1
|
Mohanta R, Maiti P, Sharangi AB, Roy S, Hazra S, Chakraborty S, Ghorai S. Directed mutagenesis in fruit crops. 3 Biotech 2025; 15:104. [PMID: 40177007 PMCID: PMC11958931 DOI: 10.1007/s13205-025-04268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Fruit crops are rich source of important vitamins, minerals, and dietary fibres. They are essential for global agriculture with respect to nutritional security. Globally, there is a rapid decline in the genetic base of fruit crops warranting breeding strategies to overcome the challenge. Applied mutagenesis has emerged as a viable approach for the focused enhancement of fruit crops utilizing precise genetic alterations to increase a variety of desirable characteristics. However, traditional mutagenesis using physical and chemical mutagens are majorly random in nature. Directed mutagenesis with advancements in genetic engineering and molecular technology allows precise manipulation of genes, which facilitates the efficient and precise knockout of target genes and the targeted insertion or modification of specific DNA sequences within the genome via homologous recombination (HR)-mediated gene replacement. This review presents an in-depth exploration of several directed mutagenesis techniques including CRISPR-Cas9, TILLING, TALEN, MutMap, and MutMap + emphasizing their transformative applications in fruit crops. It also discusses about space mutagenesis. These advanced techniques empower researchers to precisely introduce specific mutations into the genome, skilfully altering gene expression and reshaping protein function with remarkable precision. This review highlights successful examples of directed mutagenesis in a variety of fruit crops such as apples, grapes, citrus, and strawberries and elucidates the impact of directed mutagenesis on traits such as fruit size, colour, flavour, shelf-life, and resistance to diseases and environmental stresses.
Collapse
Affiliation(s)
- Rajdeep Mohanta
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Payal Maiti
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal & Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Sourav Roy
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Souvik Chakraborty
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Subhadwip Ghorai
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| |
Collapse
|
2
|
Hu J, Liu M, Wang D, Liang Y, Zong Y, Li Y, Cao D, Liu B. Transcriptional and genetic characteristic of chimera pea generation via double ethyl methanesulfonate-induced mutation revealed by transcription analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1439547. [PMID: 39411652 PMCID: PMC11473339 DOI: 10.3389/fpls.2024.1439547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Ethyl methanesulfonate (EMS)-induced mutagenesis is a prominent method for generating plant mutants, often resulting in chimera plants; however, their transcriptional and genetic characteristic remain elusive. In this investigation, chimera pea (Pisum sativum L.) specimens, labeled GY1 and GY2, exhibiting a distinctive phenotype with yellow and green leaves were meticulously cultivated via sequential double EMS mutagenesis. The observed color disparity between the yellow and green leaves was attributed to a significant reduction in chlorophyll content coupled with heightened lutein levels in both chimeric variants. Transcriptome profiling revealed the enrichment of differentially expressed genes in both GY1 and GY2, specifically implicating Kyoto Encyclopedia of Genes and Genomes pathways linked to amino acid biosynthesis and ribosome development, alongside Gene Ontology (GO) biological processes linked with stress response mechanisms. Few structural genes associated with chlorophyll and lutein biosynthesis exhibited discernible differential expression. Despite these functional similarities, distinctive nuances were evident between specimens, with GY1 exhibiting enrichment in GO pathways related to chloroplast development and GY2 showing enrichment for ribosome development pathways. Single-nucleotide polymorphism (SNP) analysis uncovered a shared pool of 599 and 598 polymorphisms in the yellow and green leaves of GY1 and GY2, respectively, likely stemming from the initial EMS mutagenesis step. Further investigation revealed an increased number of unique SNPs in the yellow leaves following the second EMS application, whereas the green leaves exhibited sparse and unique SNP occurrences, suggestive of potential evasion from secondary mutagenesis. This inherent genetic variability underpins the mechanism underlying the formation of chimera plants. Predominant base mutations induced by EMS were characterized by G/A and C/T transitions, constituting 74.1% of the total mutations, aligning with established EMS mutation induction paradigms. Notably, genes encoding the eukaryotic translation initiation factor eIIso4G and the ubiquitin ligase RKP, known to modulate leaf color in model plants, harbored two SNPs in the yellow leaves of both GY1 and GY2, implicating their putative role in the yellow leaf phenotype. Collectively, this study provides novel insights into the transcriptional and genetic characteristics of chimera plants via EMS-induced mutagenesis.
