1
|
Yuan H, Zhang Y, Liu F, Wu Y, Huang X, Liu X, Jiang L, Xiao B, Zhu Y, Chen Q, Wu P, Jiang K. Exploring the biological mechanism and clinical value of perineural invasion in pancreatic cancer. Cancer Lett 2025; 613:217515. [PMID: 39892698 DOI: 10.1016/j.canlet.2025.217515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Pancreatic cancer (PC) is an extremely aggressive malignancy, with a 5-year survival rate of only 13 %. Perineural invasion (PNI) is a hallmark pathological feature of PC and is observed in almost all cases. Accordingly, PC ranks highly among solid tumors in terms of PNI incidence. The interaction between PC and the nervous system plays a pivotal role in tumor growth and metastasis. In PC, PNI is a key driver of local tumor progression, distant metastasis, and poor prognosis. Clarification of tumor-nerve crosstalk and the underlying molecular mechanisms is needed to facilitate the development of new therapeutic strategies to slow PC progression and alleviate PNI-associated symptoms. In this review, we present a comprehensive overview of the manifestations and characteristics of PNI in PC, summarize the molecular networks that regulate PNI, examine the relationship between PNI and the tumor microenvironment, and discuss the current research challenges and future directions in this critical area.
Collapse
Affiliation(s)
- Hao Yuan
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yufeng Zhang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xumin Huang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xinjian Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China; Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qun Chen
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Pengfei Wu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Selvaggi F, Bannone E, Melchiorre E, Diana M, Cotellese R, Aceto GM. Perineural invasion in pancreatic cancer: Current biological function in R status, prognosis, and pain. Surg Open Sci 2025; 24:58-60. [PMID: 40114679 PMCID: PMC11925526 DOI: 10.1016/j.sopen.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of death in 2030 and it is characterized by poor prognosis, recurrence and resistance to therapies. Several factors contribute to the complexity of this disease, among those the invasion of nerves by PDAC cells. This condition, defined as perineural invasion (PNI), is responsible of PDAC progression and pain generation. To date, PNI emerges as a hallmark feature of PDAC, showing the same oncological weight of lymph node metastasis in terms of prognosis. Targeting PNI could help improve prognosis and pain relief in PDAC patients. Only recently, a severity scoring system has been proposed to quantify PNI in histological samples although prospective validation and standardization are strongly advocated. More information about peripancreatic soft tissue infiltration and a "true" curative surgery could be found in understanding the molecular mechanisms of PNI. The incorporation of PNI markers for grading mesopancreas and retroperitoneal invasion is required to overcome current limitations of the histological workup. We discuss the modern understanding of PNI in PDAC, and the state of the art in clinical setting. Although there are still a lot to learn about PDAC, PNI represents one of the biological detonators and an important focus of future research.
Collapse
Affiliation(s)
- Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
| | - Elisa Bannone
- Department of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Eugenia Melchiorre
- School of Medicine, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Michele Diana
- Department of Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
- Department of Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
3
|
Gutierrez S, Parker RA, Zhang M, Santi MD, Ye Y, Boada MD. Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part 2. Biophysics and gene expression. Mol Pain 2025; 21:17448069251323666. [PMID: 39945101 PMCID: PMC11938870 DOI: 10.1177/17448069251323666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
Preclinical studies addressing the peripheral effects of cancer perineural invasion report severe neuronal availability and excitability changes. Oral cell squamous cell carcinoma perineural invasion (MOC2-PNI) shows similar effects, modulating the afferent's sensibility (tactile desensitization with concurrent nociceptive sensitization) and demyelination without inducing spontaneous activity (see Part 1.). The current study addresses the electrical status (normal or abnormal) of both active (low threshold mechano receptors (LT) and high threshold mechano receptors (HT)) and inactive (F-type and S-type) afferents. Concurrently, we have also evaluated changes in the genetic landscape that may help to understand the physiological dynamics behind MOC2-PNI-induced functional disruption of the peripheral sensory system. We have observed that the altered cell distribution and mechanical sensibility of the animal's somatosensory system cannot be explained by cellular electrical dysfunction or MOC2-PNI-induced apoptosis. Although PNI does modify the expression of several genes related to cellular hypersensitivity, these changes are insufficient to explain the MOC2-PNI-induced aberrant neuronal excitability state. Our results indicate that genetic markers provide limited information about the functional hyperexcitable state of the peripheral system. Importantly, our results also highlight the emerging role of plasma membrane Ca2+-ATPase activity (PMCA) in explaining several aspects of the observed gender-specific neuronal plasticity and the reported cellular distribution switch generated by MOC2-PNI.
