1
|
Bai L, Guan Z, Zhang J, Lv Z, Duan Y, Tian S. Poliumoside Exhibits Neuroprotective Effects against Cerebral Ischemia-Reperfusion Injury by Relieving Microglia-Mediated Neuronal Damage and Astrocytic Activation. ACS Chem Neurosci 2025; 16:1780-1791. [PMID: 40295176 DOI: 10.1021/acschemneuro.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Excessive activation of microglia contributes to neuronal damage and astrocytic activation during cerebral ischemia and hypoxia. Poliumoside (Pol) is a caffeoylated phenylpropanoid glycoside with significant anti-inflammatory and antioxidant functions. However, whether Pol can mediate microglia-mediated neurotoxicity in the ischemic brain remains nebulous. Here, a cerebral ischemia-reperfusion injury (CI/RI) mouse model was conducted to investigate Pol's role in microglial activation and neurotoxicity. We found that Pol significantly reduced neurological deficits, cerebral infarction volume, and neuronal damage in the CI/RI mouse model. Pol inhibited proinflammatory cytokines and microglial and astrocytic activation, while enhancing anti-inflammatory cytokines. Mechanistically, Pol markedly suppressed Fstl1, NF-κB phosphorylation, and the Nlrp3-Asc-Caspase1 inflammasome. In the oxygen-glucose-deprivation (OGD)-mediated BV2 microglia, Fstl1 overexpression significantly enhanced microglial activation. The conditioned medium of Fstl1-overexpressed microglia promoted astrocytic activation and neuronal injuries. However, Pol treatment or NF-κB pathway inhibition reversed Fstl1-mediated effects. In conclusion, Pol restrained microglia-modulated neuroinflammation and neurotoxicity in the cerebral hypoxic-ischemic model by restraining the Fstl1-NF-κB pathway.
Collapse
Affiliation(s)
- Liping Bai
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Zhiming Guan
- Department of respiratory, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jianwen Zhang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Zhigan Lv
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Yinglei Duan
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Shouyuan Tian
- Department of Anesthesiology, Cancer Hospital Affiliated Shanxi Medical University, Taiyuan 030013, China
| |
Collapse
|
2
|
Luo X, Niu JY, Chen HS. The potential value of traditional Chinese medicine monomers in cerebral ischemia-reperfusion injury: a network meta-analysis based on animal model. BMC Complement Med Ther 2025; 25:163. [PMID: 40325432 PMCID: PMC12051284 DOI: 10.1186/s12906-025-04899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological process, which can further aggravate the damage of ischemic tissues. Traditional Chinese medicine (TCM) monomers, bioactive compounds extracted from Chinese herbal medicines, have been demonstrated to have various protective effects against reperfusion injury. This network meta-analysis (NMA) aimed to investigate the optimal treatment strategy of TCM monomers for CIRI in animal models. METHODS Four databases including PubMed, Embase, Web of Science, and Cochrane were searched up to January 06, 2024. First, prospective registration was done at PROSPERO (ID: CRD42024496289), the quality of the included studies was evaluated with SYRCLE's risk of bias tool, and statistical analysis was conducted with Stata Version 18.0 and RStudio. RESULTS In total, 26 studies were included, involving 506 animals and 12 TCM monomers. The results of a meta-analysis demonstrated that, compared to the control group, puerarin, paeoniflorin, hydroxysafflor yellow A, sinomenine, and salvianolic acid significantly reduced mNSS scores. Furthermore, ginsenoside, scutellarin, and baicalein significantly reduced Longa scores. In addition, salvianolic acid treatment significantly decreased brain water content. Regarding infarct volume, bilobalide, baicalein and puerarin all demonstrated remarkable effects. The network meta-analysis suggested that paeoniflorin might be the most effective intervention in terms of mNSS score, with a surface under the cumulative ranking curve (SUCRA) value of 92.8%; Scutellarin might be the most effective intervention to reduce Longa score (SUCRA = 87.6%); And salvianolic acid might be the most effective intervention to reduce brain water content (SUCRA = 98.2%); For infarct volume specifically, bilobalide may be the most effective intervention (SUCRA = 95.5%). In our meta-regression, we found that dose and duration of treatment may contribute to heterogeneity among mNSS studies. CONCLUSION TCM monomers could provide a favorable neuroprotection on CIRI, with heterogeneous protective effects. Given the small number and the differences in quality of included studies, more high-quality, programmatic animal studies were needed to validate our findings. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xin Luo
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Jing-Yuan Niu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China.
| |
Collapse
|
3
|
Guo Y, Li J, Liu X, Ding H, Zhang W. Potential therapeutic targets for ischemic stroke in pre-clinical studies: Epigenetic-modifying enzymes DNMT/TET and HAT/HDAC. Front Pharmacol 2025; 16:1571276. [PMID: 40356977 PMCID: PMC12066669 DOI: 10.3389/fphar.2025.1571276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and disability worldwide, driven by genetic predispositions and environmental interactions, with epigenetics playing a pivotal role in mediating these processes. Specific modifying enzymes that regulate epigenetic changes have emerged as promising targets for IS treatment. DNA methyltransferases (DNMTs), ten-eleven translocation (TET) dioxygenases, histone acetyltransferases (HATs), and histone deacetylases (HDACs) are central to epigenetic regulation. These enzymes maintain a dynamic balance between DNA methylation/demethylation and histone acetylation/deacetylation, which critically influences gene expression and neuronal survival in IS. This review is based on both in vivo and in vitro experimental studies, exploring the roles of DNMT/TET and HAT/HDAC in IS, evaluating their potential as therapeutic targets, and discussing the use of natural compounds as modulators of these enzymes to develop novel treatment strategies.
Collapse
Affiliation(s)
- Yurou Guo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaodan Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Huang Ding
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Wei Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| |
Collapse
|
4
|
Li JT, Ou D, Shi YM, Bao L, Li YL, Xiong TT, Bai Y, Ding H. Post-cerebral ischemia energy crisis: the role of glucose metabolism in the energetic crisis. Brain Inj 2025:1-11. [PMID: 40237246 DOI: 10.1080/02699052.2025.2492751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/23/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Cells universally employ an efficiency-driven metabolic switch mechanism during nutritional changes, growth, and differentiation, transitioning from oxidative phosphorylation (OXPHOS) to glycolysis to ensure survival under hypoxic conditions or high energy demands. In cerebral ischemia, inadequate blood supply causes oxygen and energy deprivation, prompting brain cells to initiate glycolytic reprogramming to meet urgent energy needs. While this adaptation is a temporary solution, it may lead to lactic acidosis, aggravated inflammation, and increased free radical production. Prolonged reperfusion with sustained glycolysis can exacerbate brain cell damage, potentially causing irreversible harm. OBJECTIVES This review systematically examines the dynamic changes in glucose metabolic transport mechanisms and the roles of immediate, early, intermediate, and late responder cells, along with their regulatory factors, in glycolytic reprogramming. METHODS Using a temporal analysis framework based on the body's natural response sequence to pathological events, we elucidate how cells at different stages collaborate to address glucose metabolism reprogramming under pathological conditions. CONCLUSIONS Reversing glucose metabolism reprogramming and inhibiting glycolysis may improve the pathological processes of ischemic stroke, offering potential therapeutic benefits.
