1
|
Ren X, Shang F, Yang D, Xu Y, Yan Y. Exploring the role of CD13 and inflammatory factors in radiation enteritis: insights from high-throughput proteomics and Mendelian randomization analysis. Discov Oncol 2025; 16:681. [PMID: 40332653 PMCID: PMC12058632 DOI: 10.1007/s12672-025-02494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Radiation enteritis (RE) is an unavoidable complication during radiotherapy for pelvic malignancies, characterized by chronic inflammation, fibrosis, and vascular injury in the intestinal tissue. Currently, there is a lack of research that delves into the relationship between inflammatory factors and key proteins in RE. METHODS This study employed high-throughput proteomics to analyze intestinal tissues from RE rats and healthy controls, identifying differentially expressed key proteins. The degree of intestinal damage was validated through HE staining. Furthermore, five Mendelian randomization methods were used to analyze the causal relationship between 70 serum circulating inflammatory factors and CD13 levels. Sensitivity analyses, including heterogeneity tests, leave-one-out tests, and horizontal pleiotropy tests, were performed to ensure the robustness and reliability of the results. RESULTS CD13 was identified as a key differentially expressed protein, with its expression significantly upregulated in RE rats and positively correlated with disease severity. Bidirectional Mendelian randomization analysis revealed causal relationships between CD13 and four inflammatory factors: increased levels of CCL28 and EN-RAGE may promote the rise in CD13, while increased levels of TAM-binding protein may be associated with decreased CD13 levels. Additionally, higher CD13 levels were found to be associated with increased levels of interleukin-12. Sensitivity analyses indicated good consistency and reliability in terms of heterogeneity and pleiotropy for these exposure variables. CONCLUSION This study reveals the potential mechanistic role of CD13 in RE. Moreover, the identified CD13-associated inflammatory factors offer potential targets for the development of new prevention and treatment strategies, with significant clinical implications.
Collapse
Affiliation(s)
- Xue Ren
- Graduate School of Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, China
| | - Feng Shang
- General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, l10016, China
| | - Defu Yang
- General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, l10016, China
| | - Ying Xu
- General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, l10016, China
| | - Ying Yan
- General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, l10016, China.
| |
Collapse
|
2
|
Zhang G, Pan S, Wei J, Rong J, Liu Y, Wu D. Effect of neoadjuvant therapy on textbook outcomes in minimally invasive rectal cancer surgery. World J Surg Oncol 2025; 23:171. [PMID: 40296119 PMCID: PMC12036298 DOI: 10.1186/s12957-025-03804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
AIM Textbook outcome (TO), a combined quality indicator, encompasses key postoperative indicators such as the absence of complications, R0 resection, and no prolonged length of day. It has been suggested to be of additional value over single outcome parameters in short-term outcomes of surgical treatment. The main objective of this research was to assess the relationship between TO and neoadjuvant therapy (NT), thereby providing insights into NT's role in surgical quality. METHOD Patients who underwent minimally invasive rectal surgery were enrolled between January 2019 and June 2024. TO was defined as achieving R0 resection, at least 12 lymph nodes harvested, no adverse outcomes (Clavien-Dindo score ≥ 3, readmission, or mortality within 30 days), and length of stay within the ≤ 75th percentile for the treatment year. The relationship between TO and NT was analyzed using regression analyses. Subgroup analysis and hierarchical regression were conducted to investigate potential influencing factors and interactions. RESULTS 405 patients were enrolled, with 204 achieving TO. NT was associated with a reduction in TO (OR: 0.37, 95% CI: 0.21 ~ 0.65, p < 0.001), while robotic surgery (OR: 2.88, 95% CI: 1.62 ~ 5.11), total laparoscopic surgery (OR: 2.79, 95% CI: 1.71 ~ 4.56), enhanced recovery after surgery (OR: 1.62, 95% CI: 1.02 ~ 2.59), and stoma (OR: 1.87, 95% CI: 1.18 ~ 2.96) were associated with an increased rate of TO. The impact of NT on TO varied depending on surgery duration; prolonged surgical time exacerbated the negative effect of NT on TO. This observation was consistent with a significant interaction effect. CONCLUSION NT is associated with a lower TO rate, especially in patients with prolonged surgical time. Robotic surgery, total laparoscopic surgery, enhanced recovery after surgery, and stoma can improve achieve TO.