Collapse
Affiliation(s)
- Jinglei Hu
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingxia Liu
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Dongxia Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Yunlong Liang
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Yun Li
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Cao
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Baolong Liu
- Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang W, Miller CA, Wilson MJ. Assessment of the In Vitro Phosphatidylinositol Glycan Class A (PIG-A) Gene Mutation Assay Using Human TK6 and Mouse Hepa1c1c7 Cell Lines. J Xenobiot 2024; 14:1293-1311. [PMID: 39311152 PMCID: PMC11417843 DOI: 10.3390/jox14030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Gene mutations linked to diseases like cancer may be caused by exposure to environmental chemicals. The X-linked phosphatidylinositol glycan class A (PIG-A) gene, required for glycosylphosphatidylinositol (GPI) anchor biosynthesis, is a key target locus for in vitro genetic toxicity assays. Various organisms and cell lines may respond differently to genotoxic agents. Here, we compared the mutagenic potential of directly genotoxic ethyl methane sulfonate (EMS) to metabolically activated pro-mutagenic polycyclic aromatic hydrocarbons (PAHs). The two classes of mutagens were compared in an in vitro PIG-A gene mutation test using the metabolically active murine hepatoma Hepa1c1c7 cell line and the human TK6 cell line, which has limited metabolic capability. Determination of cell viability is required for quantifying mutagenicity. Two common cell viability tests, the MTT assay and propidium iodide (PI) staining measured by flow cytometry, were evaluated. The MTT assay overestimated cell viability in adherent cells at high benzo[a]pyrene (B[a]P) exposure concentrations, so PI-based cytotoxicity was used in calculations. The spontaneous mutation rates for TK6 and Hepa1c1c7 cells were 1.87 and 1.57 per million cells per cell cycle, respectively. TK6 cells exposed to 600 µM and 800 µM EMS showed significantly higher mutation frequencies (36 and 47 per million cells per cell cycle, respectively). Exposure to the pro-mutagen benzo[a]pyrene (B[a]P, 10 µM) did not increase mutation frequency in TK6 cells. In Hepa1c1c7 cells, mutation frequencies varied across exposure groups (50, 50, 29, and 81 per million cells per cell cycle when exposed to 10 µM B[a]P, 5-methylcholanthrene (5-MC), chrysene, or 16,000 µM EMS, respectively). We demonstrate that the choice of cytotoxicity assay and cell line can determine the outcome of the Pig-A mutagenesis assay when assessing a specific mutagen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Charles A. Miller
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Mark J. Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
- Chemical Insights Research Institute of Underwriters Laboratories Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
4
|
Guo Z, Wang S, Wang Y, Wang Z, Ou G. A machine learning enhanced EMS mutagenesis probability map for efficient identification of causal mutations in Caenorhabditis elegans. PLoS Genet 2024; 20:e1011377. [PMID: 39186782 PMCID: PMC11379379 DOI: 10.1371/journal.pgen.1011377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/06/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.