Collapse
Affiliation(s)
- Jia-Ting Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Dian Ou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yi-Ming Shi
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Le Bao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yan-Ling Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ting-Ting Xiong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Bai
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Wang H, Huang Z, Chen G, Li Y, Liu Y, Gu H, Cao Y. Astragaloside IV alleviated bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and fecal metabolism. Front Pharmacol 2025; 16:1548491. [PMID: 40248089 PMCID: PMC12003300 DOI: 10.3389/fphar.2025.1548491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Background Astragaloside IV (AS-IV) is one of the most potent components of Astragalus. It has been reported to promote bone formation and inhibit osteoclastogenesis, suggesting its potential as a candidate for the prevention and treatment of postmenopausal osteoporosis (PMOP). The gut microbiota may play a crucial role in mediating the effects of AS-IV. Objective To investigate the impact of gut microbiota on the efficacy of AS-IV in treating PMOP. Methods Mice were randomly divided into three groups: Sham, ovariectomy (OVX), and AS-IV-treated OVX group (80 mg/kg). Bone loss was evaluated using Micro-CT and histopathology. Immunohistochemistry assessed specific bone markers. Inflammatory levels were measured by enzyme-linked immunosorbent assay (ELISA). Intestinal barrier function was examined via colonic histopathology and immunohistochemistry. Gut microbiota composition was analyzed by 16S rDNA sequencing, while metabolomic profiling identified key metabolites. Correlation analysis was performed to explore relationships between differential bacteria, key metabolites, and bone loss. Results AS-IV improved the femur microarchitecture and modulated bone turnover in OVX mice. AS-IV treatment strengthened the intestinal barrier function and decreased gut permeability. This compound reduced colonic oxidative stress and serum and bone marrow inflammatory cytokine production. 16S rDNA sequencing revealed that AS-IV modulated the gut microbiota composition, while metabolomic analysis showed its effects on pathways related to hormone biosynthesis, D-amino acid metabolism, and galactose metabolism. Conclusion This study provides new insights into the use of AS-IV for treating PMOP, highlighting the gut microbiota and its metabolites as key regulatory factors in AS-IV's therapeutic effects.
Collapse
Affiliation(s)
- Huichao Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yang Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Youwen Liu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yujing Cao
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Liu N, Xu Y, Gao G, Liu Y, Hu W. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal USP10 Alleviates Cerebral Ischemia-Reperfusion Injury via Stabilizing SLC7A11 by Deubiquitination. J Biochem Mol Toxicol 2025; 39:e70246. [PMID: 40192600 DOI: 10.1002/jbt.70246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 05/17/2025]
Abstract
Ubiquitination is a widespread posttranslational modification that plays an important biological regulatory role in cells. Research has reported that bone marrow mesenchymal stem cells (BMSCs) can inhibit cerebral ischemia-reperfusion injury. This study aims to explore the effect of deubiquitinating enzymes ubiquitin-specific peptidase 10 (USP10) modified BMSCs exosomes on cerebral ischemia-reperfusion injury and the underlying mechanism. PC12 cells were stimulated with oxygen-glucose deprivation/reoxygenation (OGD/R). The gene expression was detected by qRT-PCR and western blots. CCK8, EdU, and flow cytometry assays were conducted to assess cell viability, proliferation, and apoptosis, respectively. Fe2+, ROS, and GSH levels were detected to evaluate ferroptosis. Moreover, BMSCs were identified by flow cytometry, and exosomes were identified by transmission electron microscopy. The relationship between USP10 and solute carrier family 7 member 11 (SLC7A11) was confirmed by immunoprecipitation assay. In addition, the rat cerebral infarction model was conducted to explore the role of USP10-modified BMSCs exosomes in vivo. Overexpression of USP10 alleviated OGD/R-induced PC12 cell injury and ferroptosis. BMSCs exosomes could transport USP10, and USP10-modified BMSCs exosomes mitigated OGD/R-induced injury in PC12 cells. Besides, USP10 regulated SLC7A11 protein expression by mediating its deubiquitination. SLC7A11 knockdown restored the effects of USP10-modified BMSCs exosomes on OGD/R-induced PC12 cells. Moreover, USP10-modified BMSCs exosomes repressed cerebral infarction and ferroptosis in vivo. USP10-modified BMSCs exosomes protected against cerebral ischemia-reperfusion injury via mediating the deubiquitination of SLC7A11.
Collapse
Affiliation(s)
- Nannuan Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, PR China
| | - Yue Xu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, PR China
| | - Genshan Gao
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, PR China
| | - Yao Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, PR China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
7
|
Sun W, Chao G, Wu Q, Xia Y, Shang M, Wei Q, Zhou J, Liao L. Astragaloside IV improves the survival rates of retinal ganglion cells in traumatic optic neuropathy by regulating autophagy mediated by the AMPK-MTOR-ULK signaling pathway. Mol Vis 2025; 31:99-112. [PMID: 40384763 PMCID: PMC12085218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/26/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose Autophagy is involved in the pathological changes of traumatic optic neuropathy (TON), and the regulation of autophagy mediated by the AMPK-mTOR-ULK pathway is a potential therapeutic approach. Astragaloside IV (AS-IV) can regulate autophagy and play a therapeutic role in various diseases. This study aimed to observe the therapeutic effect of astragaloside on TON and the role of AMPK-MTOR-ULK pathway-mediated autophagy in this process. Methods After the TON model was established, varying doses of AS-IV were administered as an intervention. Additionally, compound C (an AMPK inhibitor) or 3-methyladenine (an autophagy inhibitor) was administered intraperitoneally in conjunction with AS-IV. Samples were collected following a 7-day intervention period. Western blot analysis was conducted to measure the protein and phosphorylation levels of AMPK, mTOR, and ULK proteins. Moreover, western blot and quantitative reverse transcription PCR assays were used to quantify LC3 levels in retinal tissue. LC3 immunofluorescence was performed to examine autophagy levels in the ganglion cell layer (GCL), while transmission electron microscopy was employed to observe autophagosomes. Additionally, BRN3A immunofluorescence was used to label retinal ganglion cells (RGCs) in the GCL, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was used to assess apoptosis within the GCL. Finally, optic nerve conduction function was evaluated using flash visual evoked potentials. Results After 7 days, the phosphorylation levels of AMPK, mTOR, and ULK proteins in retinal tissue exhibited significant changes following TON. AS-IV treatment enhanced LC3 messenger RNA and protein levels in TON model rats, and the autophagy-promoting effect of AS-IV was reversed by 3-methyladenine. Moreover, AS-IV elevated P-AMPK and P-ULK levels while decreasing P-mTOR levels. AS-IV also improved the survival rate of RGCs and reduced the P2 peak latency of flash visual evoked potentials. These effects were attenuated by the AMPK inhibitor compound C. Additionally, AS-IV increased the levels of AKT1 and P-AKT1 while decreasing P-S6RP levels in the retinal tissue of TON model rats. Conclusions AS-IV can increase the survival rate of RGCs and improve visual function after TON, which may be related to the improvement of autophagy by regulating the AMPK-MTORC1-ULK pathway.