Collapse
Affiliation(s)
- Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Renee A Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Morgan Zhang
- Translational Research Center, Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Maria Daniela Santi
- Translational Research Center, Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Yi Ye
- Translational Research Center, Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Mario Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Sokolova V, Gruber R, Pammer LM, Kocher F, Klieser E, Amann A, Pichler R, Günther M, Ormanns S, Neureiter D, Seeber A. Prognostic and functional role of the nuclear export receptor 1 (XPO1) in gastrointestinal cancers: a potential novel target? Mol Biol Rep 2024; 52:87. [PMID: 39729162 PMCID: PMC11680630 DOI: 10.1007/s11033-024-10169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients. Molecular high-throughput profiling techniques have revealed potential novel targetable molecular alterations, emphasizing the necessity for tailored therapeutic approaches. Nuclear export proteins, particularly Exportin-1 (XPO1), have emerged as promising targets in cancer therapy due to their crucial role in cellular homeostasis and regulation of key cellular functions. Dysregulation of XPO1-mediated nuclear export leads to the functional loss of tumor suppressors and pro-apoptotic factors, facilitating cancer progression. Selinexor, a XPO1 inhibitor, has shown promising activity in preclinical and clinical studies, particularly in hematological malignancies. However, its efficacy in GI cancers remains underexplored. This review aims to elucidate the functional and pathophysiological role of XPO1 in GI cancers. Despite the potential of XPO1 inhibitors in suppressing cell proliferation and inducing apoptosis, comprehensive molecular landscape data and validation of selective inhibitors in GI cancers are lacking. Targeting XPO1 presents a significant therapeutic potential for the treatment of GI cancer patients. Further research is necessary to fully elucidate the molecular landscape according to XPO1 expression in GI tumors and to validate the efficacy of selective XPO1 inhibitors. These efforts are expected to contribute to the development of more effective and personalized therapeutic strategies for GI cancer patients.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Andreas Seeber
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy.
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Liu Y, Cao Y, Liu P, Zhai S, Liu Y, Tang X, Lin J, Shi M, Qi D, Deng X, Zhu Y, Wang W, Shen B. ATF3-induced activation of NF-κB pathway results in acquired PARP inhibitor resistance in pancreatic adenocarcinoma. Cell Oncol (Dordr) 2024; 47:939-950. [PMID: 38097870 DOI: 10.1007/s13402-023-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Debin Qi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Xu L, Liu K, Wang F, Su Y. Cuproptosis and its application in different cancers: an overview. Mol Cell Biochem 2023; 478:2683-2693. [PMID: 36914880 DOI: 10.1007/s11010-023-04693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Heavy metal ions are essential micronutrients for human health. They are also indispensable to maintaining health and regular operation of organs. Increasing or decreasing these metal ions will lead to cell death, such as ferroptosis. Tsvetkov et al. have recently proposed a novel cell death method called "Cuproptosis". Many researchers have linked this form of death to the diagnosis, prognosis, microenvironment infiltration, and prediction of immunotherapeutic efficacy of various tumors to better understand these tumors. Similarly, with the proposal of this mechanism, the killing effect of copper ionophores on cancer cells has come to our attention again. We introduced the mechanism of cuproptosis in detail and described the establishment of the corresponding prognostic model and risk score for uveal melanoma through cuproptosis. In addition, we describe the current progress in the study of cancer in other organs through cuproptosis and summarize the treatment of tumours by copper ionophore and its future research direction. With further research, the concept of cuproptosis may help us understand cancer and guide its clinical treatment.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Russel WA, Perry J, Bonzani C, Dontino A, Mekonnen Z, Ay A, Taye B. Feature selection and association rule learning identify risk factors of malnutrition among Ethiopian schoolchildren. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1150619. [PMID: 38455884 PMCID: PMC10910994 DOI: 10.3389/fepid.2023.1150619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/20/2023] [Indexed: 03/09/2024]
Abstract
