1
|
Wang C, Jiang H. Tripartite Motif-Containing Protein 65 Promotes Proliferation and Inhibits Ferroptosis in Prostate Cancer via Enhancing NKD Inhibitor of WNT Signaling Pathway 2 Ubiquitination. Rejuvenation Res 2025; 28:113-124. [PMID: 39714941 DOI: 10.1089/rej.2024.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
As a typical E3 ligase, tripartite motif-containing 65 (TRIM65), is implicated in the modulation of biological processes, such as metastasis, proliferation, and apoptosis. However, the function of TRIM65 in prostate cancer (PCa) and its potential mechanism have not yet been excavated. In this work, we affirmed Tripartite motif-containing protein 65 (TRIM65) as a new oncogene in PCa, which accelerated PCa cell proliferation and impeded cell ferroptosis. In vivo, depletion of TRIM65 inhibited PCa tumorigenesis and metastasis. Mechanically, our findings uncovered that TRIM65 enhances NKD inhibitor of WNT signaling pathway 2 (NKD2) degradation via the ubiquitin-proteasome signaling. TRIM65 facilitated proliferation and restricted ferroptosis via downregulating NKD2 levels. Moreover, TRIM65 activated the wingless-integrated/β-catenin pathway in PCa cells via inhibiting NKD2. Taken together, these data uncovered that TRIM65 controls PCa proliferation, and ferroptosis and regulates the Wnt/β-catenin signaling via directly targeting NKD2 for ubiquitination degradation. Our study provides insights into the multifaceted regulatory role of TRIM65 in the development of PCa, laying the foundation for exploring new therapeutic approaches.
Collapse
Affiliation(s)
- Chengcai Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huamao Jiang
- Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
2
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
3
|
Bian Z, Xu C, Wang X, Zhang B, Xiao Y, Liu L, Zhao S, Huang N, Yang F, Zhang Y, Xue S, Wang X, Pan Q, Sun F. TRIM65/NF2/YAP1 Signaling Coordinately Orchestrates Metabolic and Immune Advantages in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402578. [PMID: 39005234 PMCID: PMC11425264 DOI: 10.1002/advs.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Significantly activated uridine nucleotide and fatty acid metabolism in HCC cells promote malignant proliferation and immune evasion. Herein, it is demonstrated that the tripartite motif 65 (TRIM65) E3 ubiquitin-protein ligase, O-GlcNAcylated via O-GlcNAcylation transferase, is highly expressed in HCC and facilitated metabolic remodeling to promote the accumulation of products related to uracil metabolism and palmitic acid, driving the progression of HCC. Mechanistically, it is showed that TRIM65 mediates ubiquitylation at the K44 residue of neurofibromatosis type 2 (NF2), the key protein upstream of classical Hippo signaling. Accelerated NF2 degradation inhibits yes-associated protein 1 phosphorylation, inducing aberrant activation of related metabolic enzyme transcription, and orchestrating metabolic and immune advantages. In conclusion, these results reveal a critical role for the TRIM family molecule TRIM65 in supporting HCC cell survival and highlight the therapeutic potential of targeting its E3 ligase activity to alter the regulation of proteasomal degradation.
Collapse
Affiliation(s)
- Zhixuan Bian
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Faculty of Medical Laboratory ScienceCollege of Health Science and TechnologySchool of MedicineShanghai jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PaediatricsShanghai200127China
| | - Chang Xu
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Xiaoying Wang
- Department of liver surgeryZhongshan hospitalFudan UniversityShanghai200030China
| | - Baohua Zhang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Yixuan Xiao
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Li Liu
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Shasha Zhao
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Nan Huang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Fengjiao Yang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Yue Zhang
- Department of Central LaboratoryShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Shaobo Xue
- Department of Central LaboratoryShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Xiongjun Wang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Qiuhui Pan
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Faculty of Medical Laboratory ScienceCollege of Health Science and TechnologySchool of MedicineShanghai jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PaediatricsShanghai200127China
| | - Fenyong Sun
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| |
Collapse
|
4
|
Zhang Q, Li Y, Zhu Q, Xie T, Xiao Y, Zhang F, Li N, Deng K, Xin H, Huang X. TRIM65 promotes renal cell carcinoma through ubiquitination and degradation of BTG3. Cell Death Dis 2024; 15:355. [PMID: 38777825 PMCID: PMC11111765 DOI: 10.1038/s41419-024-06741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.