Collapse
Affiliation(s)
- Wu Sun
- Department of Ophthalmology, Xiyuan Hospital China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Guojun Chao
- Eye Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wu
- Beijing Tongren Hospital, Beijing, China
| | - Yanting Xia
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqiu Shang
- Eye Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiping Wei
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Zhou
- Beijing University of Chinese Medicine, Beijing, China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Liao
- Beijing University of Chinese Medicine, Beijing, China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Jin X, Zhang H, Xie X, Zhang M, Wang R, Liu H, Wang X, Wang J, Li D, Li Y, Xue W, Li J, He J, Liu Y, Yao J. From Traditional Efficacy to Drug Design: A Review of Astragali Radix. Pharmaceuticals (Basel) 2025; 18:413. [PMID: 40143189 PMCID: PMC11945149 DOI: 10.3390/ph18030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Astragali Radix (AR), a traditional Chinese herbal medicine, is derived from the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus var. mongholicus, AMM) or Astragalus membranaceus (Fisch.) Bge (A. membranaceus, AM). According to traditional Chinese medicine (TCM) theory, AR is believed to tonify qi, elevate yang, consolidate the body's surface to reduce sweating, promote diuresis and reduce swelling, generate body fluids, and nourish the blood. It has been widely used to treat general weakness and chronic illnesses and to improve overall vitality. Extensive research has identified various medicinal properties of AR, including anti-tumor, antioxidant, cardiovascular-protective, immunomodulatory, anti-inflammatory, anti-diabetic, and neuroprotective effects. With advancements in technology, methods such as computer-aided drug design (CADD) and artificial intelligence (AI) are increasingly being applied to the development of TCM. This review summarizes the progress of research on AR over the past decades, providing a comprehensive overview of its traditional efficacy, botanical characteristics, drug design and distribution, chemical constituents, and phytochemistry. This review aims to enhance researchers' understanding of AR and its pharmaceutical potential, thereby facilitating further development and utilization.
Collapse
Affiliation(s)
- Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Huijuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xiaorong Xie
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Ruifeng Wang
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Hao Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xinyu Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Jiao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Dangui Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Yaling Li
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Weiwei Xue
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 404100, China;
| | - Jintian Li
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Jianxin He
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| |
Collapse
|
9
|
Li W, Zhang Y, Yan B, Luo B, Lv J. Forsythiaside A Ameliorates Oxidative Damage Caused by Cerebral Ischemia Through the Nrf2/HO-1 Signaling Pathway. Chem Biol Drug Des 2025; 105:e70083. [PMID: 40035314 DOI: 10.1111/cbdd.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Forsythiaside A (FA) has anti-inflammatory and antioxidant properties. The aim of this study was to explore the antioxidant effects and mechanisms of FA in ischemic stroke (IS). In this work, IS-related genes were obtained through GEO, GeneCards, TTD, CTD, DrugBank, and MalaCards databases. The targets of the FA were obtained from CTD, TargetNet, Super-PRED, TCMIO, and SwissTargetPrediction databases. GO analysis and KEGG pathway enrichment analysis were performed, and a protein-protein interaction (PPI) network was constructed to screen for key pathways. For in vivo assays, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in rats, and high and low doses of FA were administered. Neurological impairment score, cerebral infarction, cerebral edema, and tissue morphology were evaluated. The content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected. The expressions of cleaved caspase 3, Bax, and bcl-2, and Nrf2/HO-1 pathway-related proteins were detected by Western blot. For in vitro experiments, an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed in HT22 cells, and CCK-8 and LDH release assays were used to evaluate the effect of FA on OGD/R-induced toxicity of HT22 neurons. The Nrf2 inhibitor ML385 was used for the rescue experiments. Network pharmacology and bioinformatics analysis showed that the role of FA in treating IS was associated with oxidative stress. Topological analysis of the PPI network revealed 11 key genes, which were closely associated with the Nrf2 pathway. FA treatment could significantly reduce cerebral infarction, cerebral edema, neurological function impairment, and neuronal injury of the rats with MCAO/R. FA could also inhibit oxidative stress and neuronal apoptosis, and increase the viability of HT22 cells. In addition, FA promoted the nuclear translocation of Nrf2 and activated the Nrf2/HO-1 pathway, while ML385 weakened the protective effect of FA on neuronal viability and antioxidant capacity. In conclusion, FA attenuates the oxidative damage induced by IS by activating the Nrf2/HO-1 signaling pathway, which is a promising natural drug for IS.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ying Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bin Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
10
|
Yu L, Jin W, Deng D, Wang Y, Chen Q, Zhang Y, Wan H, Chen Y, Chen Y, He Y, Zhang L. Investigation of Anti-Apoptotic Effects and Mechanisms of Astragaloside IV in a Rat Model of Cerebral Ischemia-Reperfusion Injury. CNS Neurosci Ther 2025; 31:e70209. [PMID: 39764606 PMCID: PMC11705586 DOI: 10.1111/cns.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI). METHODS Network pharmacology was employed to identify key targets and pathways of AS-IV in CIRI therapy, combined with molecular docking to predict binding affinity. Male Sprague-Dawley rats were randomly assigned to sham, MCAO/R, AS-IV, SP600125 (JNK inhibitor), AS-IV + SP600125, and 3-n-Butylphthalide (NBP) groups. Neurobehavioral deficits were assessed, and brain tissue damage was visualized through 2,3,5-triphenyltetrazolium chloride, H&E, and TUNEL staining. Immunohistochemistry was employed to detect CytC- and caspase-3-positive cells, while Western blotting, qPCR, and ELISAs were used to analyze apoptosis-related markers. RESULTS A total of 48 key targets of AS-IV predicted to be involved in the treatment of CIRI were identified, enriched in 136 pathways. AS-IV was effectively bound to the top five targets from 48 targets, and those associated with the c-Jun N-terminal kinase (JNK)/Bid pathway, with binding energy values below -5.0 kJ·mol-1. JNK inhibition reduced infarcted brain areas, improved neurological function, reduced pathological brain tissue damage, and inhibited apoptosis, with AS-IV achieving similar neuroprotective effects. Both AS-IV and SP600125 reduced p-JNK, Bid, CytC, Apaf-1, caspase-3, and cleaved caspase-3 levels in rats while decreasing CytC, caspase-3, and caspase-9 levels in serum. CONCLUSION AS-IV may suppress apoptosis partly through the modulation of JNK/Bid signaling, exerting neuroprotective effects. These findings support the potential development of AS-IV-based therapies for stroke treatment.
Collapse
Affiliation(s)
- Li Yu
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Weifeng Jin
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Defang Deng
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yiru Wang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
- Faculty of Chinese MedicineMacau University of Science and TechnologyMacaoChina
| | - Qianqian Chen
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yangyang Zhang
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Haitong Wan
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxiang Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Ying Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yu He
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lijiang Zhang
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
11
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhang J, Huang J, Lan J, Li Q, Ke L, Jiang Q, Li Y, Zhang H, Zhong H, Yang P, Chen T, Song Y. Astragaloside IV protects against autoimmune myasthenia gravis in rats via regulation of mitophagy and apoptosis. Mol Med Rep 2024; 30:129. [PMID: 38785143 PMCID: PMC11140232 DOI: 10.3892/mmr.2024.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Astragaloside IV (AS‑IV) has various pharmacological effects, including antioxidant and immunoregulatory properties, which can improve myasthenia gravis (MG) symptoms. However, the potential mechanism underlying the effects of AS‑IV on MG remains to be elucidated. The present study aimed to investigate whether AS‑IV has a therapeutic effect on MG and its potential mechanism of action. By subcutaneously immunizing rats with R97‑116 peptide, an experimental autoimmune (EA) MG rat model was established. AS‑IV (40 or 80 mg/kg/day) treatment was then applied for 28 days after modeling. The results demonstrated that AS‑IV significantly ameliorated the weight loss, Lennon score and pathological changes in the gastrocnemius muscle of EAMG rats compared with the model group. Additionally, the levels of acetylcholine receptor antibody (AChR‑Ab) were significantly decreased, whereas mitochondrial function [ATPase and cytochrome c (Cyt‑C) oxidase activities] and ultrastructure were improved in the AS‑IV treated rats. Moreover, the mRNA and protein expression levels of phosphatase and tensin homolog‑induced putative kinase 1, Parkin, LC3II and Bcl‑2, key signaling molecules for mitophagy and apoptosis, were upregulated, whereas the mRNA and protein expression levels of p62, Cyt‑C, Bax, caspase 3 and caspase 9 were downregulated following AS‑IV intervention. In conclusion, AS‑IV may protect against EAMG in a rat model by modulating mitophagy and apoptosis. These findings indicated the potential mechanism underlying the effects of AS‑IV on MG and provided novel insights into treatment strategies for MG.