Introduction Previous studies have sought to identify risk factors for malnutrition in populations of schoolchildren, depending on traditional logistic regression methods. However, holistic machine learning (ML) approaches are emerging that may provide a more comprehensive analysis of risk factors. Methods This study employed feature selection and association rule learning ML methods in conjunction with logistic regression on epidemiological survey data from 1,036 Ethiopian school children. Our first analysis used the entire dataset and then we reran this analysis on age, residence, and sex population subsets. Results Both logistic regression and ML methods identified older childhood age as a significant risk factor, while females and vaccinated individuals showed reduced odds of stunting. Our machine learning analyses provided additional insights into the data, as feature selection identified that age, school latrine cleanliness, large family size, and nail trimming habits were significant risk factors for stunting, underweight, and thinness. Association rule learning revealed an association between co-occurring hygiene and socio-economical variables with malnutrition that was otherwise missed using traditional statistical methods. Discussion Our analysis supports the benefit of integrating feature selection methods, association rules learning techniques, and logistic regression to identify comprehensive risk factors associated with malnutrition in young children.
Collapse
Affiliation(s)
- William A. Russel
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Jim Perry
- Department of Computer Science, Colgate University, Hamilton, NY, United States
| | - Claire Bonzani
- Department of Mathematics, Colgate University, Hamilton, NY, United States
| | - Amanda Dontino
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Zeleke Mekonnen
- Institute of Health, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, United States
- Department of Mathematics, Colgate University, Hamilton, NY, United States
| | - Bineyam Taye
- Department of Biology, Colgate University, Hamilton, NY, United States
| |
Collapse
|
8
|
Piper M, Ross RB, Hu J, Watanabe S, Knitz M, Mehrotra S, Shulick R, Chiaro MD, Karam SD. Vasculitis, CA19-9, and Perineural Invasion Differentially Predict Response and Surgical Outcome in Pancreatic Ductal Adenocarcinoma. Int J Radiat Oncol Biol Phys 2023; 116:627-639. [PMID: 36599398 PMCID: PMC11619759 DOI: 10.1016/j.ijrobp.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 01/02/2023]
Abstract
PURPOSE Curative intent treatment of pancreatic adenocarcinoma (PDAC) relies on surgical resection. Modern treatment protocols focus on optimizing neoadjuvant therapy to increase resectability and improve oncologic outcomes. To elucidate differences in outcomes, we investigated the relationship between neoadjuvant chemotherapy (NAC), either with or without stereotactic body radiation therapy (SBRT), and vascular inflammation, surgical outcomes, and the resultant transcriptomic changes. METHODS AND MATERIALS Clinical data were collected from patients with borderline resectable PDAC (clinical T3-T4N0-1) who underwent NAC or NAC-SBRT followed by curative intent resection between 2014 and 2019. Vascular structures on surgical specimens were histologically evaluated for vasculitis. RNA sequencing was used to evaluate differential gene expression and to generate enrichment maps. Multivariate analysis was used to analyze the relationship between patient characteristics and oncological outcome. RESULTS In total, 46 patients met inclusion criteria (n = 12 NAC, n = 34 NAC-SBRT) with a median follow-up of 20.1 months. All patients underwent curative resection, with 91.3% achieving R0. There was no significant difference in patterns of failure, overall survival, or progression-free survival between NAC and NAC-SBRT groups. Patients with vasculitis had a lower median overall survival compared with those without (14.5 vs 28.3 months; hazard ratio, 12.96; 95% confidence interval, 3.55-47.28; P < .001). There was no significant correlation between inflammation and surgical complications or pathologic response. Neoadjuvant therapy did not have a significant effect on development of vasculitis (odds radio, 1.64 for NAC-SBRT; 95% confidence interval, 0.40-8.43; P = .52). Predictors of poor survival included perineural invasion and high baseline carbohydrate antigen 19-9 (CA19-9) (>191 U/mL). Patients with robust CA19-9 (>20% decrease) responses to neoadjuvant therapy had enrichment in immune response, chemotaxis, and cytotoxic T-cell and natural killer-cell proliferation. CONCLUSIONS Vasculitis predicts for poor survival outcomes in patients with PDAC; NAC-SBRT did not increase the rate of vasculitis compared with NAC. Perineural invasion and CA19-9 remain strong prognosticators. Understanding and optimizing immune interactions remain a crucial hurdle in achieving response in pancreatic cancer.