Collapse
Affiliation(s)
- Guiqi Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shiquan Pan
- Department of Spinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiashun Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jie Rong
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yuan Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Dongbo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China.
- Department of Gastrointestinal, Metabolic and Bariatric Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
3
|
Vera G, Nurgali K, Abalo R. Chemotherapy-Induced Neuropathy Affecting the Gastrointestinal Tract. Neurogastroenterol Motil 2024:e14976. [PMID: 39651634 DOI: 10.1111/nmo.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Cancer is a major global cause of morbidity and mortality. Survivorship is increasing, bringing new challenges. Cancer treatment, including chemotherapeutic drugs, immunotherapy, and radiotherapy, can have severe and impactful gastrointestinal side effects occurring shortly after treatment (acute toxicity) or persisting for years after treatment ends (late/chronic toxicity). PURPOSE The aim of this article is to review the neurotoxic effects of chemotherapy on the enteric nervous system (ENS) and the gut extrinsic innervation. These effects could contribute to the development of long-term gastrointestinal dysfunctions. Research, primarily conducted in animal models, indicates that antitumoral drugs can lead to chemotherapy-induced enteric neuropathy (CIEN). Studies, mainly performed in the myenteric plexus, show that CIEN is characterized by a reduced density of nerve cells and fibers, as well as an imbalanced representation of neuronal subpopulations or their markers, with enteric glial cells also affected. These alterations underlie changes in neuronal activity and gastrointestinal motor function. Although research on the submucosal plexus remains limited, evidence suggests that CIEN affects the entire ENS. Furthermore, scarce studies show that CIEN also occurs in humans. Moreover, emerging experimental data on chemotherapy-induced alterations in visceral sensitivity suggest that the extrinsic innervation of the gut is also affected, but this has received little attention thus far. Nevertheless, this could contribute to the development of chemotherapy-induced brain-gut axis (BGA) disorders in the long term. Cancer chemotherapy (and probably also immunotherapy and radiotherapy) seems to cause neuropathic effects on the intrinsic and extrinsic innervation of the gastrointestinal tract, with an important impact on gastrointestinal and BGA functions. This is a relatively neglected area deserving further investigation.
Collapse
Affiliation(s)
- Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, Madrid, Spain
| |
Collapse
|
4
|
Chen C, Cai W, Li Y, Ren J, Xu Z, Pang L, Dai W. Perianal leiomyosarcoma as a rare sequela of rectal cancer radiotherapy: a case report. Front Oncol 2024; 14:1474536. [PMID: 39558953 PMCID: PMC11570403 DOI: 10.3389/fonc.2024.1474536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Radiation-induced sarcomas (RIS) are iatrogenic malignancies that arise following high-dose radiotherapy, posing a significant clinical challenge due to their poor prognosis and resistance to conventional treatments. The incidence of RIS is increasing with advancements in radiotherapy techniques. This report presents a case of a 71-year-old male diagnosed with stage III rectal adenocarcinoma treated with neoadjuvant chemoradiotherapy and curative surgery. Three years postoperatively, he developed a low-grade radiation-induced leiomyosarcoma in the perianal region. Histopathological examination confirmed a spindle cell neoplasm with notable immunohistochemical markers. RIS often presents as aggressive high-grade tumors resistant to radiotherapy and chemotherapy, necessitating surgical resection as the primary treatment. This case underscores the importance of long-term surveillance post-radiotherapy and highlights the need for innovative therapeutic strategies, including immunotherapy. Despite being rare, RIS poses a significant risk following cancer treatment, making early detection through vigilant monitoring and advancements in therapeutic approaches crucial for improving patient outcomes.