Collapse
Affiliation(s)
- Jingjing Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiayan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jinlian Lan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qilong Jiang
- Department of Gastrosplenic Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Han Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huiya Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Peidan Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
13
|
Zhang Y, Wang Y, Dou H, Wang S, Qu D, Peng X, Zou N, Yang L. Caffeine improves mitochondrial dysfunction in the white matter of neonatal rats with hypoxia-ischemia through deacetylation: a proteomic analysis of lysine acetylation. Front Mol Neurosci 2024; 17:1394886. [PMID: 38745725 PMCID: PMC11091324 DOI: 10.3389/fnmol.2024.1394886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Aims White matter damage (WMD) is linked to both cerebral palsy and cognitive deficits in infants born prematurely. The focus of this study was to examine how caffeine influences the acetylation of proteins within the neonatal white matter and to evaluate its effectiveness in treating white matter damage caused by hypoxia-ischemia. Main methods We employed a method combining affinity enrichment with advanced liquid chromatography and mass spectrometry to profile acetylation in proteins from the white matter of neonatal rats grouped into control (Sham), hypoxic-ischemic (HI), and caffeine-treated (Caffeine) groups. Key findings Our findings included 1,999 sites of lysine acetylation across 1,123 proteins, with quantifiable changes noted in 1,342 sites within 689 proteins. Analysis of these patterns identified recurring sequences adjacent to the acetylation sites, notably YKacN, FkacN, and G * * * GkacS. Investigation into the biological roles of these proteins through Gene Ontology analysis indicated their involvement in a variety of cellular processes, predominantly within mitochondrial locations. Further analysis indicated that the acetylation of tau (Mapt), a protein associated with microtubules, was elevated in the HI condition; however, caffeine treatment appeared to mitigate this over-modification, thus potentially aiding in reducing oxidative stress, inflammation in the nervous system, and improving mitochondrial health. Caffeine inhibited acetylated Mapt through sirtuin 2 (SITR2), promoted Mapt nuclear translocation, and improved mitochondrial dysfunction, which was subsequently weakened by the SIRT2 inhibitor, AK-7. Significance Caffeine-induced changes in lysine acetylation may play a key role in improving mitochondrial dysfunction and inhibiting oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Anesthesiology, Dalian Women and Children's Medical Group, Dalian, Liaoning, China
| | - Yuqian Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haiping Dou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Danyang Qu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xin Peng
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ning Zou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liu Yang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Hu W, Kong X, Cui Y, Wang H, Gao J, Wang X, Chen S, Li X, Li S, Che F, Wan Q. Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:2033-2048. [PMID: 37843800 DOI: 10.1007/s12035-023-03687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, 27 East Jiefang Road, Linyi, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China.
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao High-tech Industrial Development District, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
15
|
Jiang Y, Ma C, Guan Y, Yang W, Yu J, Shi H, Ding Z, Zhang Z. Long noncoding RNA KCNQ1OT1 aggravates cerebral infarction by regulating PTBT1/SIRT1 via miR-16-5p. J Neuropathol Exp Neurol 2024; 83:276-288. [PMID: 38324733 DOI: 10.1093/jnen/nlae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Cerebral infarction (CI) is one of the leading causes of disability and death. LncRNAs are key factors in CI progression. Herein, we studied the function of long noncoding RNA KCNQ1OT1 in CI patient plasma samples and in CI models. Quantitative real-time PCR and Western blotting tested gene and protein expressions. The interactions of KCNQ1OT1/PTBP1 and miR-16-5p were analyzed using dual-luciferase reporter and RNA immunoprecipitation assays; MTT assays measured cell viability. Cell migration and angiogenesis were tested by wound healing and tube formation assays. Pathological changes were analyzed by triphenyltetrazolium chloride and routine staining. We found that KCNQ1OT1 and PTBP1 were overexpressed and miR-16-5p was downregulated in CI patient plasma and in oxygen-glucose deprived (OGD) induced mouse brain microvascular endothelial (bEnd.3) cells. KCNQ1OT1 knockdown suppressed pro-inflammatory cytokine production and stimulated angiogenic responses in OGD-bEnd.3 cells. KCNQ1OT1 upregulated PTBP1 by sponging miR-16-5p. PTBP1 overexpression or miR-16-5p inhibition attenuated the effects of KCNQ1OT1 knockdown. PTBP1 silencing protected against OGD-bEnd.3 cell injury by enhancing SIRT1. KCNQ1OT1 silencing or miR-16-5p overexpression also alleviated ischemic injury in a mice middle cerebral artery occlusion model. Thus, KCNQ1OT1 silencing alleviates CI by regulating the miR-16-5p/PTBP1/SIRT1 pathway, providing a theoretical basis for novel therapeutic strategies targeting CI.
Collapse
Affiliation(s)
- Yuanming Jiang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chi Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuxiu Guan
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China
| | - Wenqi Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Yu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanfei Shi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zihang Ding
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
17
|
Wu H, Chen S, You G, Lei B, Chen L, Wu J, Zheng N, You C. The Mechanism of Astragaloside IV in NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome-mediated Pyroptosis after Intracerebral Hemorrhage. Curr Neurovasc Res 2024; 21:74-85. [PMID: 38409729 DOI: 10.2174/0115672026295640240212095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the most common subtypes of stroke. OBJECTIVES This study aimed to investigate the mechanism of Astragaloside IV (AS-IV) on inflammatory injury after ICH. METHODS The ICH model was established by the injection of collagenase and treated with ASIV (20 mg/kg or 40 mg/kg). The neurological function, water content of the bilateral cerebral hemisphere and cerebellum, and pathological changes in brain tissue were assessed. The levels of interleukin-1 beta (IL-1β), IL-18, tumor necrosis factor-alpha, interferon-gamma, and IL-10 were detected by enzyme-linked immunosorbent assay. The levels of Kruppel-like factor 2 (KLF2), NOD-like receptor family pyrin domain containing 3 (NLRP3), GSDMD-N, and cleaved-caspase-1 were detected by reverse transcription-quantitative polymerase chain reaction and Western blot assay. The binding relationship between KLF2 and NLRP3 was verified by chromatin-immunoprecipitation and dual-luciferase assays. KLF2 inhibition or NLRP3 overexpression was achieved in mice to observe pathological changes. RESULTS The decreased neurological function, increased water content, severe pathological damage, and inflammatory response were observed in mice after ICH, with increased levels of NLRP3/GSDMD-N/cleaved-caspase-1/IL-1β/IL-18 and poorly-expressed KLF2 in brain tissue. After AS-IV treatment, the neurological dysfunction, high brain water content, inflammatory response, and pyroptosis were alleviated, while KLF2 expression was increased. KLF2 bonded to the NLRP3 promoter region and inhibited its transcription. Down-regulation of KLF2 or upregulation of NLRP3 reversed the effect of AS-IV on inhibiting pyroptosis and reducing inflammatory injury in mice after ICH. CONCLUSION AS-IV inhibited NLRP3-mediated pyroptosis by promoting KLF2 expression and alleviated inflammatory injury in mice after ICH.