Collapse
Affiliation(s)
- Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Shimin Wang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yang Wang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zi Wang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Li X, Cui X, Ran R, Chen G, Zhao P. Genomic variation induced by a low concentration of ethyl methanesulfonate (EMS) in quinoa 'Longli-4' variety. BOTANICAL STUDIES 2024; 65:15. [PMID: 38967711 PMCID: PMC11226418 DOI: 10.1186/s40529-024-00427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Quinoa (Chenopodium quinoa, 2n = 4x = 36), a super pseudocereal crop, has been introduced into China nearly 60 years. Many excellent varieties have been developed through massive selection; however, few are developed through mutagenesis breeding. In this study, the 'Longli-4' variety, locally cultivated in Gansu province, Northwest China, was selected for experimentation. The grains of 'Longli-4' were treated with ethyl methanesulfonate (EMS) at a concentration of 0.8% for 8 h. Nine plants from independent M2 families were randomly selected to investigate the mutagenesis effect of EMS on the quinoa genome. The results indicated that the single nucleotide polymorphisms (SNPs) induced by EMS were unevenly distributed across all 18 chromosomes, with an average mutation frequency of 91.2 SNPs/Mb, ranging from 4.5 to 203.5 SNPs/Mb. A significant positive correlation between the number of SNPs and chromosome length was identified through linear model analysis. Transitions from G/C to A/T were the most predominated in all variant categories, accounting for 34.4-67.2% of the mutations, and SNPs were significantly enriched in intergenic regions, representing 69.2-75.1% of the total mutations. This study provides empirical support for the application of low concentration EMS treatment in quinoa breeding.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyun Cui
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China
| | - Ruilan Ran
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoxiong Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, P. R. China
| | - Pengshan Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P. R. China.
| |
Collapse
|
6
|
Bergis-Ser C, Reji M, Latrasse D, Bergounioux C, Benhamed M, Raynaud C. Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity. NATURE PLANTS 2024; 10:857-873. [PMID: 38658791 DOI: 10.1038/s41477-024-01678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.
Collapse
Affiliation(s)
- Clara Bergis-Ser
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Meega Reji
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, India
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
- Institut Universitaire de France, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France.
| |
Collapse
|
7
|
Quiroz D, Oya S, Lopez-Mateos D, Zhao K, Pierce A, Ortega L, Ali A, Carbonell-Bejerano P, Yarov-Yarovoy V, Suzuki S, Hayashi G, Osakabe A, Monroe G. H3K4me1 recruits DNA repair proteins in plants. THE PLANT CELL 2024; 36:2410-2426. [PMID: 38531669 PMCID: PMC11132887 DOI: 10.1093/plcell/koae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.
Collapse
Affiliation(s)
- Daniela Quiroz
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
| | - Satoyo Oya
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Kehan Zhao
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Alice Pierce
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Lissandro Ortega
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alissza Ali
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sae Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Tang W, Chen H, Zhang S, Tang J, Lin J, Fang X, Chen G, Zhang Y. A Novel Allele in the Promoter of Wx Decreases Gene Expression and Confers Lower Apparent Amylose Contents in Japonica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:745. [PMID: 38475591 DOI: 10.3390/plants13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Wx is the key gene that controls amylose content (AC), and various alleles have been found in rice populations. Wxb is the major allele in japonica and produces moderate AC (15~18%). It was recently found that editing the promoter of Wx could produce a series of alleles that have different Wx activities. Although some studies have edited the promoter, few studies have focused on the natural variations in Wx. Here, we used the Rice3K database to investigate variations in the Wx promoter and found that the allele Wx1764178 (A/G) has a higher LD (linkage disequilibrium) with the two key SNPs (1765751, T/G; 1768006, A/C), which could produce different Wx alleles and influence AC, as reported previously. Further study showed that the Wx1764178 allele (A/G) is functional and influences the expression of Wx positively. Editing the A allele using CRISPR‒Cas9 produced 36 and 3 bp deletions and caused a decrease in the expression of Wx. The apparent amylose content (AAC) in the edited lines was decreased by 7.09% and 11.50% compared with that of the wild type, which was the japonica variety Nipponbare with Wxb and the A allele at 1764178, while a complementary line with the G allele showed a lower AAC than the A allele with no effect on other agronomic traits. The AAC of the edited lines showed a higher increase than that of the wild type (Nipponbare, Wxb) in low-nitrogen conditions relative to high-nitrogen conditions. We also developed a dCAPS marker to identify the allele and found that the G allele has widely been used (82.95%) in japonica-bred varieties from Jiangsu Province, China. Overall, we found a functional allele (Wx1764178, A/G) in the Wx promoter that could affect AAC in japonica cultivars and be developed as markers for quality improvement in rice breeding programs.