Collapse
Affiliation(s)
- Chaopeng Chen
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Wenping Cai
- Department of Pathology, The Central People’s Hospital of Zhanjiang (Zhanjiang Central Hospital, Guangdong Medical University), Zhanjiang, Guangdong, China
| | - Yujiao Li
- Department of Pathology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junqi Ren
- Department of Pathology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Xu
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lijuan Pang
- Department of Pathology, The Central People’s Hospital of Zhanjiang (Zhanjiang Central Hospital, Guangdong Medical University), Zhanjiang, Guangdong, China
| | - Weiping Dai
- Department of Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
6
|
Kim JM, Kim DH, Kim WT, Shin SC, Cheon YI, Park GC, Lee HW, Lee BJ. Amifostine and Melatonin Prevent Acute Salivary Gland Dysfunction 10 Days After Radiation Through Anti-Ferroptosis and Anti-Ferritinophagy Effects. Int J Mol Sci 2024; 25:11613. [PMID: 39519165 PMCID: PMC11546762 DOI: 10.3390/ijms252111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Irradiation of the head and neck inevitably leads to decreased salivary gland function. It is postulated that radiation generates excessive reactive oxygen species (ROS) and reduces salivary gland function by ferroptosis, a new cell death mechanism; however, research in this area is currently lacking. In this study, we investigated the effects of amifostine and melatonin on acute salivary gland dysfunction and ferroptosis. Thirty-two Sprague Dawley rats were divided into four groups: control, radiation, radiation + amifostine, and radiation + melatonin. ROS; iron levels; glutathione peroxidase 4; 4-hydroxynonenal; various cytokines; and fibrosis and salivary gland functional markers were measured. Western blotting was used to detect ferritinophagy. After irradiation, we observed an increase in iron levels, ROS generation, oxidized glutathione, lipid peroxidation, fibrosis, and salivary gland dysfunction and a decrease in glutathione peroxidase 4 in salivary gland tissue. Treatment with amifostine or melatonin decreased the ferroptotic response and improved acute salivary gland function 10 days after radiation. The increase in iron levels associated with ferritinophagy was reduced after treatment with amifostine or melatonin. Our results demonstrate that radiation-induced acute salivary gland dysfunction is associated with ferroptosis and ferritinophagy. Amifostine and melatonin inhibit radiation-induced ferroptosis and ferritinophagy in the salivary gland and prevent acute salivary gland dysfunction 10 days after radiation.
Collapse
Affiliation(s)
- Ji-Min Kim
- Pusan National University Medical Research Institute, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiation Oncology, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Won-Taek Kim
- Department of Radiation Oncology, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Sung-Chan Shin
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-il Cheon
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Gi-Cheol Park
- Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Hyoun-Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Byung-Joo Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Ling Z, Wang Z, Chen L, Mao J, Ma D, Han X, Tian L, Zhu Q, Lu G, Yan X, Ding Y, Xiao W, Chen Y, Peng A, Yin X. Naringenin Alleviates Radiation-Induced Intestinal Injury by Inhibiting TRPV6 in Mice. Mol Nutr Food Res 2024; 68:e2300745. [PMID: 38581304 DOI: 10.1002/mnfr.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Indexed: 04/08/2024]
Abstract
SCOPE Naringenin (NAR) possesses unique anti-inflammatory, antiapoptosis effects and various bioactivities; however, its role against radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate whether NAR has protective effects against radiation-induced intestinal injury and the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI), then gavaged with NAR for 7 days. NAR treatment prolongs the survival rate, protects crypts and villi from damage, alleviates the level of radiation-induced inflammation, and mitigates intestinal barrier damage in the irradiated mice. Additionally, NAR reduces immune cell infiltration and intestinal epithelial cell apoptosis. NAR also shows radioprotective effects in human colon cancer cells (HCT116) and human intestinal epithelial cells (NCM460). It reduces cell damage by reducing intracellular calcium ion levels and reactive oxygen species (ROS) levels. NAR-mediated radioprotection is associated with the downregulation of transient receptor potential vanilloid 6 (TRPV6), and inhibition of apoptosis pathway. Notably, treatment with NAR fails to further increase the protective effects of the TRPV6 inhibitor 2-APB, indicating that TRPV6 inhibition is essential for NAR activity. CONCLUSION NAR inhibits the apoptosis pathway by downregulating TRPV6 and reducing calcium ion level, thereby alleviating RIII. Therefore, NAR is a promising therapeutic drug for RIII.