Collapse
Affiliation(s)
- Honggang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Shu Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Guoliang You
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Bo Lei
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Li Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Jiachuan Wu
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Niandong Zheng
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Li T, Zhao L, Li Y, Dang M, Lu J, Lu Z, Huang Q, Yang Y, Feng Y, Wang X, Jian Y, Wang H, Guo Y, Zhang L, Jiang Y, Fan S, Wu S, Fan H, Kuang F, Zhang G. PPM1K mediates metabolic disorder of branched-chain amino acid and regulates cerebral ischemia-reperfusion injury by activating ferroptosis in neurons. Cell Death Dis 2023; 14:634. [PMID: 37752100 PMCID: PMC10522625 DOI: 10.1038/s41419-023-06135-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Ischemic stroke is a neurological disorder caused by vascular stenosis or occlusion, accounting for approximately 87% of strokes. Clinically, the most effective therapy for ischemic stroke is vascular recanalization, which aims to rescue neurons undergoing ischemic insults. Although reperfusion therapy is the most effective treatment for ischemic stroke, it still has limited benefits for many patients, and ischemia-reperfusion (I/R) injury is a widely recognized cause of poor prognosis. Here, we aim to investigate the mechanism of protein phosphatase Mg2+/Mn2+ dependent 1 K (PPM1K) mediates metabolic disorder of branched-chain amino acids (BCAA) by promoting fatty acid oxidation led to ferroptosis after cerebral I/R injury. We established the I/R model in mice and used BT2, a highly specific BCAA dehydrogenase (BCKD) kinase inhibitor to promote BCAA metabolism. It was further verified by lentivirus knocking down PPM1K in neurons. We found that BCAA levels were elevated after I/R injury due to dysfunctional oxidative degradation caused by phosphorylated BCKD E1α subunit (BCKDHA). Additionally, the level of phosphorylated BCKDHA was determined by decreased PPM1K in neurons. We next demonstrated that BCAA could induce oxidative stress, lipid peroxidation, and ferroptosis in primary cultured cortical neurons in vitro. Our results further showed that BT2 could reduce neuronal ferroptosis by enhancing BCAA oxidation through inhibition of BCKDHA phosphorylation. We further found that defective BCAA catabolism could induce neuronal ferroptosis by PPM1K knockdown. Furthermore, BT2 was found to alleviate neurological behavior disorders after I/R injury in mice, and the effect was similar to ferroptosis inhibitor ferrostatin-1. Our findings reveal a novel role of BCAA in neuronal ferroptosis after cerebral ischemia and provide a new potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lili Zhao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ye Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Meijuan Dang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jialiang Lu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ziwei Lu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Qiao Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Yang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yuxuan Feng
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaoya Wang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yating Jian
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Heying Wang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yingying Guo
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lei Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yu Jiang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Songhua Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hong Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Fang Kuang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Guilian Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
19
|
Ou Z, Zhao M, Xu Y, Wu Y, Qin L, Fang L, Xu H, Chen J. Huangqi Guizhi Wuwu decoction promotes M2 microglia polarization and synaptic plasticity via Sirt1/NF-κB/NLRP3 pathway in MCAO rats. Aging (Albany NY) 2023; 15:10031-10056. [PMID: 37650573 PMCID: PMC10599726 DOI: 10.18632/aging.204989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Huangqi Guizhi Wuwu decoction (HGWD) has been demonstrated to ameliorate cerebral ischemia-reperfusion injury in clinical application. Nevertheless, the exact mechanisms of HGWD have not been conclusively elucidated. This study aimed to investigate the potential role and mechanism of HGWD on neurological deficits in a rat model of middle cerebral artery occlusion (MCAO). Our results showed that HGWD significantly alleviated neurological deficits in MCAO rats, evidenced by high mNSS score, reduced cerebral infarction area, and improved brain pathological injury. Besides, HGWD reduced the levels of TNF-α, IL-1β, IL-6, SOD, MDA and GSH in the brain tissue. Further study suggested that HGWD promoted microglia polarization towards M2 by inhibiting M1 activation (Iba1+/CD16+, iNOS) and enhancing M2 activation (Iba1+/CD206+, Arg-1). Additionally, HGWD increased dendritic spine density and enhanced levels of synapse marker proteins (PSD95, Synapsin I). HGWD also up-regulated Sirt1 expression while inhibited p-NF-κB, NLRP3, ASC, and cleaved caspase-1 level in the hippocampus of MCAO rats. Sirt1 specific inhibitor EX527 notably weakened the neuroprotective efficacy of HGWD against cerebral ischemia, and significantly abolished its modulation on microglia polarization and synaptic plasticity in vivo. Collectively, our findings suggested that HGWD ameliorated neuronal injury in ischemic stroke by modulating M2 microglia polarization and synaptic plasticity, at least partially, via regulating Sirt1/NF-κB/NLRP3 pathway, further supporting HGWD as a potential therapy for neuroprotection after ischemic stroke.
Collapse
Affiliation(s)
- Zhijie Ou
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Min Zhao
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ying Xu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yan Wu
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Lina Qin
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Li Fang
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Hong Xu
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Juping Chen
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| |
Collapse
|
20
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
21
|
Fangma Y, Wan H, Shao C, Jin L, He Y. Research Progress on the Role of Sirtuin 1 in Cerebral Ischemia. Cell Mol Neurobiol 2023; 43:1769-1783. [PMID: 36153473 PMCID: PMC11412199 DOI: 10.1007/s10571-022-01288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
A significant amount of evidence from the past few years has shown that Sirtuin 1 (SIRT1), a histone deacetylase dinucleotide of nicotinamide adenine dinucleotide (NAD+) is closely related to the cerebral ischemia. Several potential neuroprotective strategies like resveratrol, ischemia preconditioning, and caloric restriction exert their neuroprotection effects through SIRT1-related signaling pathway. However, the potential mechanisms and neuroprotection of SIRT1 in the process of cerebral ischemia injury development and recovery have not been systematically elaborated. This review summarized the the deacetylase activity and distribution of SIRT1 as well as analyzed the roles of SIRT1 in astrocytes, microglia, neurons, and brain microvascular endothelial cells (BMECs), and the molecular mechanisms of SIRT1 in cerebral ischemia, providing a theoretical basis for exploration of new therapeutic target in future.
