, ELM) of eight each in a completely randomized design. All the animals were kept individually on wheat straw-based diet with required quantity of concentrate mixture and green fodder. The control group buffaloes were fed a total mixed ration; however, the treatment group (ELM) was supplemented with 10 g/kg DM diet of dry grounded eucalyptus (Eucalyptus citriodora) leaves by mixing with the concentrate mixture. The feeding experiment was conducted for 120 days, including 15 days for adaptation to the experimental diets and 105 days for data recording. The nutrient digestibility (DM, OM, CP, and EE) was improved (P < 0.05) without affecting feed intake (P > 0.05) and fiber digestibility (NDF and ADF) in ELM supplemented buffaloes. Increased (P < 0.05) milk production and rumenic acid concentration (cis 9 trans 11 C18:2 CLA) were demonstrated with comparable (P > 0.05) milk composition and major fatty acids profile of milk in the supplemented buffaloes. Dietary inclusion of ELM reduced (P < 0.05) enteric methane production and fecal excretion of nitrogen. The health status of buffaloes fed ELM improved throughout the experimental period was improved by enhancing cell mediated (P = 0.09) and humoral (P < 0.01) immune responses without affecting (P > 0.05) major blood metabolites. The study described feeding ELM at 10 g/kg diet to lactating Murrah buffaloes as a natural source of phenols and essential oils to increase milk production and CLA content, reduce methane and nitrogen emissions, and improve health status. Thus, feeding of ELM could be beneficial for climate smart buffalo production system for enhancing milk production with lesser impact on environment.
Collapse
Affiliation(s)
- Sandeep Sheoran
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Avijit Dey
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India.
| | - Sonia Sindhu
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
12
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
13
|
Trotta RJ, Kreikemeier KK, Foote S, McLeod KR, Harmon DL. Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle. Animals (Basel) 2023; 13:2308. [PMID: 37508084 PMCID: PMC10376241 DOI: 10.3390/ani13142308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Four experiments were conducted to evaluate sources of anti-coccidial compounds and phytogenic saponin extracts on in vitro and in vivo ruminal fermentation and CH4 production at multiple inclusion levels. In experiment 1, eight steers were fed either a finishing diet or a finishing diet supplemented with 0.5 mg/kg BW decoquinate (DCQ) and 3.33 mg/kg BW Yucca schidigera extract (YSE), and respiratory gas exchange was measured. In experiment 2, four ruminally-cannulated steers were fed the same treatments as experiment 1, and ruminal fermentation was evaluated. Anti-coccidial sources (experiment 3; monensin, DCQ, amprolium) and saponin sources (experiment 4; YSE, Quillaja saponaria extract) and levels were evaluated for effects on in vitro ruminal fermentation and CH4 production. DCQ + YSE supplementation did not influence (p ≥ 0.24) in vivo respiratory gas consumption/production, in situ DM degradation, or liquid passage kinetics. Ruminal propionate proportion tended to increase (p = 0.09) with DCQ + YSE. Monensin decreased (p ≤ 0.04) in vitro acetate:propionate and CH4 production; saponin supplementation linearly increased (p < 0.01) propionate proportion but did not influence (p ≥ 0.38) in vitro CH4 production. Saponins and non-antibiotic anti-coccidials did not influence in vitro or in vivo CH4 production with finishing diets.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | - Scott Foote
- Hoxie Feedyard, Foote Cattle Co., Hoxie, KS 67740, USA
| | - Kyle R McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - David L Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
14
|
Kholif AE. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet Sci 2023; 10:450. [PMID: 37505855 PMCID: PMC10385484 DOI: 10.3390/vetsci10070450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Saponins are steroid, or triterpene glycoside, compounds found in plants and plant products, mainly legumes. However, some plants containing saponins are toxic. Saponins have both positive and negative roles in animal nutrition. Saponins have been shown to act as membrane-permeabilizing, immunostimulant, hypocholesterolaemic, and defaunating agents in the rumen for the manipulation of ruminal fermentation. Moreover, it has been reported that saponins have impair protein digestion in the gut to interact with cholesterol in the cell membrane, cause cell rupture and selective ruminal protozoa elimination, thus improving N-use efficiency and resulting in a probable increase in ruminant animal performance.
Collapse
Affiliation(s)
- Ahmed E Kholif
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza 12622, Egypt
| |
Collapse
|
15
|
Kemboi F, Ondiek JO, King'ori AM, Onjoro PA. Effects of polyethylene glycol (PEG 6000) and bentonite clay incorporation in selected local browse-based diets on the performance of Small East African goats. Trop Anim Health Prod 2023; 55:124. [PMID: 36943532 DOI: 10.1007/s11250-023-03545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
The study evaluated how binders affected the feed intake, weight gain, and feed conversion ratio of Small East African goats fed on a variety of native browse-based diets. Twenty-four growing goats with initial body weight approximately 10.5 kg ± 1.3 (mean ± SE) were randomly allocated to the Acacia brevispica and Berchemia discolor with various levels of polyethylene glycol (PEG) and bentonite clay in a factorial completely randomized design. Six treatments (T1-T6) were used with four goats per treatment. The goats were allocated to individual pens with each treatment having 3 replicates. The selected local browse leaf meal was treated with PEG at a level of 25 g/kg and bentonite clay at 20 g/kg. The experiment lasted for 70 days, consisting of a 14-day adaptation period. Average daily feed intake (ADFI), average daily gain (ADG), and feed conversion ratio (FCR) were computed each week. The composition of the CP, OM, EE, NDF, ADF, TEPH, and CT varied greatly, with significant (P < 0.05) changes seen between the various experimental treatments. Diets treated with binders had higher DM Intake, daily weight gains, and total dry matter intake. Goats on diets treated with bentonite clay (T2) performed much better than the one treated with PEG (T1) although there was no statistically significant difference between the two (P > 0.05). Acacia brevispica-based diets treated with binders performed better than Berchemia discolor-based diets. All nutrients' digestibility coefficients were unaffected by the addition of polyethylene glycol 6000 or bentonite clay. It was concluded that bentonite clay as deactivation material can be adopted due to its low cost compared to PEG and its activity to absorb or bind anti-nutritive factors such as tannins in animal feeds. The addition of PEG and bentonite clay to A. brevispica- and B. discolor-based diet can be used to enhance feed utilization as a result of tannins deactivation.