Collapse
Affiliation(s)
- Miles Piper
- Departments of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard Blake Ross
- Departments of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Junxiao Hu
- Departments of Biostatistics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shuichi Watanabe
- Departments of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael Knitz
- Departments of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sanjana Mehrotra
- Departments of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard Shulick
- Departments of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marco Del Chiaro
- Departments of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Departments of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
9
|
Dragomir MP, Calina TG, Perez E, Schallenberg S, Chen M, Albrecht T, Koch I, Wolkenstein P, Goeppert B, Roessler S, Calin GA, Sers C, Horst D, Roßner F, Capper D. DNA methylation-based classifier differentiates intrahepatic pancreato-biliary tumours. EBioMedicine 2023; 93:104657. [PMID: 37348162 DOI: 10.1016/j.ebiom.2023.104657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Differentiating intrahepatic cholangiocarcinomas (iCCA) from hepatic metastases of pancreatic ductal adenocarcinoma (PAAD) is challenging. Both tumours have similar morphological and immunohistochemical pattern and share multiple driver mutations. We hypothesised that DNA methylation-based machine-learning algorithms may help perform this task. METHODS We assembled genome-wide DNA methylation data for iCCA (n = 259), PAAD (n = 431), and normal bile duct (n = 70) from publicly available sources. We split this cohort into a reference (n = 399) and a validation set (n = 361). Using the reference cohort, we trained three machine learning models to differentiate between these entities. Furthermore, we validated the classifiers on the technical validation set and used an internal cohort (n = 72) to test our classifier. FINDINGS On the validation cohort, the neural network, support vector machine, and the random forest classifiers reached accuracies of 97.68%, 95.62%, and 96.5%, respectively. Filtering by anomaly detection and thresholds improved the accuracy to 99.07% (37 samples excluded by filtering), 96.22% (17 samples excluded), and 100% (44 samples excluded) for the neural network, support vector machine and random forest, respectively. Because of best balance between accuracy and number of predictable cases we tested the neural network with applied filters on the in-house cohort, obtaining an accuracy of 95.45%. INTERPRETATION We developed a classifier that can differentiate between iCCAs, intrahepatic metastases of a PAAD, and normal bile duct tissue with high accuracy. This tool can be used for improving the diagnosis of pancreato-biliary cancers of the liver. FUNDING This work was supported by Berlin Institute of Health (JCS Program), DKTK Berlin (Young Investigator Grant 2022), German Research Foundation (493697503 and 314905040 - SFB/TRR 209 Liver Cancer B01), and German Cancer Aid (70113922).
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health, Berlin, Germany.