Collapse
Affiliation(s)
- Yijia Fangma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310051, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310051, China
| | - Liang Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310051, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
22
|
Chauhan C, Kaundal RK. Understanding the role of cGAS-STING signaling in ischemic stroke: a new avenue for drug discovery. Expert Opin Drug Discov 2023; 18:1133-1149. [PMID: 37537969 DOI: 10.1080/17460441.2023.2244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Ischemic stroke is a significant global health challenge with limited treatment options. Neuroinflammation, driven by microglial activation, plays a critical role in stroke pathophysiology. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a key player in microglial activation, sterile neuroinflammation, and cell death following stroke. Understanding the interplay between this pathway and stroke pathophysiology is crucial for exploring newer therapeutics for stroke patients. AREAS COVERED This review discusses the pivotal role of the cGAS-STING pathway in ischemic stroke. It explores the interplay between cGAS-STING activation, neuroinflammation, microglia activation, M2 polarization, neutrophil infiltration, and cytokine release. Additionally, the authors examine its contributions to various cell death programs (pyroptosis, apoptosis, necroptosis, lysosomal cell death, autophagy, and ferroptosis). The review summarizes recent studies on targeting cGAS-STING signaling in stroke, highlighting the therapeutic potential of small molecule inhibitors and RNA-based approaches in mitigating neuroinflammation, preventing cell death, and improving patient outcomes. EXPERT OPINION Understanding cGAS-STING signaling in ischemic stroke offers an exciting avenue for drug discovery. Targeting this pathway holds promise for developing novel therapeutics that effectively mitigate neuroinflammation, prevent cell death, and enhance patient outcomes. Further research and development of therapeutic strategies are warranted to fully exploit the potential of this pathway as a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
23
|
Ischemic Stroke Induces Skeletal Muscle Damage and Alters Transcriptome Profile in Rats. J Clin Med 2023; 12:jcm12020547. [PMID: 36675476 PMCID: PMC9865444 DOI: 10.3390/jcm12020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
To establish pathological features of skeletal muscle post-stroke and to provide a background for promising interventions. Adult male SD rats were selected and randomly divided into a control group, a sham group, and a middle cerebral artery occlusion (MCAO) group. The tolerance and capability of exercise were separately collected on days 1, 3, 5, and 7 after the MCAO operation. The neurological deficits, brain infarct volume, soleus histopathology, mRNA-seq analysis, flow cytometry, immunofluorescence, and protein expression analysis were performed on the seventh day. Rats in the MCAO group showed that soleus tissue weight, pulling force, exercise capacity, endurance, and muscle structure were significantly decreased. Moreover, the RNA sequencing array revealed that mitochondrial-mediated autophagy was the critical pathological process, and the result of transcriptomic findings was confirmed at the translational level. The mitochondrial membrane potential and the mfn2 and p62 protein expression were decreased, and the Beclin-1, ATG5, Parkin, PINK1, LC3B, and Drp1 expression were upregulated; these results were consistent with immunohistochemistry. This is the first report on the pathological features of limbic symptoms on day 7 after MCAO surgery in rats. In addition, we further confirmed that autophagy is one of the main causative mechanisms of reduced muscle function after stroke.
Collapse
|
24
|
Yu X, Xia K, Wu S, Wang Q, Cheng W, Ji C, Yang W, Kang C, Yuan Z, Li Y. Simultaneous determination and pharmacokinetic study of six components in beagle dog plasma by UPLC-MS/MS after oral administration of Astragalus Membranaceus aqueous extract. Biomed Chromatogr 2022; 36:e5488. [PMID: 36001467 DOI: 10.1002/bmc.5488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022]
Abstract
Astragalus Membranaceus (AM) is widely applied in Chinese herbal compound formulas for treating various kinds of diseases. However, relative pharmacokinetics data on AM in nonrodents is still lacking. Here, an UPLC-MS/MS method for determining the six main compounds of AM was developed. The chromatographic separation was carried out by a Waters Acquity UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm) with gradient elution of water-formic acid (99.98:0.02, v/v) and acetonitrile-formic acid (99.98:0.02, v/v) at a flow rate of 0.3 ml/min within 11 min. Analyses of all compounds were conducted in multiple reaction monitoring mode with a positive/negative ion-switching mode of an electrospray ionization source in a single run. The analytical method was validated in terms of specificity, linearity, accuracy, precision, stability, etc. The method showed excellent linearity (r > 0.999) over certain concentration ranges. The intra-day and inter-day precisions were evaluated, and the RSD values were <12.4%. Furthermore, the validated method was successfully applied to determine the six components in plasma after oral administration of AM aqueous extract to beagle dogs and the pharmacokinetic parameters were obtained. Together, this study provides a reference for medication in the clinical practice of AM.
Collapse
Affiliation(s)
- Xin Yu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Xia
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyang Wu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiutao Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenhao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Ji
- School of pharmaceutical science, Guizhou University, Guizhou, China
| | - Wei Yang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Kang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Yuan
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingfei Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Ibrahim WW, Kamel AS, Wahid A, Abdelkader NF. Dapagliflozin as an autophagic enhancer via LKB1/AMPK/SIRT1 pathway in ovariectomized/D-galactose Alzheimer's rat model. Inflammopharmacology 2022; 30:2505-2520. [PMID: 35364737 PMCID: PMC9700568 DOI: 10.1007/s10787-022-00973-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 12/17/2022]
Abstract
Autophagy and mitochondrial deficits are characteristics of early phase of Alzheimer's disease (AD). Sodium-glucose cotransporter-2 inhibitors have been nominated as a promising class against AD hallmarks. However, there are no available data yet to discuss the impact of gliflozins on autophagic pathways in AD. Peripherally, dapagliflozin's (DAPA) effect is mostly owed to autophagic signals. Thus, the goal of this study is to screen the power of DAPA centrally on LKB1/AMPK/SIRT1/mTOR signaling in the ovariectomized/D-galactose (OVX/D-Gal) rat model. Animals were arbitrarily distributed between 5 groups; the first group undergone sham operation, while remaining groups undergone OVX followed by D-Gal (150 mg/kg/day; i.p.) for 70 days. After 6 weeks, the third, fourth, and fifth groups received DAPA (1 mg/kg/day; p.o.); concomitantly with the AMPK inhibitor dorsomorphin (DORSO, 25 µg/rat, i.v.) in the fourth group and the SIRT1 inhibitor EX-527 (10 µg/rat, i.v.) in the fifth group. DAPA mitigated cognitive deficits of OVX/D-Gal rats, as mirrored in neurobehavioral task with hippocampal histopathological examination and immunohistochemical aggregates of p-Tau. The neuroprotective effect of DAPA was manifested by elevation of energy sensors; AMP/ATP ratio and LKB1/AMPK protein expressions along with autophagic markers; SIRT1, Beclin1, and LC3B expressions. Downstream the latter, DAPA boosted mTOR and mitochondrial function; TFAM, in contrary lessened BACE1. Herein, DORSO or EX-527 co-administration prohibited DAPA's actions where DORSO elucidated DAPA's direct effect on LKB1 while EX-527 mirrored its indirect effect on SIRT1. Therefore, DAPA implied its anti-AD effect, at least in part, via boosting hippocampal LKB1/AMPK/SIRT1/mTOR signaling in OVX/D-Gal rat model.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
26
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
27
|
Natural Compounds for SIRT1-Mediated Oxidative Stress and Neuroinflammation in Stroke: A Potential Therapeutic Target in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1949718. [PMID: 36105479 PMCID: PMC9467755 DOI: 10.1155/2022/1949718] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/06/2022]
Abstract
Stroke is a fatal cerebral vascular disease with a high mortality rate and substantial economic and social costs. ROS production and neuroinflammation have been implicated in both hemorrhagic and ischemic stroke and have the most critical effects on subsequent brain injury. SIRT1, a member of the sirtuin family, plays a crucial role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, and oxidative stress. Targeting SIRT1 to reduce ROS and neuroinflammation might represent an emerging therapeutic target for stroke. Therefore, we conducted the present review to summarize the mechanisms of SIRT1-mediated oxidative stress and neuroinflammation in stroke. In addition, we provide a comprehensive introduction to the effect of compounds and natural drugs on SIRT1 signaling related to oxidative stress and neuroinflammation in stroke. We believe that our work will be helpful to further understand the critical role of the SIRT1 signaling pathway and will provide novel therapeutic potential for stroke treatment.