Collapse
Affiliation(s)
- F Kemboi
- Department of Animal Science, Egerton University, P.O. Box 536-20116, Egerton, Kenya.
| | - J O Ondiek
- Department of Animal Science, Egerton University, P.O. Box 536-20116, Egerton, Kenya
| | - A M King'ori
- Department of Animal Science, Egerton University, P.O. Box 536-20116, Egerton, Kenya
| | - P A Onjoro
- Department of Animal Science, Egerton University, P.O. Box 536-20116, Egerton, Kenya
| |
Collapse
|
16
|
Ramírez-Restrepo CA, Vera-Infanzón RR, Rao IM. The carbon footprint of young-beef cattle finishing systems in the Eastern Plains of the Orinoco River Basin of Colombia. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionPrevious research has shown increased productivity amongst sown grass pastures compared to native savanna pastures by year-round grazing for fattening of adult and young Brahman (Bos indicus)-bred cattle in the well-drained native savanna ecosystem of the Colombian Orinoquía. But there is limited information on the carbon footprint (CF) of commercial young-Brahman heifers and steers reared throughout life on well-managed Brachiaria decumbens Stapf pastures.MethodsThe present study characterized growth, lifetime enteric methane (CH4) emissions, carcass carbon dioxide equivalent (CO2-eq) CH4 efficiency intensities (i.e., emissions per kg of product), and estimated the overall CF of young cattle grazing B. decumbens pastures subject to a range of daily liveweight gains (DLWGs; 0.428 – 0.516 kg) and fattening framework (405 – 574 kg). Weaning data from seven consecutive calving seasons in a commercial Brahman breeding herd continuously grazed on B. decumbens were integrated with a Microsoft Excel® dynamic greenhouse gas emission (GHGE) simulation of stockers-yearlings, and seven fattening, and processing scenarios.ResultsThe model predicted that heifers subject to low and high DLWGs (0.428 vs 0.516 kg) and steers (0.516 kg) may be successfully fattened without supplementation assuming that animals had access to a well-managed grass pasture. Depending on the fattening strategy, kg CO2-eq CH4/kg edible protein values ranged from 66.843 to 87.488 ± 0.497 for heifers and from 69.689 to 91.291 ± 0.446 for steers.DiscussionAssuming that forage on offer is at least 1,500-2,000 kg of dry matter/ha during the rainy season, all the simulated systems showed potential for C neutrality and net-zero C emission when considering GHGEs from the soil, pasture, and animal components vs the estimated soil C capture over seven seasons. However, under a more optimistic scenario, these beef systems could accomplish substantial net gains of soil C, over the period for which field data are available. Overall, this study projects the positive impact of the design of plausible fattening strategies on grasslands for improving cattle productivity and reducing emission intensities with concomitant increases in technical efficiency.
Collapse
|
17
|
Reis IA, de Souza MG, Granja-Salcedo YT, de Carvalho IPC, Porcionato MADF, Prados LF, Siqueira GR, De Resende FD. Effect of Post-Ruminal Urea Supply on Growth Performance of Grazing Nellore Young Bulls at Dry Season. Animals (Basel) 2023; 13:ani13020207. [PMID: 36670747 PMCID: PMC9854706 DOI: 10.3390/ani13020207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to evaluate the effect of the use of post-ruminal urea on performance, nitrogen metabolism and the ruminal environment of Nellore cattle reared on pasture during the dry season. In experiment 1 (Exp. 1), nine ruminal-cannulated Nellore steers, 30 ± 2 months old (651 ± 45 kg body weight (BW)), were allotted to a 3 × 3 Latin triple square. In experiment 2 (Exp. 2), 84 Nellore bulls, 18 ± 3 months old (315 ± 84 kg BW), were distributed in complete randomized blocks, by initial BW. Protein supplements were supplied daily, in the amount of 2 g/kg BW, and consisted of either CONT: protein + conventional urea (50% CP), PRU: protein + post ruminal urea (50% CP) and U + PRU: protein + urea conventional + post-ruminal urea (70% CP). The paddocks were composed of Urochloa brizantha cv. Marandu grass. In Exp. 1, there was no treatment effect for DM, OM, NDF, forage intake, and CP, but there was a higher intake for PRU (p < 0.005) and a higher digestibility for U+ PRU (p = 0.001). There was no effect on ruminal pH or NH3-N concentration (p ≥ 0.232), but there was an interaction between treatment and time for them (p < 0.039). Furthermore, there was a treatment effect on the total SCFA concentration, with CONT being higher than the others. A difference in the acetate:propionate ratio was found (p < 0.027), with a greater relationship for PRU and U + PRU. A treatment effect (p = 0.049) was found for the propionate proportion, with a higher proportion in the CONT. Nitrogen intake was consequently lower for the CONT and higher urinary excretion for the U + PRU (p = 0.002). Animals supplemented with CONT showed a tendency to have more Bacteria and fewer Archaea (p = 0.086). In Exp. 2, there was a treatment effect for the disappearance rate of the supplement (p < 0.001). Intake was faster for PRU and CONT, but performance was not affected by PRU (p = 0.311). The use of post-ruminal urea alters the microbial population, but does not affect performance. Therefore, supplementation with post-ruminal urea presented similar results compared to conventional urea. Ruminal and blood parameters and animal performance were not influenced by treatments.