Collapse
Affiliation(s)
- Zhi Ling
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Zheng Wang
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Lin Chen
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Jingxian Mao
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Dongmei Ma
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xiao Han
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Linlin Tian
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Qingtian Zhu
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Guotao Lu
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yanbing Ding
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Weiming Xiao
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Aijun Peng
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xudong Yin
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
9
|
Danan CH, Naughton KE, Hayer KE, Vellappan S, McMillan EA, Zhou Y, Matsuda R, Nettleford SK, Katada K, Parham LR, Ma X, Chowdhury A, Wilkins BJ, Shah P, Weitzman MD, Hamilton KE. Intestinal transit-amplifying cells require METTL3 for growth factor signaling and cell survival. JCI Insight 2023; 8:e171657. [PMID: 37883185 PMCID: PMC10795831 DOI: 10.1172/jci.insight.171657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Abstract
Intestinal epithelial transit-amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite these cells' critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit-amplifying cell function. We report that RNA methyltransferase-like 3 (METTL3) is required for survival of transit-amplifying cells in the murine small intestine. Transit-amplifying cell death after METTL3 deletion was associated with crypt and villus atrophy, loss of absorptive enterocytes, and uniform wasting and death in METTL3-depleted mice. Sequencing of polysome-bound and methylated RNAs in enteroids and in vivo demonstrated decreased translation of hundreds of methylated transcripts after METTL3 deletion, particularly transcripts involved in growth factor signal transduction such as Kras. Further investigation verified a relationship between METTL3 and Kras methylation and protein levels in vivo. Our study identifies METTL3 as an essential factor supporting the homeostasis of small intestinal tissue via direct maintenance of transit-amplifying cell survival. We highlight the crucial role of RNA modifications in regulating growth factor signaling in the intestine with important implications for both homeostatic tissue renewal and epithelial regeneration.
Collapse
Affiliation(s)
- Charles H. Danan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
- Medical Scientist Training Program, Perelman School of Medicine; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaitlyn E. Naughton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangeevan Vellappan
- Waksman Institute of Microbiology and
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey, USA
| | - Emily A. McMillan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
| | - Yusen Zhou
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rina Matsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, School of Veterinary Medicine, and
| | - Shaneice K. Nettleford
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
| | - Kay Katada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis R. Parham
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
| | - Afrah Chowdhury
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey, USA
| | - Matthew D. Weitzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Zhao C, Pan B, Wang T, Yang H, Vance D, Li X, Zhao H, Hu X, Yang T, Chen Z, Hao L, Liu T, Wang Y. Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 2023; 15:2729. [PMID: 38140070 PMCID: PMC10747500 DOI: 10.3390/pharmaceutics15122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.