Collapse
|
28
|
Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel. Neurochem Res 2022; 47:3647-3658. [PMID: 35790697 DOI: 10.1007/s11064-022-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The mechanism underlying moderate ethanol (EtOH)-preconditioning (PC) against ischemic brain injury remains unclear. We evaluated the role of large conductance calcium-sensitive potassium (BKCa) channels in EtOH-PC. Almost one hundred and ninety normal adult SD rats (8 to 10 weeks, 320-350 g) were enrolled in this study. Ischemic/reperfusion (I/R) brain injury was induced in rats by middle cerebral artery occlusion for 2 h followed by reperfusion for 24 h. EtOH or the BKCa channel opener, NS11021, was administered 24 h before I/R with or without pre-treatment with the BKCa channel blocker, paxilline. Infarct volumes were measured by tissue staining and imaging, and neurological functions were assessed by a scoring system. The expression of BKCa channel subunit α was detected by Western blotting, and cell apoptosis was assessed using staining. Prior (24 h) administration of ethanol that produced a peak plasma concentration of ~ 45 mg/dl in rats would offer neuroprotection after cerebral I/R. In addition, the expression of BKCa channel α-subunit was significantly increased 24 h after EtOH-PC (n = 10; control: 2.00 ± 0.09, EtOH: 1.00 ± 0.06; P < 0.5). Compared to I/R, EtOH-PC enhanced the expression of BKCa channel α-subunit both in the penumbra (n = 10; 24 h: I/R: 1.25 ± 0.10, EtOH-PC + I/R: 1.99 ± 0.12; P < 0.01; 4 h: I/R: 1.03 ± 0.03, EtOH-PC + I/R: 1.49 ± 0.05; P < 0.001) and infarct core (n = 10; 4 h: I/R: 1.04 ± 0.04, EtOH-PC + I/R: 1.42 ± 0.05; P < 0.001), improved the neurological function (n = 10; I/R: 14.00 (12.75-15.00), EtOH-PC + I/R: 7.00 (4.75-8.25); P < 0.001), attenuated the apoptosis (n = 10; I/R: 26.80 ± 0.69, EtOH-PC + I/R: 8.46 ± 0.31; P < 0.001), and decreased the infarct volume (n = 10; I/R: 244.00 ± 26.24, EtOH-PC + I/R: 70.09 ± 14.69; P < 0.001) after experimental cerebral I/R. These changes were reversed by paxilline administration. The moderate EtOH-PC protects against I/R-induced brain damage dependent on the upregulation BKCa channels.
Collapse
|
29
|
The Differences of Metabolites in Different Parts of the Brain Induced by Shuxuetong Injection against Cerebral Ischemia-Reperfusion and Its Corresponding Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9465095. [PMID: 35815276 PMCID: PMC9259222 DOI: 10.1155/2022/9465095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Ischemic stroke is often associated with a large disease burden. The existence of ischemia-reperfusion injury brings great challenges to the treatment of ischemic stroke. The purpose of this study was to explore the differences of metabolites in different parts of the brain induced by Shuxuetong injection against cerebral ischemia-reperfusion and to extend the corresponding mechanism. The rats were modeled by transient middle cerebral artery occlusion (t-MCAO) operation, and the success of modeling was determined by neurological function score and TTC staining. UPLC-Q/TOF-MS metabolomics technique and multivariate statistical analysis were used to analyze the changes and differences of metabolites in the cortex and hippocampus of cerebral ischemia-reperfusion rats. Compared with the model group, the neurological function score and cerebral infarction volume of the Shuxuetong treatment group were significantly different. There were differences and changes in the metabolic distribution of the cortex and hippocampus in each group, the distribution within the group was relatively concentrated. The separation trend between the groups was obvious, and the distribution of the Shuxuetong treatment group was similar to that of the sham operation group. We identified 13 metabolites that were differentially expressed in the cortex, including glutamine, dihydroorotic acid, and glyceric acid. We also found five differentially expressed metabolites in the hippocampus, including glutamic acid and fumaric acid. The common metabolic pathways of Shuxuetong on the cortex and hippocampus were D-glutamine and D-glutamate metabolism and nitrogen metabolism, which showed inhibition of cortical glutamine and promotion of hippocampal glutamic acid. Specific pathways of Shuxuetong enriched in the cortex included glyoxylate and dicarboxylate metabolism and pyrimidine metabolism, which showed inhibition of glyceric acid and dihydroorotic acid. Specific pathways of Shuxuetong enriched in the hippocampus include arginine biosynthesis and citrate cycle (TCA cycle), which promotes fumaric acid. Shuxuetong injection can restore and adjust the metabolic disorder of the cortex and hippocampus in cerebral ischemia-reperfusion rats. The expression of Shuxuetong in different parts of the brain is different and correlated.
Collapse
|
30
|
Zhai QY, Ren YQ, Ni QS, Song ZH, Ge KL, Guo YL. Transplantation of Human Umbilical Cord Mesenchymal Stem Cells-Derived Neural Stem Cells Pretreated with Neuregulin1β Ameliorate Cerebral Ischemic Reperfusion Injury in Rats. Biomolecules 2022; 12:428. [PMID: 35327620 PMCID: PMC8945978 DOI: 10.3390/biom12030428] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a common cerebrovascular disease and recovering blood flow as early as possible is essential to reduce ischemic damage and maintain neuronal viability, but the reperfusion process usually causes additional damage to the brain tissue in the ischemic area, namely ischemia reperfusion injury. The accumulated studies have revealed that transplantation of exogenous neural stem cells (NSCs) is an ideal choice for the treatment of ischemia reperfusion injury. At present, the source and efficacy of exogenous NSCs after transplantation is still one of the key issues that need to be resolved. In this study, human umbilical cord mesenchymal stem cells (hUC-MSCs) were obtained and induced into NSCs byadding growth factor and neuregulin1β (NRG1β) was introduced during the differentiation process of NSCs. Then, the rat middle cerebral artery occlusion/reperfusion (MCAO/R) models were established, and the therapeutic effects were evaluated among groups treated by NRG1β, NSCs and NSCs pretreated with 10 nM NRG1β (NSCs-10 nM NRG1β) achieved through intra-arterial injection. Our data show that the NSCs-10 nM NRG1β group significantly improves neurobehavioral function and infarct volume after MCAO/R, as well as cerebral cortical neuron injury, ferroptosis-related indexes and mitochondrial injury. Additionally, NSCs-10 nM NRG1β intervention may function through regulating the p53/GPX4/SLC7A11 pathway, and reducing the level of ferroptosis in cells, further enhance the neuroprotective effect on injured cells.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Yu-Qian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Qin-Shuai Ni
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Zhen-Hua Song
- Institute of Pharmacology, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Ke-Li Ge
- Institute of Integrative Medicine, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| |
Collapse
|
31
|
Wang WJ, Ma YM, He MT, Zhang DH, Wang R, Jing L, Zhang JZ. Oxymatrine Alleviates Hyperglycemic Cerebral Ischemia/Reperfusion Injury via Protecting Microvessel. Neurochem Res 2022; 47:1369-1382. [DOI: 10.1007/s11064-022-03535-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
|
32
|
Regulatory Effects of Astragaloside IV on Hyperglycemia-Induced Mitophagy in Schwann Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7864308. [PMID: 35069769 PMCID: PMC8767404 DOI: 10.1155/2022/7864308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE This study aimed to observe the regulatory effects of astragaloside IV (AS-IV) on hyperglycemia-induced mitochondrial damage and mitophagy in Schwann cells and to provide references for clinical trials on AS-IV in the treatment of diabetic peripheral neuropathy. METHODS Schwann cells were grown in a high-glucose medium to construct an autophagy model; the cells were then treated with AS-IV and N-acetylcysteine (control) to observe the regulatory effects of AS-IV on oxidative stress and mitophagy. RESULTS AS-IV exhibited antioxidant activity and inhibited the overactivation of autophagy in Schwann cells, significantly reducing the level of reactive oxygen species and downregulating the expression of autophagy-related proteins (LC3, PINK, and Parkin) under hyperglycemic conditions, thereby exerting a protective effect on mitochondrial morphology and membrane potential. CONCLUSION AS-IV can maintain the mitochondrial function of Schwann cells under hyperglycemic conditions by effectively alleviating oxidative stress and overactivation of mitophagy. The evidence from this study supports an AS-IV-based therapeutic strategy against diabetic peripheral neuropathy.