Collapse
Affiliation(s)
- Weijie Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Haiyuan Chen
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Suobing Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Jun Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Jing Lin
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A, Khan A, Parasa SP, Wei S, Lu Z, Tello-Ruiz MK, Dhiman P, Burow G, Hayes C, Chen J, Brandizzi F, Mortimer J, Ware D, Xin Z. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1543-1557. [PMID: 38100514 DOI: 10.1111/tpj.16582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Collapse
Affiliation(s)
- Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chris Daum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sai-Praneeth Parasa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jenny Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| |
Collapse
|
10
|
Gupta P, Dholaniya PS, Princy K, Madhavan AS, Sreelakshmi Y, Sharma R. Augmenting tomato functional genomics with a genome-wide induced genetic variation resource. FRONTIERS IN PLANT SCIENCE 2024; 14:1290937. [PMID: 38328621 PMCID: PMC10848261 DOI: 10.3389/fpls.2023.1290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Induced mutations accelerate crop improvement by providing novel disease resistance and yield alleles. However, the alleles with no perceptible phenotype but have an altered function remain hidden in mutagenized plants. The whole-genome sequencing (WGS) of mutagenized individuals uncovers the complete spectrum of mutations in the genome. Genome-wide induced mutation resources can improve the targeted breeding of tomatoes and facilitate functional genomics. In this study, we sequenced 132 doubly ethyl methanesulfonate (EMS)-mutagenized lines of tomato and detected approximately 41 million novel mutations and 5.5 million short InDels not present in the parental cultivar. Approximately 97% of the genome had mutations, including the genes, promoters, UTRs, and introns. More than one-third of genes in the mutagenized population had one or more deleterious mutations predicted by Sorting Intolerant From Tolerant (SIFT). Nearly one-fourth of deleterious genes mapped on tomato metabolic pathways modulate multiple pathway steps. In addition to the reported GC>AT transition bias for EMS, our population also had a substantial number of AT>GC transitions. Comparing mutation frequency among synonymous codons revealed that the most preferred codon is the least mutagenic toward EMS. The validation of a potato leaf-like mutation, reduction in carotenoids in ζ-carotene isomerase mutant fruits, and chloroplast relocation loss in phototropin1 mutant validated the mutation discovery pipeline. Our database makes a large repertoire of mutations accessible to functional genomics studies and breeding of tomatoes.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Kunnappady Princy
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Athira Sethu Madhavan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
11
|
Till BJ. Identification of Induced Copy Number Variation from Low Coverage Sequence Data. Methods Mol Biol 2024; 2787:141-152. [PMID: 38656487 DOI: 10.1007/978-1-0716-3778-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.
Collapse
Affiliation(s)
- Bradley J Till
- Veterinary Genetics Laboratory, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Koh HG, Kim J, Rao CV, Park SJ, Jin YS. Construction of a Compact Array of Microplasma Jet Devices and Its Application for Random Mutagenesis of Rhodosporidium toruloides. ACS Synth Biol 2023; 12:3406-3413. [PMID: 37864563 DOI: 10.1021/acssynbio.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A small and efficient DNA mutation-inducing machine was constructed with an array of microplasma jet devices (7 × 1) that can be operated at atmospheric pressure for microbial mutagenesis. Using this machine, we report disruption of a plasmid DNA and generation of mutants of an oleaginous yeast Rhodosporidium toruloides. Specifically, a compact-sized microplasma channel (25 × 20 × 2 mm3) capable of generating an electron density of greater than 1013 cm-3 was constructed to produce reactive species (N2*, N2+, O, OH, and Hα) under helium atmospheric conditions to induce DNA mutagenesis. The length of microplasma channels in the device played a critical role in augmenting both the volume of plasma and the concentration of reactive species. First, we confirmed that microplasma treatment can linearize a plasmid by creating nicks in vitro. Second, we treated R. toruloides cells with a jet device containing 7 microchannels for 5 min; 94.8% of the treated cells were killed, and 0.44% of surviving cells showed different colony colors as compared to their parental colony. Microplasma-based DNA mutation is energy-efficient and can be a safe alternative for inducing mutations compared to conventional methods using toxic mutagens. This compact and scalable device is amenable for industrial strain improvement involving large-scale mutagenesis.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jinhong Kim