Collapse
Affiliation(s)
- Chenyu Zhao
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Boyue Pan
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Tianlin Wang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - David Vance
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Xinru Hu
- The 1st Clinical Department, China Medical University, Shenyang 110122, China;
| | - Tianchang Yang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Zihao Chen
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Ting Liu
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Yang Wang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| |
Collapse
|
11
|
Dushime H, Moreno SG, Linard C, Adrait A, Couté Y, Peltzer J, Messiaen S, Torres C, Bensemmane L, Lewandowski D, Romeo PH, Petit V, Gault N. Fetal Muse-based therapy prevents lethal radio-induced gastrointestinal syndrome by intestinal regeneration. Stem Cell Res Ther 2023; 14:201. [PMID: 37568164 PMCID: PMC10416451 DOI: 10.1186/s13287-023-03425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Human multilineage-differentiating stress enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be easily obtained from various adult or fetal tissues. Regenerative effects of Muse cells have been shown in some disease models. Muse cells specifically home in damaged tissues where they exert pleiotropic effects. Exposition of the small intestine to high doses of irradiation (IR) delivered after radiotherapy or nuclear accident results in a lethal gastrointestinal syndrome (GIS) characterized by acute loss of intestinal stem cells, impaired epithelial regeneration and subsequent loss of the mucosal barrier resulting in sepsis and death. To date, there is no effective medical treatment for GIS. Here, we investigate whether Muse cells can prevent lethal GIS and study how they act on intestinal stem cell microenvironment to promote intestinal regeneration. METHODS Human Muse cells from Wharton's jelly matrix of umbilical cord (WJ-Muse) were sorted by flow cytometry using the SSEA-3 marker, characterized and compared to bone-marrow derived Muse cells (BM-Muse). Under gas anesthesia, GIS mice were treated or not through an intravenous retro-orbital injection of 50,000 WJ-Muse, freshly isolated or cryopreserved, shortly after an 18 Gy-abdominal IR. No immunosuppressant was delivered to the mice. Mice were euthanized either 24 h post-IR to assess early small intestine tissue response, or 7 days post-IR to assess any regenerative response. Mouse survival, histological stainings, apoptosis and cell proliferation were studied and measurement of cytokines, recruitment of immune cells and barrier functional assay were performed. RESULTS Injection of WJ-Muse shortly after abdominal IR highly improved mouse survival as a result of a rapid regeneration of intestinal epithelium with the rescue of the impaired epithelial barrier. In small intestine of Muse-treated mice, an early enhanced secretion of IL-6 and MCP-1 cytokines was observed associated with (1) recruitment of monocytes/M2-like macrophages and (2) proliferation of Paneth cells through activation of the IL-6/Stat3 pathway. CONCLUSION Our findings indicate that a single injection of a small quantity of WJ-Muse may be a new and easy therapeutic strategy for treating lethal GIS.
Collapse
Affiliation(s)
- Honorine Dushime
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Stéphanie G Moreno
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Christine Linard
- Laboratory of Medical Radiobiology, Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Annie Adrait
- Université Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, FR2048, CEA, 38000, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, FR2048, CEA, 38000, Grenoble, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), 92141, Clamart, France
- UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Sébastien Messiaen
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Claire Torres
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Lydia Bensemmane
- Laboratory of Medical Radiobiology, Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Paul-Henri Romeo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France
| | - Vanessa Petit
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France.
| | - Nathalie Gault
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), CEA, 92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRTS/iRCM/IBFJ, CEA, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
12
|
Mercantepe F, Tumkaya L, Mercantepe T, Rakici SY, Ciftel S, Ciftel S. Radioprotective effects of α2-adrenergic receptor agonist dexmedetomidine on X-ray irradiation-induced pancreatic islet cell damage. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1827-1836. [PMID: 36877270 DOI: 10.1007/s00210-023-02454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Comprehensive epidemiological analyses conducted in the last 30 years have revealed a link between radiation and DM. We aimed to determine the effects of dexmedetomidine pretreatment on radiation-induced pancreatic islet cell damage. Twenty-four rats were divided into three groups: group 1 (control group), group 2 (only X-ray irradiation group), and group 3 (X-ray irradiation + dexmedetomidine). We observed necrotic cells with vacuoles accompanying loss of cytoplasm in the islets of Langerhans, extensive edematous areas, and vascular congestions in group 2. In group 3, we observed a decrease in necrotic cells in the islets of Langerhans, and edematous areas and vascular congestion was also reduced. We determined a decrease in β-cells, α-cells, and D-cells in the islets of Langerhans in group 2 compared to the control group. In group 3, β-cells, α-cells, and D-cells were elevated compared to group 2. Ionizing radiation may induce DM. Dexmedetomidine appears to exert a radioprotective effect.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, 2 Nolu Sehitler Street, Rize, 53020, Turkey.