Collapse
Affiliation(s)
- Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yue Xiao
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, 330031, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Huang Y, Chen T, Jiang M, Xiong C, Mei C, Nie J, Zhang Q, Zhu Q, Huang X, Zhang X, Li Y. E3 ligase TRIM65 alleviates intestinal ischemia/reperfusion injury through inhibition of TOX4-mediated apoptosis. Cell Death Dis 2024; 15:29. [PMID: 38212319 PMCID: PMC10784301 DOI: 10.1038/s41419-023-06410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Intestinal ischemia-reperfusion (II/R) injury is an urgent clinical disease with high incidence and mortality, and impaired intestinal barrier function caused by excessive apoptosis of intestinal cells is an important cause of its serious consequences. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase that is recently reported to suppress the inflammatory response and apoptosis. However, the biological function and regulation of TRIM65 in II/R injury are totally unknown. We found that TRIM65 was significantly decreased in hypoxia-reoxygenation (H/R) induced intestinal epithelial cells and II/R-induced intestine tissue. TRIM65 knockout mice markedly aggravated intestinal apoptosis and II/R injury. To explore the molecular mechanism of TRIM65 in exacerbating II/R-induced intestinal apoptosis and damage, thymocyte selection-associated high mobility group box factor 4 (TOX4) was screened out as a novel substrate of TRIM65 using the yeast two-hybrid system. TRIM65 binds directly to the N-terminal of TOX4 through its coiled-coil and SPRY structural domains. Immunofluorescence confocal microscopy showed that they can co-localize both in the cytoplasm and nucleus. Furthermore, TRIM65 mediated the K48 ubiquitination and degradation of TOX4 depending on its E3 ubiquitin ligase activity. In addition, TRIM65 inhibits H/R-induced intestinal epithelial apoptosis via TOX4. In summary, our results indicated that TRIM65 promotes ubiquitination and degradation of TOX4 to inhibit apoptosis in II/R. These findings provide a promising target for the clinical treatment of II/R injury.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Ming Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Chenlu Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Chao Mei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Jinping Nie
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China.
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
6
|
Zhai F, Wang J, Yang W, Ye M, Jin X. The E3 Ligases in Cervical Cancer and Endometrial Cancer. Cancers (Basel) 2022; 14:5354. [PMID: 36358773 PMCID: PMC9658772 DOI: 10.3390/cancers14215354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/28/2023] Open
Abstract
Endometrial (EC) and cervical (CC) cancers are the most prevalent malignancies of the female reproductive system. There is a global trend towards increasing incidence and mortality, with a decreasing age trend. E3 ligases label substrates with ubiquitin to regulate their activity and stability and are involved in various cellular functions. Studies have confirmed abnormal expression or mutations of E3 ligases in EC and CC, indicating their vital roles in the occurrence and progression of EC and CC. This paper provides an overview of the E3 ligases implicated in EC and CC and discusses their underlying mechanism. In addition, this review provides research advances in the target of ubiquitination processes in EC and CC.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Zhang L, Dan Y, Ou C, Qian H, Yin Y, Tang M, He Q, Peng C, He A. Identification and validation of novel biomarker TRIM8 related to cervical cancer. Front Oncol 2022; 12:1002040. [PMID: 36353542 PMCID: PMC9638460 DOI: 10.3389/fonc.2022.1002040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cervical cancer, as a common gynecological disease, endangers female health. Give the lack of effective biomarkers for the diagnosis and treatment of cervical cancer, this paper aims to analyze the Gene Expression Omnibus (GEO) data sets using comprehensive bioinformatics tools, and to identify biomarkers associated with the cancer in patient samples. Methods The bioinformatics methods were used to extract genes related to cervical cancer from GSE39001, while the GEO2R online tool to elaborate on differentially expressed genes (DEGs) in normal and cancer samples, and to clarify related genes and functions. The results were verified by IHC, WB, CCK-8, clone formation and flow cytometry experiments. Results A total of 2,859 DEGs were identified in the GEO microarray dataset. We extracted genes associated with both ubiquitination and autophagy from the key modules of weighted gene co-expression network analysis (WGCNA), and the analysis showed that TRIM8 was of great significance for the diagnosis and prognosis of cervical cancer. Besides, experimental validation showed the high TRIM8 expression in cervical cancer, as well as its involvement in the proliferation of cervical cancer cells. Conclusion We identified a biomarker (TRIM8) that may be related to cervical cancer through a series of analyses on the GEO dataset. Experimental verification confirmed the inhibition of cervical cancer cells proliferation by lowering TRIM8 expression. Therefore, TRIM8 can be adopted as a new biomarker of cervical cancer to develop new therapeutic targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cancer Research Center, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Youli Dan
- Department of Gynecology Oncology, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chaoyang Ou
- Department of Gynecology Oncology, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hongyan Qian
- Department of Cancer Research Center, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yi Yin
- Department of Gynecology Oncology, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Min Tang
- Department of Clinical Laboratory Diagnostics, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qian He
- Department of Gynecology Oncology, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chen Peng
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Aiqin He, ; Chen Peng,
| | - Aiqin He
- Department of Gynecology Oncology, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- *Correspondence: Aiqin He, ; Chen Peng,
| |
Collapse
|