Collapse
|
33
|
Wan Y, Huang L, Liu Y, Ji W, Li C, Ge RL. Preconditioning With Intermittent Hypobaric Hypoxia Attenuates Stroke Damage and Modulates Endocytosis in Residual Neurons. Front Neurol 2022; 12:750908. [PMID: 34975719 PMCID: PMC8715922 DOI: 10.3389/fneur.2021.750908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Moderate hypobaric hypoxia induces cerebral ischemic tolerance. We investigated the optimal method for applying hypobaric hypoxia preconditioning at 5,000 m to ischemic brain tissue and combined it with proteomics to determine the mechanisms underlying this effect. Methods: Male SD rats were randomly grouped as S (sham, n = 20), M (middle cerebral artery occlusion [MCAO], n = 28), H2M (intermittent hypobaric hypoxia preconditioned MCAO group, 2 h/day, 10 days, n = 20), H6M (intermittent hypobaric hypoxia preconditioned MCAO group, 6 h/day, 10 days, n = 28), and HpM (persistent hypobaric hypoxia preconditioned MCAO group, 10 days, n = 28). The permanent MCAO model was established based on the Zea Longa method. Infarction was assessed with the modified neurological severity score (mNSS) and 2,3,5-triphenyl tetrazolium chloride staining. The total protein expression of the neuron-specific nuclear protein (NeuN), cysteinyl aspartate specific proteinase 3 (caspase-3), cleaved-caspase-3, and interleukin 6 (IL-6) was determined using western blotting. We assessed the peri-infarct cortex's ultrastructural changes. A label-free proteomic study and western blot verification were performed on the most effective preconditioned group. Results: The H6M group showed a lower infarct volume (p = 0.0005), lower mNSS score (p = 0.0009) than the M group. The H2M showed a lower level of IL-6 (p = 0.0213) than the M group. The caspase-3 level decreased in the H2M (p = 0.0002), H6M (p = 0.0025), and HpM groups (p = 0.0054) compared with that in the M group. Cleaved-caspase-3 expression decreased in the H2M (p = 0.0011), H6M (p < 0.0001), and HpM groups (p < 0.0001) compared with that in the M group. The neurons' ultrastructure and the blood-brain barrier in the peri-infarct tissue improved in the H2M and H6M groups. Immunofluorescence revealed increased NeuN-positive cells in the peri-infarct tissue in the H6M group (p = 0.0003, H6M vs. M). Protein expression of Chmp1a, Arpc5, and Hspa2 factors related to endocytosis were upregulated in the H6M compared with those of the M group (p < 0.05 for all) on western blot verification of label-free proteomics. Conclusions: Intermittent hypobaric hypoxia preconditioning exerts a neuroprotective effect in a rat stroke model. Persistent hypobaric hypoxia stimulation exhibited no significant neuroprotective effect. Intermittent hypoxic preconditioning for 6 h/day for 10 days upregulates key proteins in clathrin-dependent endocytosis of neurons in the cortex.
Collapse
Affiliation(s)
- Yaqi Wan
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Lu Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanmin Liu
- Qinghai Provincial People's Hospital, Xining, China
| | - Weizhong Ji
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Changxing Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
34
|
Li T, Qing BL, Deng Y, Que XT, Wang CZ, Lu HW, Wang SH, Wang ZJ. Inhibition of Long non-coding RNA zinc finger antisense 1 improves functional recovery and angiogenesis after focal cerebral ischemia via microRNA-144-5p/fibroblast growth factor 7 axis. Bioengineered 2022; 13:1702-1716. [PMID: 35012442 PMCID: PMC8805975 DOI: 10.1080/21655979.2021.2018093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
Long non-coding RNA zinc finger antisense 1 (ZFAS1) has been probed in cerebral ischemia, while the regulatory mechanism of ZFAS1 in focal cerebral ischemia (FCI) via binding to microRNA (miR)-144-5p remains rarely explored. This study aims to decipher the function of ZFAS1 on FCI via sponging miR-144-5p to modulate fibroblast growth factor 7 (FGF7). The focal cerebral ischemia rat model was established by occlusion of the middle cerebral artery (MCAO) Lentivirus vectors altering ZFAS1, miR-144-5p or FGF7 expression were injected into rats before MCAO. Then, ZFAS1, miR-144-5p, and FGF7 levels were detected, the inflammatory factor level, oxidative stress level, angiogenesis, neurological function injury and neuronal apoptosis were assessed. The binding relations among ZFAS1, miR-144-5p and FGF7 were validated. ZFAS1 and FGF7 expression was elevated, while miR-144-5p expression was reduced in FCI rats. Decreased ZFAS1 or FGF7 or enriched miR-144-5p repressed the inflammatory response, oxidative stress, neuronal apoptosis, while it improved angiogenesis, and neurological function recovery; while up-regulated ZFAS1 exerted opposite effects. The augmented miR-144-5p or silenced FGF7 reversed the effects of enriched ZFAS1. ZFAS1 sponged miR-144-5p that targeted FGF7. Inhibition of lncRNA ZFAS1 improves functional recovery and angiogenesis after FCI via miR-144-5p/FGF7 axis. This study provides novel therapeutic targets for FCI treatment.
Collapse
Affiliation(s)
- Tong Li
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Bai Ling Qing
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Yan Deng
- Department of Medical Records, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Xian Ting Que
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Cheng Zhi Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Hua Wen Lu
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Shao Hua Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Zi Jun Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| |
Collapse
|
35
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
36
|
Wan Y, Wang J, Yang B, Huang C, Tang X, Yi H, Liu Y, Wang S. Effects and mechanisms of CTRP3 overexpression in secondary brain injury following intracerebral hemorrhage in rats. Exp Ther Med 2021; 23:35. [PMID: 34849150 PMCID: PMC8613529 DOI: 10.3892/etm.2021.10957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
C1q/TNF-related protein-3 (CTRP3) is a novel adipokine that serves an important role in oxidative stress, anti-apoptosis, anti-inflammation and immune regulation. The aim of the present study was to investigate the protective role of CTRP3 against intracerebral hemorrhage (ICH)-induced brain injury. A model of autologous arterial blood-induced ICH was constructed in rats. Intracerebral infusion of a lentivirus carrying the CTRP3 gene was used to induce CTRP3 overexpression in the brain. The effects and mechanisms of CTRP3 overexpression on brain injury were investigated by detecting brain edema, blood-brain barrier (BBB) integrity, neurological function and inflammatory-associated factors 3 days after ICH. The present results demonstrated that CTRP3 overexpression ameliorated ICH-induced neurological dysfunction, decreased brain edema, maintained BBB integrity and attenuated inflammation. The protective effect of CTRP3 overexpression was associated with increased activation of silent information regulator 1 (SIRT1). In conclusion, the present study demonstrated that CTRP3 overexpression protected against ICH-induced brain injury in rats, potentially via activating the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Wan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Jieqiong Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Bo Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Xiaoqin Tang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Hong Yi
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Yun Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Shaohua Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| |
Collapse
|