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sema Yilmaz Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Sedat Ciftel
- Department of Gastroenterology, Faculty of Medicine, Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
13
|
Li H, Zhao S, Jiang M, Zhu T, Liu J, Feng G, Lu L, Dong J, Wu X, Chen X, Zhao Y, Fan S. Biomodified Extracellular Vesicles Remodel the Intestinal Microenvironment to Overcome Radiation Enteritis. ACS NANO 2023; 17:14079-14098. [PMID: 37399352 DOI: 10.1021/acsnano.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Ionizing radiation (IR) is associated with the occurrence of enteritis, and protecting the whole intestine from radiation-induced gut injury remains an unmet clinical need. Circulating extracellular vesicles (EVs) are proven to be vital factors in the establishment of tissue and cell microenvironments. In this study, we aimed to investigate a radioprotective strategy mediated by small EVs (exosomes) in the context of irradiation-induced intestinal injury. We found that exosomes derived from donor mice exposed to total body irradiation (TBI) could protect recipient mice against TBI-induced lethality and alleviate radiation-induced gastrointestinal (GI) tract toxicity. To enhance the protective effect of EVs, profilings of mouse and human exosomal microRNAs (miRNAs) were performed to identify the functional molecule in exosomes. We found that miRNA-142-5p was highly expressed in exosomes from both donor mice exposed to TBI and patients after radiotherapy (RT). Moreover, miR-142 protected intestinal epithelial cells from irradiation-induced apoptosis and death and mediated EV protection against radiation enteritis by ameliorating the intestinal microenvironment. Then, biomodification of EVs was accomplished via enhancing miR-142 expression and intestinal specificity of exosomes, and thus improved EV-mediated protection from radiation enteritis. Our findings provide an effective approach for protecting against GI syndrome in people exposed to irradiation.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Shuya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
14
|
da Silva KS, Abboud KY, Schiebel CS, de Oliveira NMT, Bueno LR, de Mello Braga LLV, da Silveira BC, Santos IWFD, Gomes EDS, Gois MB, Cordeiro LMC, Maria Ferreira D. Polysaccharides from Passion Fruit Peels: From an Agroindustrial By-Product to a Viable Option for 5-FU-Induced Intestinal Damage. Pharmaceuticals (Basel) 2023; 16:912. [PMID: 37513823 PMCID: PMC10383750 DOI: 10.3390/ph16070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal mucositis is a serious and dose-limiting toxic side effect of oncologic treatment. Interruption of cancer treatment due to gastrointestinal mucositis leads to a significant decrease in cure rates and consequently to the deterioration of a patient's quality of life. Natural polysaccharides show a variety of beneficial effects, including a gastroprotective effect. Treatment with soluble dietary fiber (SDF) from yellow passion fruit (Passiflora edulis) biomass residues protected the gastric and intestinal mucosa in models of gastrointestinal injury. In this study, we investigated the protective therapeutic effect of SDF on 5-FU-induced mucositis in male and female mice. Oral treatment of the animals with SDF did not prevent weight loss but reduced the disease activity index and preserved normal intestinal function by alleviating diarrhea and altered gastrointestinal transit. SDF preserved the length of the colon and histological damage caused by 5-FU. SDF significantly restored the oxidative stress and inflammation in the intestine and the enlargement and swelling of the spleen induced by 5-FU. In conclusion, SDF may be a promising adjuvant strategy for the prevention and treatment of intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Kahlile Youssef Abboud
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Carolina Silva Schiebel
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Bruna Carla da Silveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Isabella Wzorek França Dos Santos
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Everton Dos Santos Gomes
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | - Marcelo Biondaro Gois
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | | | - Daniele Maria Ferreira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| |
Collapse
|
15
|
Diaz J, Kuhlman BM, Edenhoffer NP, Evans AC, Martin KA, Guida P, Rusek A, Atala A, Coleman MA, Wilson PF, Almeida-Porada G, Porada CD. Immediate effects of acute Mars mission equivalent doses of SEP and GCR radiation on the murine gastrointestinal system-protective effects of curcumin-loaded nanolipoprotein particles (cNLPs). FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 10:1117811. [PMID: 38741937 PMCID: PMC11089821 DOI: 10.3389/fspas.2023.1117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Introduction Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.