| | | | - Eilís Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Integrative Oncology (BSIO), Charite - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ines Koch
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peggy Wolkenstein
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Neuropathology, Hospital RKH Kliniken Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Weusthof C, Burkart S, Semmelmayer K, Stögbauer F, Feng B, Khorani K, Bode S, Plinkert P, Plath K, Hess J. Establishment of a Machine Learning Model for the Risk Assessment of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24108938. [PMID: 37240283 DOI: 10.3390/ijms24108938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Perineural invasion is a prevalent pathological finding in head and neck squamous cell carcinoma and a risk factor for unfavorable survival. An adequate diagnosis of perineural invasion by pathologic examination is limited due to the availability of tumor samples from surgical resection, which can arise in cases of definitive nonsurgical treatment. To address this medical need, we established a random forest prediction model for the risk assessment of perineural invasion, including occult perineural invasion, and characterized distinct cellular and molecular features based on our new and extended classification. RNA sequencing data of head and neck squamous cell carcinoma from The Cancer Genome Atlas were used as a training cohort to identify differentially expressed genes that are associated with perineural invasion. A random forest classification model was established based on these differentially expressed genes and was validated by inspection of H&E-stained whole image slides. Differences in epigenetic regulation and the mutational landscape were detected by an integrative analysis of multiomics data and single-cell RNA-sequencing data were analyzed. We identified a 44-gene expression signature related to perineural invasion and enriched for genes mainly expressed in cancer cells according to single-cell RNA-sequencing data. A machine learning model was trained based on the expression pattern of the 44-gene set with the unique feature to predict occult perineural invasion. This extended classification model enabled a more accurate analysis of alterations in the mutational landscape and epigenetic regulation by DNA methylation as well as quantitative and qualitative differences in the cellular composition in the tumor microenvironment between head and neck squamous cell carcinoma with or without perineural invasion. In conclusion, the newly established model could not only complement histopathologic examination as an additional diagnostic tool but also guide the identification of new drug targets for therapeutic intervention in future clinical trials with head and neck squamous cell carcinoma patients at a higher risk for treatment failure due to perineural invasion.
Collapse
Affiliation(s)
- Christopher Weusthof
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Sebastian Burkart
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl Semmelmayer
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bohai Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karam Khorani
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sebastian Bode
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Peter Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karim Plath
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Section Experimental and Translational Head and Neck Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
11
|
A positive feedback loop of ARF6 activates ERK1/2 signaling pathway via DUSP6 silencing to promote pancreatic cancer progression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1431-1440. [PMID: 36017891 PMCID: PMC9827993 DOI: 10.3724/abbs.2022111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ERK1/2 are essential proteins mediating mitogen-activated protein kinase signaling downstream of RAS in pancreatic adenocarcinoma (PDAC). Our previous study reveals that ARF6 plays a positive regulatory role in ERK1/2 pathway in a feedback loop manner. A significant part of the literature on ARF6 has emphasized its oncogenic effect as an essential downstream molecule of ERK1/2, and no research has been done on the regulation mechanisms of the feedback loop between ARF6 and the ERK1/2 signaling pathway. In the present study, we explore the gene network downstream of ARF6 and find that DUSP6 may be the critical signal molecule in the positive feedback loop between ARF6 and ERK1/2. Specifically, to elucidate the negative correlations between ARF6 and DUSP6 in pancreatic cancer, we examine their expressions in pancreatic cancer tissues by immunohistochemical staining. Then the impact of DUSP6 on the proliferation and apoptosis of PDAC cells are investigated by gain-of-function and loss-of-function approaches. Mechanism explorations uncover that ARF6 suppresses the expression of DUSP6, which is responsible for the dephosphorylation of ERK1/2. Altogether, these results indicate that DUSP6 plays a tumor-suppressive role and acts as an intermediate molecule between ARF6 and ERK1/2 in PDAC cells, thereby forming a positive feedback loop.