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Sung-Jin Park
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Salman AS, Alkhatib SN, Ahmed FM, Hamouda RA. Chitosan Nanoparticles Loaded with Capparis cartilaginea Decne Extract: Insights into Characterization and Antigenotoxicity In Vivo. Pharmaceutics 2023; 15:2551. [PMID: 38004531 PMCID: PMC10675202 DOI: 10.3390/pharmaceutics15112551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Plant-based foods may enhance the prevention of cancer. The present investigation aimed to assess the antigenotoxic effects of chitosan nanoparticles (CNPs) when loaded with the ethanol extract of C. cartilaginea (CNPs/Cc). Synthesis of CNPs and CNPs/Cc and their characterization were carried out using TEM, EDS, DSC, and Zeta potential. For in vivo experiments, animal groups were treated in the following groups: negative control, ethyl methanesulfonate (EMS) (240 mg/kg), CNPs (350 mg/kg), high and low doses of CNPs/Cc, CNPs plus EMS, high dose of CNPs/Cc plus EMS, and low dose of CNPs/Cc plus EMS. Bone marrow chromosomal aberrations and sperm shape abnormalities were examined. TEM results showed that CNPs and CNPs/Cc are spherical particles. CNPs' physical stability was observed to be lower than that of CNPs/Cc due to the presence of more positive charges on CNPs/Cc. EMS significantly enhanced chromosomal abnormalities and sperm shape abnormalities. CNPs showed powerful antigenotoxic properties. For the first time, it could be concluded that loading chitosan nanoparticles with C. cartilaginea extract significantly promotes its protective properties.
Collapse
Affiliation(s)
- Asmaa S. Salman
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
- Genetic and Cytology Department, Biotechnology Research Institute, National Research Center, Cairo 12622, Egypt
| | - Shaza N. Alkhatib
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
| | - Fatimah M. Ahmed
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
| | - Ragaa A. Hamouda
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
14
|
Yamazaki K, Sotta N, Fujiwara T. M 2 plants derived from different tillers of a chemically mutagenized rice M 1 plant carry independent sets of mutations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:597-603. [PMID: 37433661 DOI: 10.1111/tpj.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Generation of mutant populations with high genetic diversity is key for mutant screening and crop breeding. For this purpose, the single-seed descent method, in which one mutant line is established from a single mutagenized seed, is commonly used. This method ensures the independence of the mutant lines, but the size of the mutant population is limited because it is no greater than the number of fertile M1 plants. The rice mutant population size can be increased if a single mutagenized plant produces genetically independent siblings. Here, we used whole-genome resequencing to examine the inheritance of mutations from a single ethyl methanesulfonate (EMS)-mutagenized seed (M1 ) of Oryza sativa in its progeny (M2 ). We selected five tillers from each of three M1 plants. A single M2 seed was selected from each tiller, and the distributions of mutations induced by EMS were compared. Surprisingly, in most pairwise combinations of M2 siblings from the same parent, ≥85.2-97.9% of all mutations detected were not shared between the siblings. This high percentage suggests that the M2 siblings were derived from different cells of the M1 embryo and indicates that several genetically independent lines can be obtained from a single M1 plant. This approach should allow a large reduction in the number of M0 seeds needed to obtain a mutant population of a certain size in rice. Our study also suggests that multiple tillers of a rice plant originate from different cells of the embryo.
