1
|
Wu F, Wu Y, Zhang M, Tian L, Li X, Luo X, Zhang Y, Lu R. Comparative genomic analysis of ten Elizabethkingia anophelis isolated from clinical patients in China. Microbiol Spectr 2025; 13:e0178024. [PMID: 39612476 PMCID: PMC11705823 DOI: 10.1128/spectrum.01780-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024] Open
Abstract
Elizabethkingia anophelis is an emerging pathogen that causes life-threatening infections in neonates and immunocompromised patients. In this study, we performed next-generation sequencing (NGS) to characterize 10 E. anophelis strains isolated from clinical patients in Nantong, China. Core, accessory, and unique genomes were composed of 2,891, 1,633, and 498 genes, respectively. Based on genetic screening for antimicrobial resistance genes (AMRs), all E. anophelis strains carried the same AMRs, including blaB, blaCME, and blaGOB. The virulence factors (VFs) in the 10 strains were classified into 13 functional categories, and the differences between strains were mainly in immune modulation and nutritional/metabolic factor. We further analyzed the genomic features of one of ten strains, NT06 strain. The capsule type of NT06 was X, which is rare among E. anophelis strains. Based on comparative analyses, we first found that NT06 carried the YclNOPQ-like operon, which is the complete transporter for petrobactin, to acquire iron. The genomic features are important for further investigations of epidemiology, resistance, virulence, and to identify appropriate treatments.IMPORTANCEElizabethkingia anophelis strains are opportunistic pathogens causing meningitis, bloodstream infections, and endophthalmitis in vulnerable populations. There is a lack of knowledge of the genetic diversity, presence of antimicrobial resistance genes (AMRs), and virulence factors (VFs) in E. anophelis isolated from clinical patients in China. Based on next-generation sequencing (NGS) and comparative genomic analyses, we determined the genomic features, phylogeny, and diversity of E. anophelis strains isolated from patients and identified a large accessory genome, intrinsic AMRs, and variable VFs. Based on comparative analyses, we identified a key strain, NT06, that carried a unique capsule type of X and the siderophore-mediated iron acquisition system (yclNOPQ-like genes). These findings advance our understanding of the genomic plasticity, evolution, and pathogenicity determinants of E. anophelis.
Collapse
Affiliation(s)
- Fei Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yan Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lijun Tian
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
2
|
Hu S, Chen Y, Xu H, Chen J, Hu S, Meng X, Ni S, Xiao Y, Zheng B. Probability of outbreaks and cross-border dissemination of the emerging pathogen: a genomic survey of Elizabethkingia meningoseptica. Microbiol Spectr 2023; 11:e0160223. [PMID: 37815354 PMCID: PMC10714787 DOI: 10.1128/spectrum.01602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Elizabethkingia meningoseptica is an emerging infectious agent associated with life-threatening infections in immunocompromised individuals. However, there are limited data available on the genomic features of E. meningoseptica. This study aims to characterize the geographical distribution, phylogenetic evolution, pathogenesis, and transmission of this bacterium. A systematic analysis of the E. meningoseptica genome revealed that a common ancestor of this bacterium existed 90 years ago. The evolutionary history showed no significant relationship with the sample source, origin, or region, despite the presence of genetic diversity. Whole genome sequencing data also demonstrated that E. meningoseptica bacteria possess inherent resistance and pathogenicity, enabling them to spread within the same hospital and even across borders. This study highlights the potential for E. meningoseptica to cause severe nosocomial outbreaks and horizontal transmission between countries worldwide. The available evidence is crucial for the development of evidence-based public health policies to prevent global outbreaks caused by emerging pathogens.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingying Chen
- Department of Neurosurgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Chen
- Data Resource Development Department, Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Shaojun Hu
- Department of Pathology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaohua Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujun Ni
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, Hebei, China
| |
Collapse
|
3
|
Koulenti D, Vandana KE, Rello J. Current viewpoint on the epidemiology of nonfermenting Gram-negative bacterial strains. Curr Opin Infect Dis 2023; 36:545-554. [PMID: 37930069 DOI: 10.1097/qco.0000000000000977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW This article aims to review the epidemiology of nonfermenting Gram-negative bacilli (NFGNB) based on recent literature reports, particularly, of the less common, but with emerging clinical significance species. RECENT FINDINGS The reported frequency of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa is increasing, with very significant variability, however, between different countries. Apart from the major NFGNB, that is, A. baumannii and P. aeruginosa, already recognized as of critical importance healthcare risks, several other NFGNB genera have been increasingly associated with diverse severe infections, such as Stenotrophomonas maltophilia, Burkholderia spp., Elizabethkingia spp., Chryseobacterium spp., Achromobacter spp., Alcaligenes spp., Sphingomonas spp., Shewanella spp. and Ralstonia spp., among others. SUMMARY The exploration of the epidemiology, as well as the pathogenic potential of the of the less frequent, but emerging and increasingly reported NFGNB, is crucial, not only for immunocompromised patients, but also for critically ill patients without overt immunosuppression. As we are heading fast towards a postantibiotic era, such information would contribute to the optimal antimicrobial management, that is, providing prompt, appropriate antimicrobial coverage when needed and, at the same time, avoiding overuse and/or inappropriate use of antimicrobial therapy. Also, it would help to better understand their transmission dynamics and to develop effective prevention strategies.