Collapse
Affiliation(s)
- Irene Alexandre Reis
- Department of Animal Sciences, São Paulo State University “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, SP, Brazil
- Correspondence: (I.A.R.); (Y.T.G.-S.)
| | - Mailza Gonçalves de Souza
- Department of Animal Sciences, São Paulo State University “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Yury Tatiana Granja-Salcedo
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación El Nus, San Roque, Antioquia 053030, Colombia
- Correspondence: (I.A.R.); (Y.T.G.-S.)
| | | | | | - Laura Franco Prados
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina 14770-000, SP, Brazil
| | - Gustavo Rezende Siqueira
- Department of Animal Sciences, São Paulo State University “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, SP, Brazil
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina 14770-000, SP, Brazil
| | - Flávio Dutra De Resende
- Department of Animal Sciences, São Paulo State University “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, SP, Brazil
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina 14770-000, SP, Brazil
| |
Collapse
|
18
|
Rodríguez-Hernández P, Reyes-Palomo C, Sanz-Fernández S, Rufino-Moya PJ, Zafra R, Martínez-Moreno FJ, Rodríguez-Estévez V, Díaz-Gaona C. Antiparasitic Tannin-Rich Plants from the South of Europe for Grazing Livestock: A Review. Animals (Basel) 2023; 13:201. [PMID: 36670741 PMCID: PMC9855007 DOI: 10.3390/ani13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Internal parasites are one of the main causes of health threats in livestock production, especially in extensive livestock farming. Despite the environmental toxic effects (loss of dung beetles, biodiversity, and other issues) and resistance phenomenon derived from their prolonged use, anti-parasitic chemical pharmaceuticals are frequently used, even in organic farming. Such a situation within the context of climate change requires urgent exploration of alternative compounds to solve these problems and apparent conflicts between organic farming objectives regarding the environment, public health, and animal health. This review is focused on some plants (Artemisia spp., Cichorium intybus L., Ericaceae family, Hedysarum coronarium L., Lotus spp., Onobrychis viciifolia Scop.) that are well known for their antiparasitic effect, are voluntarily grazed and ingested, and can be spontaneously found or cultivated in southern Europe and other regions with a Mediterranean climate. The differences found between effectiveness, parasite species affected, in vitro/in vivo experiments, and active compounds are explored. A total of 87 papers where antiparasitic activity of those plants have been studied are included in this review; 75% studied the effect on ruminant parasites, where gastrointestinal nematodes were the parasite group most studied (70%), and these included natural (31%) and experimental (37%) infections.
Collapse
Affiliation(s)
- Pablo Rodríguez-Hernández
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Carolina Reyes-Palomo
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Santos Sanz-Fernández
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Pablo José Rufino-Moya
- Animal Health Department (Parasitology and Parasitic Diseases), UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Rafael Zafra
- Animal Health Department (Parasitology and Parasitic Diseases), UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Francisco Javier Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Cipriano Díaz-Gaona
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
19
|
Nguse M, Yang Y, Fu Z, Xu J, Ma L, Bu D. Phyllanthus emblica (Amla) Fruit Powder as a Supplement to Improve Preweaning Dairy Calves' Health: Effect on Antioxidant Capacity, Immune Response, and Gut Bacterial Diversity. BIOLOGY 2022; 11:1753. [PMID: 36552263 PMCID: PMC9774823 DOI: 10.3390/biology11121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Disease is the main reason for the use of antimicrobials in calf rearing, and antibiotics are commonly used to treat calves, including for unknown diseases. This leads to antimicrobial resistance, which is a challenge to the livestock industry and public health. Plant products containing high levels of phytochemicals may improve the immunity and resistance of calves against infections, thereby reducing the use of antimicrobials. This study aimed to investigate the effect of Phyllanthus emblica (Amla) fruit powder (PE) supplementation on antioxidant capacity and immune response of preweaning dairy calves. One hundred, 2-day-old, male Holstein calves were randomly assigned into five treatment groups receiving 0, 5, 10, 20, and 40 g/d PE supplementation. Antioxidant and immune indices and pro- and anti-inflammatory cytokines were analyzed from serum samples, whereas 16S rRNA was analyzed from rumen fluid and fecal samples. PE supplementation, at 5 g/d, protected calves against oxidative stress and improved antioxidant enzymes and immune and anti-inflammatory responses, showing its immunity-enhancing and protective roles against infections. However, the antioxidant capacity and immune response decreased with increasing PE levels, illustrating the adverse effects of PE supplementation at higher doses. The analysis of ruminal and fecal bacterial community abundance detected higher proportions of Firmicutes at an early age, and a higher Bacteroidetes to Firmicutes ratio at weaning, in calves supplemented with 5 g/d PE. This contributed to the development of the immune system in early life, and improved immune and anti-inflammatory responses at a later age. The overall results suggest that PE could be supplemented at 5 g/d for preweaning dairy calves to protect against oxidative stress and infections while maintaining normal gut microbial hemostasis.
Collapse
Affiliation(s)
- Mebrahtom Nguse
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Department of Animal Sciences (ARWS), College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Yi Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zilin Fu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianchu Xu
- World Agroforestry Center, East and Central Asia, Kunming 650201, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| |
Collapse
|
20
|
Ponnampalam EN, Kiani A, Santhiravel S, Holman BWB, Lauridsen C, Dunshea FR. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals (Basel) 2022; 12:ani12233279. [PMID: 36496798 PMCID: PMC9738477 DOI: 10.3390/ani12233279] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The biological effects of oxidative stress and associated free radicals on farm animal performance, productivity, and product quality may be managed via dietary interventions-specifically, the provision of feeds, supplements, and forages rich in antioxidants. To optimize this approach, it is important first to understand the development of free radicals and their contributions to oxidative stress in tissue systems of farm animals or the human body. The interactions between prooxidants and antioxidants will impact redox homeostasis and, therefore, the well-being of farm animals. The impact of free radical formation on the oxidation of lipids, proteins, DNA, and biologically important macromolecules will likewise impact animal performance, meat and milk quality, nutritional value, and longevity. Dietary antioxidants, endogenous antioxidants, and metal-binding proteins contribute to the 'antioxidant defenses' that control free radical formation within the biological systems. Different bioactive compounds of varying antioxidant potential and bio-accessibility may be sourced from tailored feeding systems. Informed and successful provision of dietary antioxidants can help alleviate oxidative stress. However, knowledge pertaining to farm animals, their unique biological systems, and the applications of novel feeds, specialized forages, bioactive compounds, etc., must be established. This review summarized current research to direct future studies towards more effective controls for free radical formation/oxidative stress in farm animals so that productivity and quality of meat and milk can be optimized.