Collapse
|
12
|
Jin K, Liu C, Cheng H, Fei Q, Huang Q, Xiao Z, Yu X, Wu W. TGF-β1-induced RAP2 regulates invasion in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:361-369. [PMID: 35538031 PMCID: PMC9828032 DOI: 10.3724/abbs.2022015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is highly lethal due to its aggressive invasive properties and capacity for metastatic dissemination. Additional therapeutic targets and effective treatment options for patients with tumours of high invasive capacity are required. Ras-related protein-2a (RAP2) is a member of the GTP-binding proteins. RAP2 has been reported to be widely upregulated in many types of cancers via regulating cytoskeleton reorganization, cell proliferation, migration, and adhesion, as well as inflammation. As a member of the RAS oncogene family, which has been demonstrated to drive pancreatic cancer oncogenesis and many other malignancies, the physiological roles of RAP2 in pancreatic cancer have seldom been discussed. In the present study, we explored the correlation between RAP2 expression and the prediction of overall survival of pancreatic cancer patients. Mechanistic studies were carried out to shed light on the role of RAP2 in pancreatic cancer invasion and how RAP2 is regulated in the invasive process. Our results demonstrated that patients with higher RAP2 expression showed unfavourable prognoses. studies demonstrated that silencing of inhibited the invasion of pancreatic cancer cells. Moreover, our results demonstrated that transforming growth factor-β1 (TGF-β1), an inducer of the metastatic potential of pancreatic cancer cells, regulates the expression of RAP2 via the transcription factor c-Myc. In conclusion, the present study uncovered RAP2 as a novel predictive marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Kaizhou Jin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Chen Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - He Cheng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Qinglin Fei
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Qiuyi Huang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Zhiwen Xiao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Weiding Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
13
|
Traub B, Link KH, Kornmann M. Curing pancreatic cancer. Semin Cancer Biol 2021; 76:232-246. [PMID: 34062264 DOI: 10.1016/j.semcancer.2021.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
The distinct biology of pancreatic cancer with aggressive and early invasive tumor cells, a tumor promoting microenvironment, late diagnosis, and high therapy resistance poses major challenges on clinicians, researchers, and patients. In current clinical practice, a curative approach for pancreatic cancer can only be offered to a minority of patients and even for those patients, the long-term outcome is grim. This bitter combination will eventually let pancreatic cancer rise to the second leading cause of cancer-related mortalities. With surgery being the only curative option, complete tumor resection still remains the center of pancreatic cancer treatment. In recent years, new developments in neoadjuvant and adjuvant treatment have emerged. Together with improved perioperative care including complication management, an increasing number of patients have become eligible for tumor resection. Basic research aims to further increase these numbers by new methods of early detection, better tumor modelling and personalized treatment options. This review aims to summarize the current knowledge on clinical and biologic features, surgical and non-surgical treatment options, and the improved collaboration of clinicians and basic researchers in pancreatic cancer that will hopefully result in more successful ways of curing pancreatic cancer.
Collapse
Affiliation(s)
- Benno Traub
- Clinic for General and Visceral Surgery, University of Ulm, Albert-Einstein Allee 23, Ulm, Germany.
| | - Karl-Heinz Link
- Clinic for General and Visceral Surgery, University of Ulm, Ulm, Germany; Surgical and Asklepios Tumor Center (ATC), Asklepios Paulinen Klinik Wiesbaden, Richard Strauss-Str. 4, Wiesbaden, Germany.
| | - Marko Kornmann
- Clinic for General and Visceral Surgery, University of Ulm, Albert-Einstein Allee 23, Ulm, Germany.
| |
Collapse
|
14
|
Li D, Lin H, Li L. Multiple Feature Selection Strategies Identified Novel Cardiac Gene Expression Signature for Heart Failure. Front Physiol 2020; 11:604241. [PMID: 33304275 PMCID: PMC7693561 DOI: 10.3389/fphys.2020.604241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Heart failure (HF) is a serious condition in which the support of blood pumped by the heart is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 26 million patients worldwide are suffering from heart failure and about 17–45% of patients with heart failure die within 1-year, and the majority die within 5-years admitted to a hospital. The molecular mechanisms underlying the progression of heart failure have been poorly studied. We compared the gene expression profiles between patients with heart failure (n = 177) and without heart failure (n = 136) using multiple feature selection strategies and identified 38 HF signature genes. The support vector machine (SVM) classifier based on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great performance with sensitivity of 0.983 and specificity of 0.963. The network analysis suggested that the hub gene SMOC2 may play important roles in HF. Other genes, such as FCN3, HMGN2, and SERPINA3, also showed great promises. Our results can facilitate the early detection of heart failure and can reveal its molecular mechanisms.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Hong Lin
- Internal Medicine-Cardiovascular Department, Harbin Chest Hospital, Harbin, China
| | - Luyifei Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|