Collapse
Affiliation(s)
- Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kalwaje Eswhara Vandana
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Jordi Rello
- Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- FOREVA Research Unit, CHU Nîmes, Nîmes, France
| |
Collapse
|
4
|
Lee YL, Hsueh PR. Emerging infections in vulnerable hosts: Stenotrophomonas maltophilia and Elizabethkingia anophelis. Curr Opin Infect Dis 2023; 36:481-494. [PMID: 37548375 DOI: 10.1097/qco.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW This systematic review aimed to explore the recent trends in the epidemiology, risk factors, and antimicrobial susceptibility of two emerging opportunistic pathogens, Stenotrophomonas maltophilia and Elizabethkingia anophelis . RECENT FINDINGS Since 2020, numerous outbreaks of S. maltophilia and E. anophelis have been reported worldwide. Most of these outbreaks have been associated with healthcare facilities, although one outbreak caused by E. anophelis in France was considered a community-associated infection. In terms of antimicrobial susceptibility, trimethoprim/sulfamethoxazole (TMP-SMZ), levofloxacin, and minocycline have exhibited good efficacy against S. maltophilia . Additionally, cefiderocol and a combination of aztreonam and avibactam have shown promising results in in vitro susceptibility testing. For E. anophelis , there is currently no consensus on the optimal treatment. Although some studies have reported good efficacy with rifampin, TMP-SMZ, piperacillin/tazobactam, and cefoperazone/sulbactam, minocycline had the most favourable in vitro susceptibility rates. Cefiderocol may serve as an alternative due to its low minimum inhibitory concentration (MIC) against E. anophelis . The role of vancomycin in treatment is still uncertain, although several successful cases with vancomycin treatment, even with high MIC values, have been reported. SUMMARY Immunocompromised patients are particularly vulnerable to infections caused by S. maltophilia and E. anophelis , but the optimal treatment strategy remains inconclusive. Further research is necessary to determine the most effective use of conventional and novel antimicrobial agents in combatting these multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital
- School of Medicine, Chung Shan Medical University
- PhD Program in Medical Biotechnology, National Chung-Hsing University
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital
- School of Medicine
- PhD Program for Aging, School of Medicine, China Medical University, Taichung
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Mallinckrodt L, Huis In 't Veld R, Rosema S, Voss A, Bathoorn E. Review on infection control strategies to minimize outbreaks of the emerging pathogen Elizabethkingia anophelis. Antimicrob Resist Infect Control 2023; 12:97. [PMID: 37679842 PMCID: PMC10486102 DOI: 10.1186/s13756-023-01304-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Elizabethkingia anophelis is a multi-drug resistant emerging opportunistic pathogen with a high mortality rate, causing healthcare-associated outbreaks worldwide. METHODS We report a case of E. anophelis pleuritis, resulting from transmission through lung transplantation, followed by a literature review of outbreak reports and strategies to minimize E. anophelis transmission in healthcare settings. RESULTS From 1990 to August 2022, 14 confirmed E. anophelis outbreak cohorts and 21 cohorts with suspected E. anophelis outbreaks were reported in literature. A total of 80 scientific reports with recommendations on diagnostics and infection control measures were included and summarized in our study. CONCLUSION Strategies to prevent and reduce spread of E. anophelis include water-free patient rooms, adequate hygiene and disinfection practices, and optimized diagnostic techniques for screening, identification and molecular typing.
Collapse
Affiliation(s)
- Lisa Mallinckrodt
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Gelre Hospital, Apeldoorn, The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chaudhary S, Rijal A, Rajbhandari P, Acharya AB. The First Reported Case of Elizabethkingia anophelis From Nepal. Cureus 2023; 15:e45346. [PMID: 37849601 PMCID: PMC10577804 DOI: 10.7759/cureus.45346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/19/2023] Open
Abstract
Elizabethkingia anophelis, a gram-negative bacillus belonging to the Flavobacteriaceae family, is found in various environmental sources and has been associated with community and hospital outbreaks. Correct identification is crucial, guided by advanced genomic techniques, i.e., matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system with an updated database. The case fatality rate, ranging from 24 to 60%, underscores the need for timely recognition and appropriate management. Additionally, Elizabethkingia presents a challenge due to its recent discovery, misidentification history, and drug resistance. Here, we present a case of fatal infection in a 30-year-old male, who presented with pneumonia. It gradually progressed and ultimately proved fatal underscoring the virulence of the pathogen involved. It was a diagnostic challenge as it likely is the first reported instance of Elizabethkingia anophelis infection from Nepal.