Collapse
Affiliation(s)
- Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Ali Kiani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
21
|
Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. FERMENTATION 2022. [DOI: 10.3390/fermentation8110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this research was to evaluate the effect of the inclusion of Acacia mearnsii (AM) at different levels of inclusion on ruminal digestion and in vitro gas production. A. mearnsii forage was incorporated in the diet at different levels of 0 (AM0), 20 (AM20), and 40 (AM40) %. In situ degradation of dry matter (DM) and organic matter (OM) showed differences between treatments (P < 0.05), obtaining the highest value of the degradation of soluble fraction (A), insoluble but potentially degradable fraction (B), degradation rate in % per hour (c), potential degradation (A + B), and effective degradation for all passage rates in % h (0.02, 0.05, and 0.08) in AM0 with respect to AM20 and AM40. The in vitro digestibility of DM and OM was higher (P < 0.05) in AM0 with approximately 23.6% and 22.8% of DM and OM, respectively, compared to treatments AM20 and AM40. Cumulative gas production (PG) and gas production asymptote (B) were lower at AM0 and AM20 versus AM40; however, gas production rate (c) and total CH4 production were lower at AM40 with about 40.1 mL CH4/0.500 g fermented DM versus AM0 and AM20. Under the conditions of this study, it is concluded that the incorporation of A. mearnsii (20% and 40%) in the feed of ruminants negatively affected the digestion of nutrients; however, it reduced the production of CH4, which may be associated with the low activity of microorganisms toward the substrate due to the possible tannin/nutrient complex. This shows that in animals with little history of consuming plants rich in tannin, more than 3% of tannin could not be incorporated into the diet.
Collapse
|
22
|
Gallo L, Peña JF, Palma SD, Real JP, Cotabarren I. Design and production of 3D printed oral capsular devices for the modified release of urea in ruminants. Int J Pharm 2022; 628:122353. [DOI: 10.1016/j.ijpharm.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
23
|
Hotea I, Dragomirescu M, Berbecea A, Radulov I. Phytochemicals as Alternatives to Antibiotics in Animal Production. Vet Med Sci 2022. [DOI: 10.5772/intechopen.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite the continuous improvement of feed diets and recipes, animal health problems persist. For their treatment, antibiotics and chemotherapy have been shown to have side effects hard to control. The antibiotic residues in animal products may endanger human health. Since the antibiotics were restricted in animals’ diets, which were previously used to keep under control digestive and respiratory pathologies, as well as allergies, so the researchers began to search for natural alternatives. Thus, it was developed the concept of phytoadditives, and these natural plant extracts are gaining ground in animal farming. Since then, more and more animal breeders and farms are willing to use various types of phytoadditives. This chapter aims to present the most widely used phytochemicals in animal nutrition, their effects on animal production and health, and to make some recommendations on the use of phytochemicals in farm animals’ diets.
Collapse
|
24
|
Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet Sci 2022; 9:vetsci9090475. [PMID: 36136691 PMCID: PMC9502430 DOI: 10.3390/vetsci9090475] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
There is an increasing pressure to identify natural feed additives that improve the productivity and health of livestock, without affecting the quality of derived products. The objective of this study was to evaluate the effects of dietary supplementation with essential oils (EOs) on productive performance, rumen parameters, serum metabolites, and quality of products (meat and milk) derived from small ruminants by means of a meta-analysis. Seventy-four peer-reviewed publications were included in the data set. Weighted mean differences (WMD) between the EOs treatments and the control treatment were used to assess the magnitude of effect. Dietary inclusion of EOs increased (p < 0.05) dry matter intake (WMD = 0.021 kg/d), dry matter digestibility (WMD = 14.11 g/kg of DM), daily weight gain (WMD = 0.008 kg/d), and feed conversion ratio (WMD = −0.111). The inclusion of EOs in small ruminants’ diets decreased (p < 0.05) ruminal ammonia nitrogen concentration (WMD = −0.310 mg/dL), total protozoa (WMD = −1.426 × 105/mL), methanogens (WMD = −0.60 × 107/mL), and enteric methane emissions (WMD = −3.93 L/d) and increased ruminal propionate concentration (WMD = 0.726 mol/100 mol, p < 0.001). The serum urea concentration was lower (WMD = −0.688 mg/dL; p = 0.009), but serum catalase (WMD = 0.204 ng/mL), superoxide dismutase (WMD = 0.037 ng/mL), and total antioxidant capacity (WMD = 0.749 U/mL) were higher (p < 0.05) in response to EOs supplementation. In meat, EOs supplementation decreased (p < 0.05) the cooking loss (WMD = −0.617 g/100 g), malondialdehyde content (WMD = −0.029 mg/kg of meat), yellowness (WMD = −0.316), and total viable bacterial count (WMD = −0.780 CFU/g of meat). There was higher (p < 0.05) milk production (WMD = 0.113 kg/d), feed efficiency (WMD = 0.039 kg/kg), protein (WMD = 0.059 g/100 g), and lactose content in the milk (WMD = 0.100 g/100 g), as well as lower somatic cell counts in milk (WMD = −0.910 × 103 cells/mL) in response to EOs supplementation. In conclusion, dietary supplementation with EOs improves productive performance as well as meat and milk quality of small ruminants. In addition, EOs improve antioxidant status in blood serum and rumen fermentation and decrease environmental impact.