Collapse
Affiliation(s)
- Jonathan Diaz
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Bradford M. Kuhlman
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | | | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter Guida
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, NY, United States
| | - Adam Rusek
- NASA Space Radiation Laboratory, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Matthew A. Coleman
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul F. Wilson
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
16
|
Klett KC, Martin-Villa BC, Villarreal VS, Melemenidis S, Viswanathan V, Manjappa R, Ashraf MR, Soto L, Lau B, Dutt S, Rankin EB, Loo BW, Heilshorn SC. Human enteroids as a tool to study conventional and ultra-high dose rate radiation. Integr Biol (Camb) 2023; 15:zyad013. [PMID: 37874173 PMCID: PMC10594601 DOI: 10.1093/intbio/zyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.
Collapse
Affiliation(s)
- Katarina C Klett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Victoria S Villarreal
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Mercantepe F, Tumkaya L, Mercantepe T, Rakici S. Histopathological evaluation of the effects of dexmedetomidine against pituitary damage ınduced by X-ray irradiation. Biomarkers 2023; 28:168-176. [PMID: 36453587 DOI: 10.1080/1354750x.2022.2154385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: The present study, aimed to investigate the potential negative effects of x-ray radiation and the effects of the α2-adrenergic receptor agonist dexmedetomidine on the pituitary gland.Methods: Twenty-four Sprague-Dawley rats were divided into three groups: Rats in Group 1 (control group). Group 2 (X-ray irradiation) and group 3 (X-ray irradiation + Dexmedetomidine) were given a total of 10 Gy external beam total body irradiation. Group 3 was given a single intraperitoneal dose of 200 µg/kg dexmedetomidine 30 minutes before RT.Results: In sections obtained from the x-ray irradiation group, we observed many necrotic in adenohypophysis and neurohypophysis. In addition, there were extensive oedematous areas and vascular congestions due to the necrotic cells in both the adenohypophysis and neurohypophysis. In contrast, we observed a reduction in necrotic chromophobic and chromophilic cells in adenohypophyseal tissue and a reduction in necrotic pituicytes in neurohypophyseal tissue in the dexmedetomidine treatment group. In addition, we determined lower caspase-3 and TUNEL expression in the dexmedetomidine treatment group compared with the x-ray irradiation group. Dexmedetomidine reduced x-ray radiation-induced pituitary damage by preventing apoptosis.Conclusions: The present study demonstrated the use of dexmedetomidine in situations related to radiation toxicity and offers the potential for a comprehensive study.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
18
|
Li G, Zhang X, Song X, Duan L, Wang G, Xiao Q, Li J, Liang L, Bai L, Bai S. Machine learning for predicting accuracy of lung and liver tumor motion tracking using radiomic features. Quant Imaging Med Surg 2023; 13:1605-1618. [PMID: 36915317 PMCID: PMC10006135 DOI: 10.21037/qims-22-621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023]
Abstract
Background Internal tumor motion is commonly predicted using external respiratory signals. However, the internal/external correlation is complex and patient-specific. The purpose of this study was to develop various models based on the radiomic features of computed tomography (CT) images to predict the accuracy of tumor motion tracking using external surrogates and to find accurate and reliable tracking algorithms. Methods Images obtained from a total of 108 and 71 patients pathologically diagnosed with lung and liver cancers, respectively, were examined. Real-time position monitoring motion was fitted to tumor motion, and samples with fitting errors greater than 2 mm were considered positive. Radiomic features were extracted from internal target volumes of average intensity projections, and cross-validation least absolute shrinkage and selection operator (LassoCV) was used to conduct feature selection. Based on the radiomic features, a total of 26 separate models (13 for the lung and 13 for the liver) were trained and tested. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to assess performance. Relative standard deviation was used to assess stability. Results Thirty-three and 22 radiomic features were selected for the lung and liver, respectively. For the lung, the AUC varied from 0.848 (decision tree) to 0.941 [support vector classifier (SVC), logistic regression]; sensitivity varied from 0.723 (extreme gradient boosting) to 0.848 [linear support vector classifier (linearSVC)]; specificity varied from 0.834 (gaussian naive bayes) to 0.936 [multilayer perceptron (MLP), wide and deep (W&D)]; and MLP and W&D had better performance and stability than the median. For the liver, the AUC varied from 0.677 [light gradient boosting machine (Light)] to 0.892 (logistic regression); sensitivity varied from 0.717 (W&D) to 0.862 (MLP); specificity varied from 0.566 (Light) to 0.829 (linearSVC); and logistic regression, MLP, and SVC had better performance and stability than the median. Conclusions Respiratory-sensitive radiomic features extracted from CT images of lung and liver tumors were proved to contain sufficient information to establish an external/internal motion relationship. We developed a rapid and accurate method based on radiomics to classify the accuracy of monitoring a patient's external surface for lung and liver tumor tracking. Several machine learning algorithms-in particular, MLP-demonstrated excellent classification performance and stability.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Song