Collapse
Affiliation(s)
- Sharmila Chaudhary
- Critical Care Medicine, Patan Academy of Health Sciences, Kathmandu, NPL
| | - Ashes Rijal
- Anesthesiology and Critical Care, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, NPL
- Public Health Sciences, Nepal Health Frontiers, Kathmandu, NPL
| | | | - Achyut Bhakta Acharya
- Pulmonary, Critical Care & Sleep Medicine, B.P. Koirala Institute of Health Sciences, Dharan, NPL
| |
Collapse
|
7
|
Yasmin M, Rojas LJ, Marshall SH, Hujer AM, Cmolik A, Marshall E, Boucher HW, Vila AJ, Soldevila M, Diene SM, Rolain JM, Bonomo RA. Characterization of a Novel Pathogen in Immunocompromised Patients: Elizabethkingia anophelis-Exploring the Scope of Resistance to Contemporary Antimicrobial Agents and β-lactamase Inhibitors. Open Forum Infect Dis 2023; 10:ofad014. [PMID: 36820316 PMCID: PMC9938519 DOI: 10.1093/ofid/ofad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background Elizabethkingia anophelis is an emerging Gram-negative nonlactose fermenter in the health care setting, where it causes life-threatening infections in immunocompromised patients. We aimed to characterize the molecular mechanisms of antimicrobial resistance and evaluate the utility of contemporary antibiotics with the intent to offer targeted therapy against an uncommonly encountered pathogen. Methods Whole-genome sequencing (WGS) was conducted to accurately identify isolate species and elucidate the determinants of β-lactam resistance. Antimicrobial susceptibility testing was performed using broth microdilution and disk diffusion assays. To assess the functional contribution of the major metallo-β-lactamase (MBL) encoding genes to the resistance profile, bla BlaB was cloned into pBCSK(-) phagemid vector and transformed into Escherichia coli DH10B. Results WGS identified the organism as E. anophelis. MBL genes bla BlaB-1 and bla GOB-26 were identified, in addition to bla CME-2, which encodes for an extended-spectrum β-lactamase (ESBL). Plasmids were not detected. The isolate was nonsusceptible to all commonly available β-lactams, carbapenems, newer β-lactam β-lactamase inhibitor combinations, and to the combination of aztreonam (ATM) with ceftazidime-avibactam (CAZ-AVI). Susceptibility to the novel siderophore cephalosporin cefiderocol was determined. A BlaB-1 transformant E. coli DH10B isolate was obtained and demonstrated increased minimum inhibitory concentrations to cephalosporins, carbapenems, and CAZ-AVI, but not ATM. Conclusions Using WGS, we accurately identified and characterized an extensively drug-resistant E. anophelis in an immunocompromised patient. Rapid evaluation of the genetic background can guide accurate susceptibility testing to better inform antimicrobial therapy selection.
Collapse
Affiliation(s)
- Mohamad Yasmin
- Correspondence: Robert A. Bonomo, MD, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 (); or Mohamad Yasmin, MD, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 ()
| | - Laura J Rojas
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA,Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Steven H Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M Hujer
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Anna Cmolik
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Emma Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Maxime Soldevila
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix Marseille Université, Marseille, France
| | - Seydina M Diene
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix Marseille Université, Marseille, France,IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix Marseille Université, Marseille, France,IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Robert A Bonomo
- Correspondence: Robert A. Bonomo, MD, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 (); or Mohamad Yasmin, MD, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 ()
| |
Collapse
|
8
|
Hu S, Lv Y, Xu H, Zheng B, Xiao Y. Biofilm formation and antibiotic sensitivity in Elizabethkingia anophelis. Front Cell Infect Microbiol 2022; 12:953780. [PMID: 35967866 PMCID: PMC9366890 DOI: 10.3389/fcimb.2022.953780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia anophelis has recently gained global attention and is emerging as a cause of life-threatening nosocomial infections. The present study aimed to investigate the association between antimicrobial resistance and the ability to form biofilm among E. anophelis isolated from hospitalized patients in China. Over 10 years, a total of 197 non-duplicate E. anophelis strains were collected. Antibiotic susceptibility was determined by the standard agar dilution method as a reference assay according to the Clinical and Laboratory Standards Institute. The biofilm formation ability was assessed using a culture microtiter plate method, which was determined using a crystal violet assay. Culture plate results were cross-checked by scanning electron microscopy imaging analysis. Among the 197 isolates, all were multidrug-resistant, and 20 were extensively drug-resistant. Clinical E. anophelis showed high resistance to current antibiotics, and 99% of the isolates were resistant to at least seven antibiotics. The resistance rate for aztreonam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, cefepime, and tetracycline was high as 100%, 99%, 99%, 99%, 99%, 95%, and 90%, respectively. However, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (96%), and rifampin (94%). The biofilm formation results revealed that all strains could form biofilm. Among them, the proportions of strong, medium, and weak biofilm-forming strains were 41%, 42%, and 17%, respectively. Furthermore, the strains forming strong or moderate biofilm presented a statistically significant higher resistance than the weak formers (p < 0.05), especially for piperacillin, piperacillin-tazobactam, cefepime, amikacin, and ciprofloxacin. Although E. anophelis was notoriously resistant to large antibiotics, minocycline, doxycycline, and rifampin showed potent activity against this pathogen. The data in the present report revealed a positive association between biofilm formation and antibiotic resistance, which will provide a foundation for improved therapeutic strategies against E. anophelis infections in the future.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|