Collapse
|
25
|
Blend of secondary metabolites from mesquite to improve nutrient digestibility, microbial protein, efficient use of nitrogen, ruminal parameters, and blood metabolites in sheep. Trop Anim Health Prod 2022; 54:248. [PMID: 35941296 DOI: 10.1007/s11250-022-03267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Although chemical additives are able to improve the efficiency of ruminal fermentation, they can leave residues in the meat. However, a blend of secondary metabolites can improve ruminal fermentation without harming the population welfare. Five levels (0.0, 1.5, 3.0, 4.5, and 6.0 g/day) of a blend of secondary metabolites from mesquite extract in sheep feed to promote increases in the nutritional value, ruminal parameters, nitrogen (N) use efficiency, microbial protein (MP) synthesis, and blood metabolites. Ten intact male Santa Inês sheep with average body weight of 55 ± 9.81 kg were used in a 5 × 5 Latin square design, replicated twice. There was a quadratic response of the digestibility of dry matter (DM), organic matter (OM), crude protein (CP), and total digestible nutrients (TDN). Microbial protein concentrations, MP synthesis efficiency, propionic acid levels, and acetic/propionic acid ratio also showed a quadratic response. The blend promoted a quadratic effect on plasma glucose and lactate levels. On the other hand, it decreased the concentrations of ammoniacal nitrogen, plasma urea, and plasma cholesterol. It is recommended to supply a blend of secondary metabolites at 3.43 g/day.
Collapse
|
26
|
Tedeschi LO, Abdalla AL, Álvarez C, Anuga SW, Arango J, Beauchemin KA, Becquet P, Berndt A, Burns R, De Camillis C, Chará J, Echazarreta JM, Hassouna M, Kenny D, Mathot M, Mauricio RM, McClelland SC, Niu M, Onyango AA, Parajuli R, Pereira LGR, del Prado A, Paz Tieri M, Uwizeye A, Kebreab E. Quantification of methane emitted by ruminants: a review of methods. J Anim Sci 2022; 100:skac197. [PMID: 35657151 PMCID: PMC9261501 DOI: 10.1093/jas/skac197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
The contribution of greenhouse gas (GHG) emissions from ruminant production systems varies between countries and between regions within individual countries. The appropriate quantification of GHG emissions, specifically methane (CH4), has raised questions about the correct reporting of GHG inventories and, perhaps more importantly, how best to mitigate CH4 emissions. This review documents existing methods and methodologies to measure and estimate CH4 emissions from ruminant animals and the manure produced therein over various scales and conditions. Measurements of CH4 have frequently been conducted in research settings using classical methodologies developed for bioenergetic purposes, such as gas exchange techniques (respiration chambers, headboxes). While very precise, these techniques are limited to research settings as they are expensive, labor-intensive, and applicable only to a few animals. Head-stalls, such as the GreenFeed system, have been used to measure expired CH4 for individual animals housed alone or in groups in confinement or grazing. This technique requires frequent animal visitation over the diurnal measurement period and an adequate number of collection days. The tracer gas technique can be used to measure CH4 from individual animals housed outdoors, as there is a need to ensure low background concentrations. Micrometeorological techniques (e.g., open-path lasers) can measure CH4 emissions over larger areas and many animals, but limitations exist, including the need to measure over more extended periods. Measurement of CH4 emissions from manure depends on the type of storage, animal housing, CH4 concentration inside and outside the boundaries of the area of interest, and ventilation rate, which is likely the variable that contributes the greatest to measurement uncertainty. For large-scale areas, aircraft, drones, and satellites have been used in association with the tracer flux method, inverse modeling, imagery, and LiDAR (Light Detection and Ranging), but research is lagging in validating these methods. Bottom-up approaches to estimating CH4 emissions rely on empirical or mechanistic modeling to quantify the contribution of individual sources (enteric and manure). In contrast, top-down approaches estimate the amount of CH4 in the atmosphere using spatial and temporal models to account for transportation from an emitter to an observation point. While these two estimation approaches rarely agree, they help identify knowledge gaps and research requirements in practice.
Collapse
Affiliation(s)
- Luis Orlindo Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Adibe Luiz Abdalla
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba CEP 13416.000, Brazil
| | - Clementina Álvarez
- Department of Research, TINE SA, Christian Magnus Falsens vei 12, 1433 Ås, Norway
| | - Samuel Weniga Anuga
- European University Institute (EUI), Via dei Roccettini 9, San Domenico di Fiesole (FI), Italy
| | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713, Cali, Colombia
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | | | - Alexandre Berndt
- Embrapa Southeast Livestock, Rod. Washington Luiz, km 234, CP 339, CEP 13.560-970. São Carlos, São Paulo, Brazil
| | - Robert Burns
- Biosystems Engineering and Soil Science Department, The University of Tennessee, Knoxville, TN 37996, USA
| | - Camillo De Camillis
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Julián Chará
- Centre for Research on Sustainable Agriculture, CIPAV, Cali 760042, Colombia
| | | | - Mélynda Hassouna
- INRAE, Institut Agro Rennes Angers, UMR SAS, F-35042, Rennes, France
| | - David Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15PW93, Ireland
| | - Michael Mathot
- Agricultural Systems Unit, Walloon Agricultural Research Centre, rue du Serpont 100, B-6800 Libramont, Belgium
| | - Rogerio M Mauricio
- Department of Bioengineering, Federal University of São João del-Rei, São João del-Rei, MG 36307-352, Brazil
| | - Shelby C McClelland
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mutian Niu
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Alice Anyango Onyango
- Mazingira Centre, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Department of Chemistry, Maseno University, Maseno, Kenya
| | | | | | - Agustin del Prado
- Basque Centre For Climate Change (BC3), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maria Paz Tieri
- Dairy Value Chain Research Institute (IDICAL) (INTA–CONICET), Rafaela, Argentina
| | - Aimable Uwizeye
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Benetel G, Silva TDS, Fagundes GM, Welter KC, Melo FA, Lobo AAG, Muir JP, Bueno ICS. Essential Oils as In Vitro Ruminal Fermentation Manipulators to Mitigate Methane Emission by Beef Cattle Grazing Tropical Grasses. Molecules 2022; 27:2227. [PMID: 35408626 PMCID: PMC9000866 DOI: 10.3390/molecules27072227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing pressure to identify natural feed additives to mitigate methane emissions from livestock systems. Our objective was to investigate the effects of essential oils (EO) extracts star anise (Illicium verum), citronella (Cymbopogon winterianus), clove bud (Eugenia caryophyllus), staigeriana eucalyptus (Eucalyptus staigeriana), globulus eucalyptus (Eucalyptus globulus), ginger (Zingiber officinale), ho wood (Cinnamomum camphora), melaleuca (Melaleuca alternifolia), oregano (Origanum vulgare) and white thyme (Thymus vulgaris) on in vitro methane emissions from four rumen-cannulated Nellore cattle grazing a tropical grass pasture as inoculum donors. The semi-automated gas production technique was used to assess total gas production, dry matter degradability, partitioning factor, ammoniacal nitrogen, short-chain fatty acids and methane production. All essential oils were tested in four doses (0, 50, 250 and 500 mg/L) in a randomized block design, arranged with four blocks, 10 treatments, four doses and two replicates. Within our study, oregano and white Thyme EO reduced net methane production at 250 mg/L, without affecting substrate degradation. Essential oils from oregano and white thyme have the potential to modify ruminal fermentation and suppress rumen methanogenesis without negative effects on feed digestibility, indicating promise as alternatives to ionophores for methane reduction in beef cattle.