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Duan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangyu Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Liang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Liu D, Wei M, Yan W, Xie H, Sun Y, Yuan B, Jin Y. Potential applications of drug delivery technologies against radiation enteritis. Expert Opin Drug Deliv 2023; 20:435-455. [PMID: 36809906 DOI: 10.1080/17425247.2023.2183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION The incidence of abdominal tumors, such as colorectal and prostate cancers, continually increases. Radiation therapy is widely applied in the clinical treatment of patients with abdominal/pelvic cancers, but it often unfortunately causes radiation enteritis (RE) involving the intestine, colon, and rectum. However, there is a lack of suitable treatment options for effective prevention and treatment of RE. AREAS COVERED Conventional clinical drugs for preventing and treating RE are usually applied by enemas and oral administration. Innovative gut-targeted drug delivery systems including hydrogels, microspheres, and nanoparticles are proposed to improve the prevention and curation of RE. EXPERT OPINION The prevention and treatment of RE have not attracted sufficient attention in the clinical practice, especially compared to the treatment of tumors, although RE takes patients great pains. Drug delivery to the pathological sites of RE is a huge challenge. The short retention and weak targeting of conventional drug delivery systems affect the therapeutic efficiency of anti-RE drugs. Novel drug delivery systems including hydrogels, microspheres, and nanoparticles can allow drugs long-term retention in the gut and targeting the inflammation sites to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xie
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingbao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
20
|
Li Z, Ke X, Zuo D, Wang Z, Fang F, Li B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022; 15:nu15010048. [PMID: 36615706 PMCID: PMC9824372 DOI: 10.3390/nu15010048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.
Collapse
Affiliation(s)
- Zhipeng Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiyang Ke
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Ministry of Education, Beijing 100142, China
| | - Dan Zuo
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Fang Fang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-85619455
| | - Bo Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Abstract
The benefit of radiation is immense in the field of gastroenterology. Radiation is used daily in different gastrointestinal imaging and diagnostic and therapeutic interventional procedures. Radiotherapy is one of the primary modalities of treatment of gastrointestinal malignancies. There are various modalities of radiotherapy. Radiotherapy can injure malignant cells by directly damaging DNA, RNA, proteins, and lipids and indirectly by forming free radicals. External beam radiation, internal beam radiation and radio-isotope therapy are the major ways of delivering radiation to the malignant tissue. Radiation can also cause inflammation, fibrosis, organ dysfunction, and malignancy. Patients with repeated exposure to radiation for diagnostic imaging and therapeutic procedures are at slightly increased risk of malignancy. Gastrointestinal endoscopists performing fluoroscopy-guided procedures are also at increased risk of malignancy and cataract formation. The radiological protection society recommends certain preventive and protective measures to avoid side effects of radiation. Gastrointestinal complications related to radiation therapy for oncologic processes, and exposure risks for patients and health care providers involved in diagnostic or therapeutic imaging will be discussed in this review.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Razin Ahmed
- California Cancer Associates for Research and Excellence, Fresno, CA, USA
| |
Collapse
|
22
|
Maines LW, Schrecengost RS, Zhuang Y, Keller SN, Smith RA, Green CL, Smith CD. Opaganib Protects against Radiation Toxicity: Implications for Homeland Security and Antitumor Radiotherapy. Int J Mol Sci 2022; 23:13191. [PMID: 36361977 PMCID: PMC9655569 DOI: 10.3390/ijms232113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/25/2023] Open
Abstract
Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA
| |
Collapse
|