Collapse
Affiliation(s)
- Kiyoshi Yamazaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoyuki Sotta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
15
|
Monroe JG. Potential and limits of (mal)adaptive mutation rate plasticity in plants. THE NEW PHYTOLOGIST 2023; 237:2020-2026. [PMID: 36444532 DOI: 10.1111/nph.18640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Genetic mutations provide the heritable material for plant adaptation to their environments. At the same time, the environment can affect the mutation rate across plant genomes. However, the extent to which environmental plasticity in mutation rates can facilitate or hinder adaptation remains a longstanding and unresolved question. Emerging discoveries of mechanisms affecting mutation rate variability provide opportunities to consider this question in a new light. Links between chromatin states, transposable elements, and DNA repair suggest cases of adaptive mutation rate plasticity could occur. Yet, numerous evolutionary and biological forces are expected to limit the impact of any such mutation rate plasticity on adaptive evolution. Persistent uncertainty about the significance of mutation rate plasticity on adaptation motivates new experimental and theoretical research relevant to understanding plant responses in changing environments.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Chen L, Duan L, Sun M, Yang Z, Li H, Hu K, Yang H, Liu L. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. FRONTIERS IN PLANT SCIENCE 2023; 13:1052569. [PMID: 36684716 PMCID: PMC9846265 DOI: 10.3389/fpls.2022.1052569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ethyl methanesulfonate (EMS)-induced mutagenesis is a powerful tool to generate genetic resource for identifying untapped genes and characterizing the function of genes to understand the molecular basis of important agronomic traits. This review focuses on application of contemporary EMS mutagenesis in the field of plant development and abiotic stress tolerance research, with particular focuses on reviewing the mutation types, mutagenesis site, mutagen concentration, mutagenesis duration, the identification and characterization of mutations responsible for altered stress tolerance responses. The application of EMS mutation breeding combined with genetic engineering in the future plant breeding and fundamental research was also discussed. The collective information in this review will provide good insight on how EMS mutagenesis is efficiently applied to improve abiotic stress tolerance of crops with the utilization of Next-generation sequencing (NGS) for mutation identification.
Collapse
Affiliation(s)
- Liuzhu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Minghui Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
17
|
Jankowicz-Cieslak J, Hofinger BJ, Jarc L, Junttila S, Galik B, Gyenesei A, Ingelbrecht IL, Till BJ. Spectrum and Density of Gamma and X-ray Induced Mutations in a Non-Model Rice Cultivar. PLANTS (BASEL, SWITZERLAND) 2022; 11:3232. [PMID: 36501272 PMCID: PMC9741009 DOI: 10.3390/plants11233232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.
Collapse
Affiliation(s)
- Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Bernhard J. Hofinger
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Luka Jarc
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Sini Junttila
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku, Tykistökatu 6, 20520 Turku, Finland
- Medical Bioinformatics Centre, Turku Bioscience Centre, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Bence Galik
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility Szentágothai Research Centre, University of Pécs, H-7622 Pecs, Hungary
| | - Attila Gyenesei
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility Szentágothai Research Centre, University of Pécs, H-7622 Pecs, Hungary
| | - Ivan L. Ingelbrecht
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Bradley J. Till
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
- Veterinary Genetics Laboratory, University of California, Old Davis Road, Davis, CA 95616, USA
| |
Collapse
|
18
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
19
|
Yilmazer M, Bayrak B, Kartal B, Uzuner SK, Palabiyik B. Identification of Schizosaccharomyces pombe ird Mutants Resistant to Glucose Suppression and Oxidative Stress. Folia Biol (Praha) 2021; 67:163-173. [PMID: 35439849 DOI: 10.14712/fb2021067050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glucose is both the favourite carbon and energy source and acts as a hormone that plays a regulating role in many biological processes. Calorie restriction extends the lifespan in many organisms, including Schizosaccharomyces pombe, while uptake of high glucose leads to undesired results, such as diabetes and aging. In this study, sequence analysis of Schizosaccharomyces pombe ird5 and ird11 mutants was performed using next-generation sequencing techniques and a total of 20 different mutations were detected. ird11 is resistant to oxidative stress without calorie restriction, whereas ird5 displays an adaptive response against oxidative stress. We selected nine candidate mutations located in the non-coding (6) and coding (3) region among a total of 20 different mutations. The nine candidate mutations, which are thought to be responsible for ird5 and ird11 mutant phenotypes, were investigated via forward and backward mutations by using various cloning techniques. The results of this study provide report-like information that will contribute to understanding the relationship between glucose sensing/ signalling and oxidative stress response components.
Collapse
Affiliation(s)
- M Yilmazer
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - B Bayrak
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34116, Istanbul, Turkey
| | - B Kartal
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34116, Istanbul, Turkey
| | - S K Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - B Palabiyik
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|