Collapse
Affiliation(s)
- Gabriela Benetel
- Department of Animal Science, Universidade de São Paulo–USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, São Paulo, Brazil; (G.B.); (T.d.S.S.); (K.C.W.); (F.A.M.); (A.A.G.L.); (I.C.S.B.)
| | - Thaysa dos Santos Silva
- Department of Animal Science, Universidade de São Paulo–USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, São Paulo, Brazil; (G.B.); (T.d.S.S.); (K.C.W.); (F.A.M.); (A.A.G.L.); (I.C.S.B.)
| | - Gisele Maria Fagundes
- Department of Animal Science, Universidade Federal de Roraima–UFRR, BR 174, km 12, Boa Vista 69300-000, Roraima, Brazil
| | - Katiéli Caroline Welter
- Department of Animal Science, Universidade de São Paulo–USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, São Paulo, Brazil; (G.B.); (T.d.S.S.); (K.C.W.); (F.A.M.); (A.A.G.L.); (I.C.S.B.)
| | - Flavia Alves Melo
- Department of Animal Science, Universidade de São Paulo–USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, São Paulo, Brazil; (G.B.); (T.d.S.S.); (K.C.W.); (F.A.M.); (A.A.G.L.); (I.C.S.B.)
| | - Annelise A. G. Lobo
- Department of Animal Science, Universidade de São Paulo–USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, São Paulo, Brazil; (G.B.); (T.d.S.S.); (K.C.W.); (F.A.M.); (A.A.G.L.); (I.C.S.B.)
| | - James Pierre Muir
- Texas A&M AgriLife Research, 1229 North U.S. Hwy 281, Stephenville, TX 76401, USA;
| | - Ives C. S. Bueno
- Department of Animal Science, Universidade de São Paulo–USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, São Paulo, Brazil; (G.B.); (T.d.S.S.); (K.C.W.); (F.A.M.); (A.A.G.L.); (I.C.S.B.)
| |
Collapse
|
28
|
Marín-López D, Matamoros-Ochoa IA, Ramírez-Restrepo CA. Dinámicas de producción y emisiones modeladas de gases de efecto invernadero en sistemas regionales de producción lechera de Honduras. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2022. [DOI: 10.15446/rfmvz.v69n1.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El objetivo del estudio fue la caracterización productiva y de emisiones modeladas de gases de efecto invernadero (GEI) en 61 sistemas lecheros localizados en cinco regiones de Honduras. Durante las fases inicial (FI) y final (FF), con encuestas aplicadas individualmente a los productores, se identificaron aspectos técnicos y de productividad. Variables numéricas expresadas en Microsoft Excel® permitieron, con el modelo FAO de evaluación ambiental de la ganadería global-interactivo (GLEAM-i, por sus siglas en inglés) de ciclo de vida, estimar emisiones anuales de metano (CH4), óxido nitroso (N2O) y dióxido de carbono (CO2) en cada finca. Cálculos intermedios (GEI/animal) fueron derivados de la modelización GLEAM-i en Excel®. Durante la FI las fincas conjuntamente emitieron 25.038 t CO2 equivalente (CO2-eq), mientras que dichas emisiones fueron 10,5% menores en la FF. Emisiones de GEI/animal (2,85 ± 0,08 t CO2-eq) y de GEI/kg de proteína láctea (96,91 ± 4,50 kg CO2-eq) durante la FI fueron 13 y 21% menores en la FF, respectivamente. Valores de 52,82 ± 1,64 (CH4) y 2,66 ± 0,10 (N2O) kg/animal en la FI fueron 13% y 17% menores en la FF, respectivamente. La región centro suroriente emitió la menor cantidad de CH4 (42,95 ± 2,37 kg/animal) y N2O (1,82 ± 0,15 kg/animal, mientras las regiones occidente y norte experimentaron una reducción del 27% en GEI/kg proteína láctea entre la FI y FF. Se concluyó que la metodología usada identificó los impactos productivos y medioambientales, derivados de alternativas técnicas implementadas en sistemas de producción lechera de Honduras.
Collapse
|
29
|
Popowski D, Zentek J, Piwowarski JP, Granica S. Gut Microbiota of Pigs Metabolizes Extracts of Filipendula ulmaria and Orthosiphon aristatus-Herbal Remedies Used in Urinary Tract Disorders. PLANTA MEDICA 2022; 88:254-261. [PMID: 34624904 DOI: 10.1055/a-1647-2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urinary tract infections influence the mortality rate in pigs and are linked to extensive antibiotic usage in the farm industry. Filipendula ulmaria (L.) Maxim. and Orthosiphon aristatus (Blume) Miq. are widespread medicinal plants traditionally used to treat urinary tract disorders. As their preparations are orally administered, the metabolism of their constituents by gut microbiota before absorption should be considered. Until now, no experiments had been performed to describe the biotransformation of tthose plants' extracts by animal gut microbiota. The study evaluates the influence of pig intestinal microbiota on the structure of active compounds in flowers of F. ulmaria and leaves of O. aristatus. The incubations of the extracts with piglet gut microbiota were performed in anaerobic conditions, and the samples of the batch culture were collected for 24 h. In F. ulmaria, the main metabolites were quercetin and kaempferol, which were products of the deglycosylation of flavonoids. After 24 h incubation of O. aristatus extract with the piglet gut microbiota, 2 main metabolites were observed. One, tentatively identified as 3-(3-dihydroxyphenyl)propionic acid, is likely the primary metabolite of the most abundant depsides and phenolic acids. The results confirm the formation of the compounds with anti-inflammatory and diuretic activity in the microbiota cultures, which might suggest F. ulmaria and O. aristatus for treating urinary tract disorders in piglets. Based on the similarities of human and pig gut microbiota, the pig model can help estimate the metabolic pathways of natural products in humans.
Collapse
Affiliation(s)
- Dominik Popowski
- MicrobiotaLab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jakub P Piwowarski
- MicrobiotaLab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Granica
- MicrobiotaLab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Impact of Sainfoin ( Onobrychis viciifolia) Pellets on Parasitological Status, Antibody Responses, and Antioxidant Parameters in Lambs Infected with Haemonchus contortus. Pathogens 2022; 11:pathogens11030301. [PMID: 35335625 PMCID: PMC8954349 DOI: 10.3390/pathogens11030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Our study analyzed the parasitological status, antibody responses, and antioxidant parameters of lambs experimentally infected with a gastrointestinal nematode during the consumption of sainfoin pellets (SFPs) for 14 d. Twenty-four lambs infected with Haemonchus contortus were separated into two groups: untreated animals (control) and animals treated with SFPs (600 g dry matter/d). SFP treatment began on day (D) 30 post-infection. The number of eggs per gram (EPG) of feces was quantified on D18, D23, D26, D30, D33, D37, D40, and D44. The mean reductions in EPG on D40 and D44 were 33.6 and 36.7%, respectively. The number of abomasal worms was lower for the SFP than the control group (p < 0.05). SFP treatment did not significantly affect either the total or the local antibody response (p > 0.05). The blood activity of glutathione peroxidase was affected by the treatment (p < 0.022). Adult worms were selected for scanning electron microscopy after necropsy, but surface structures of adult H. contortus females did not differ between the groups. The treatment of lambs with SFPs directly affected the dynamics of infection, probably indirectly by mobilizing the antioxidant defensive system and antibody response thus improving animal resistance.
Collapse
|
31
|
Condensed tannins bioactivity and nutritional value of Bauhinia cheilantha (Bong) Steud. under sheep grazing and different forage allowances. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2021.104359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA, Lee-Rangel HA. Growth Performance, Meat Quality and Antioxidant Status of Sheep Supplemented with Tannins: A Meta-Analysis. Animals (Basel) 2021; 11:3184. [PMID: 34827916 PMCID: PMC8614576 DOI: 10.3390/ani11113184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with tannins (TANs) on productive performance, carcass characteristics, meat quality, oxidative stability, and blood serum antioxidant capacity of sheep through a meta-analysis. Using Scopus, Web of Science, ScienceDirect, and PubMed databases, a systematic search was performed for studies published in scientific journals that investigated the effects of TANs supplementation on the variables of interest. Only studies with weaned or older sheep were included. The data analyzed were extracted from 53 peer-reviewed publications. The sheep included in the present study were between 2 and 6 months old, and between 12 and 31 kg of body weight. The effects of TANs were analyzed using random-effects statistical models to examine the standardized mean difference (SMD) between treatments with TANs and control (no TANs). Heterogeneity was explored by meta-regression and a subgroup analysis was performed for covariates that were significant. Supplementation with TANs did not affect dry matter intake, pH, color (L* and b*), Warner-Bratzler shear force, cooking loss and meat chemical composition (p > 0.05). Supplementation with TANs increased daily weight gain (SMD = 0.274, p < 0.05), total antioxidant capacity (SMD = 1.120, p < 0.001), glutathione peroxidase enzyme activity (SMD = 0.801, p < 0.001) and catalase (SMD = 0.848, p < 0.001), and decreased malondialdehyde (MDA) concentration in blood serum (SMD = -0.535, p < 0.05). Supplementation with TANs decreased feed conversion rate (SMD = -0.246, p < 0.05), and the concentration of MDA (SMD = -2.020, p < 0.001) and metmyoglobin (SMD = -0.482, p < 0.05) in meat. However, meat redness (SMD = 0.365), hot carcass yield (SMD = 0.234), cold carcass yield (SMD = 0.510), backfat thickness (SMD = 0.565) and the Longissimus dorsi muscle area (SMD = 0.413) increased in response to TANs supplementation (p < 0.05). In conclusion, the addition of tannins in sheep diets improves productive performance, antioxidant status in blood serum, oxidative stability of meat and some other characteristics related to meat and carcass quality.
Collapse
Affiliation(s)
- José Felipe Orzuna-Orzuna
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (G.D.-I.); (L.A.M.-R.)
| | - Griselda Dorantes-Iturbide
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (G.D.-I.); (L.A.M.-R.)
| | - Alejandro Lara-Bueno
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (G.D.-I.); (L.A.M.-R.)
| | - Germán David Mendoza-Martínez
- Unidad Xochimilco, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Mexico City CP 04960, Mexico;
| | - Luis Alberto Miranda-Romero
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (G.D.-I.); (L.A.M.-R.)
| | - Héctor Aarón Lee-Rangel
- Centro de Biociencias, Facultad de Agronomía y Veterinaria, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí CP 78321, Mexico;
| |
Collapse
|
33
|
Dias Batista LF, Norris AB, Adams JM, Hairgrove TB, Tedeschi LO. Technical Note: The comparison of pH and redox potential in different locations in the reticulo-rumen of growing beef steers supplemented with different levels of quebracho extract. J Anim Sci 2021; 99:6365690. [PMID: 34490880 DOI: 10.1093/jas/skab260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022] Open
Abstract
Rumen acidosis is a common metabolic disorder occurring when organic acid production exceeds clearance capacity, reducing ruminal pH. The occurrence of acidosis has been directly correlated to the ratio of concentrate to forage in the diet. However, rates of substrate fermentation and acid absorption vary at different locations in the reticulo-rumen. The objective of this study was to determine the pH and redox potential (Eh) in different locations of the reticulo-rumen using 16 ruminally cannulated steers (309 ± 43 kg) receiving different supplementation levels of quebracho extract (QT; Schinopsis balansae) within a grower type diet (CP: 13.4%; total digestible nutrients [TDN]: 70.4%; and ME: 2.55 Mcal/kg, dry matter [DM] basis). Animals were randomly assigned to one of four dietary treatments: QT at 0%, 1%, 2%, and 3% of DM (QT0, QT1, QT2, and QT3, respectively), containing about 0%, 0.7%, 1.4%, and 2.1% of condensed tannins (CT), DM basis, respectively. Animals were adapted to the basal diet for 12 d before being introduced to predetermined treatments for 4 weeks (wk), with diets provided twice daily to allow ad libitum intake. Weekly measurements of ruminal fluid pH and Eh were taken 4 h post-feeding using a portable pH meter with two probes (pH and redox) in four locations of the reticulo-rumen (reticulum, cranial sac, dorsal sac, and ventral sac). Data were analyzed using a random coefficients model with the pen as a random effect and wk as repeated measures, with DM intake included as a covariate. There was no interaction among treatments, location, and wk (P ≥ 0.882) on reticulo-ruminal pH. Overall, ruminal pH was lower for QT0 and QT1 compared to QT3 (P < 0.001). The pH in the reticulum was greater than those of the ventral and dorsal sacs (6.05 vs. 5.94, 5.89, respectively; P ≤ 0.001) but similar to cranial sac (6.00). Reticular pH was positively correlated with the ruminal locations (≥0.78; P < 0.001). The linear equation to estimate ruminal mean pH using reticulum pH had an intercept and slope different from zero (P ≤ 0.04), but CT (% DM) was not different from zero (P = 0.15), root mean square error of 0.15, and R2 of 0.778: 0.723 (±0.36) + 0.857 (±0.059) × reticulum pH + 0.033 (±0.023) × CT. The Eh was lower for QT0 in week 1 than all other treatments (P < 0.001). We concluded that reticulo-ruminal pH differs among locations in the rumen regardless of QT supplementation level and days on feed, with reticular pH being the highest.
Collapse
Affiliation(s)
- Luiz F Dias Batista
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Aaron B Norris
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jordan M Adams
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Thomas B Hairgrove
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
34
|
Dillon JA, Stackhouse-Lawson KR, Thoma GJ, Gunter SA, Rotz CA, Kebreab E, Riley DG, Tedeschi LO, Villalba J, Mitloehner F, Hristov AN, Archibeque SL, Ritten JP, Mueller ND. Current state of enteric methane and the carbon footprint of beef and dairy cattle in the United States. Anim Front 2021; 11:57-68. [PMID: 34513270 DOI: 10.1093/af/vfab043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jasmine A Dillon
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Greg J Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Stacey A Gunter
- Southern Plains Range Research Station, USDA Agricultural Research Service, Woodward, OK, USA
| | - C Alan Rotz
- Pasture Systems and Watershed Management Research Unit, USDA Agricultural Research Service, University Park, PA, USA
| | - Ermias Kebreab
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - David G Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Juan Villalba
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Frank Mitloehner
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Shawn L Archibeque
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - John P Ritten
- Department of Agricultural and Applied Economics, University of Wyoming, Laramie, WY, USA
| | - Nathaniel D Mueller
- Department of Ecosystem Science & Sustainability, Colorado State University, Fort Collins, CO, USA.,Department of Crop & Soil Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
35
|
Effects of Dietary Tannins’ Supplementation on Growth Performance, Rumen Fermentation, and Enteric Methane Emissions in Beef Cattle: A Meta-Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su13137410] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The environmental sustainability of beef production is a significant concern within the food production system. Tannins (TANs) can be used to minimize the environmental impact of ruminant production because they can improve ruminal fermentation and ruminants’ lifetime performances and mitigate methane (CH4) emissions. The objective of this study was to evaluate the effects of dietary supplementation with TANs as sustainable natural alternative to reduce the environmental impact on growth performance, rumen fermentation, enteric CH4 emissions, and nitrogen (N) use efficiency of beef cattle through a meta-analysis. A comprehensive search of studies published in scientific journals that investigated the effects of TANs’ supplementation on the variables of interest was performed using the Scopus, Web of Science, and PubMed databases. The data analyzed were extracted from 32 peer-reviewed publications. The effects of TANs were assessed using random-effects statistical models to examine the standardized mean difference (SMD) between TANs’ treatments and control (non-TANs). The heterogeneity was explored by meta-regression and subgroup analysis was performed for the covariates that were significant. TANs’ supplementation did not affect weight gain, feed consumption, feed efficiency, or N use efficiency (p > 0.05). However, it reduced the concentration of ammonia nitrogen in rumen (SMD = −0.508, p < 0.001), CH4 emissions per day (SMD = −0.474, p < 0.01) and per unit dry matter intake (SMD = −0.408, p < 0.01), urinary N excretion (SMD = −0.338, p < 0.05), and dry matter digestibility (SMD = −0.589, p < 0.001). Ruminal propionate (SMD = 0.250) and butyrate (SMD = 0.198) concentrations and fecal N excretion (SMD = 0.860) improved in response to TANs’ supplementation (p < 0.05). In conclusion, it is possible to use TANs as a CH4 mitigation strategy without affecting cattle growth rate. In addition, the shift from urinary to fecal N may be beneficial for environment preservation, as urinary N induces more harmful emissions than fecal N. Therefore, the addition of tannins in the diet of beef cattle could be used as a sustainable natural alternative to reduce the environmental impact of beef production.
Collapse
|