1
|
Zheng Y, Yu Y, Chen M, Zhang H, Wang W, Fan X, Sun L, Tang L, Ta D. Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota. Mol Neurobiol 2025; 62:7313-7329. [PMID: 39878866 DOI: 10.1007/s12035-025-04709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation. So we wondered if abdominal LIPUS stimulation can have a positive impact on weightlessness induced cognitive decline by reducing intestinal dysfunction. The findings revealed that the hind limb unloaded mice exhibited evident disruption in intestinal structure and gut microbial homeostasis, along with impairment in their learning and memory capabilities. However, 4-week abdominal LIPUS treatment improved intestinal function in hind limb unloaded mice, characterized by upregulation of tight junction proteins ZO-1 and Occludin expression in the colon, increased diversity and abundance of intestinal microbiota, decreased serum lipopolysaccharide (LPS), and increased short chain fatty acids in colon contents. The hind limb unloaded mice treated with LIPUS exhibited heightened activity levels, improved exploratory tendencies, and significantly enhanced learning and memory faculties, and elevated expression of neuroadaptation-related proteins such as PSD95, GAP43, P-CREB, BDNF, and its receptor TRKB in the hippocampus. Furthermore, the hind limb unloaded mice receiving fecal transplants from the mice whose abdomens were irradiated with LIPUS displayed enhanced cognitive abilities and improved intestinal structure, akin to the outcomes observed in hind limb unloaded mice who received LIPUS abdominal treatment directly. The above results indicate that LIPUS enhances intestinal structure and microbiota, which helps alleviate cognitive impairment caused by weightlessness. LIPUS could be a potential strategy to simultaneously improve gut dysfunction and cognitive decline in astronauts or bedridden patients.
Collapse
Affiliation(s)
- Yumei Zheng
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengyao Chen
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Huiyuan Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Liu MW, Zhang Y, Xiong GF, Zhang BR, Zhang QJ, Gao SJ, Zhu YL, Zhang LM. Dexmedetomidine for the treatment of sepsis-associated encephalopathy: Mechanism and prospects. Biomed Pharmacother 2025; 188:118209. [PMID: 40424824 DOI: 10.1016/j.biopha.2025.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a severe central nervous system complication that is secondary to sepsis and is characterized by a poor prognosis, high mortality, and multiple systemic manifestations. Although the specific etiology remains incompletely understood, SAE typically presents with varying degrees of neurological dysfunction. The complex mechanisms underlying SAE significantly influence patient outcomes. Recent studies have emphasized the roles of bloodbrain barrier (BBB) disruption, microglial activation, mitochondrial dysfunction, apoptosis, inflammatory responses, and oxidative stress in the development and progression of SAE. Dexmedetomidine, a highly selective α2-adrenergic receptor agonist initially employed as an anesthetic adjunct, has attracted increasing attention for its therapeutic potential in SAE. Its notable pharmacological properties include anti-inflammatory activity, modulation of microglial responses, regulation of immune function, stabilization of mitochondrial activity, inhibition of apoptosis, and maintenance of hemodynamic stability in patients with sepsis. In addition, dexmedetomidine supports gastrointestinal homeostasis and offers multiorgan protection. This review consolidates current findings regarding the protective mechanisms of dexmedetomidine in sepsis-induced brain injury and provides insight into its potential clinical applications in the management of SAE.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali 671000, China.
| | - Ye Zhang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Gui-Fei Xiong
- Department of Pain Management, People's Hospital of Kaiyuan City, KaiYuan, Hani-Yi Autonomous Prefecture of Honghe, 661600, China.
| | - Bin-Ran Zhang
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Qiu-Juan Zhang
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Shu-Ji Gao
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Yan-Lin Zhu
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Lin-Ming Zhang
- Department of Neurology, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
3
|
Deng L, Guan G, Cannon RD, Mei L. Age-related oral microbiota dysbiosis and systemic diseases. Microb Pathog 2025; 205:107717. [PMID: 40403989 DOI: 10.1016/j.micpath.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
The oral microbiota is an essential microbial community within the human body, playing a vital role in maintaining health. In older adults, age-related changes in the oral microbiota are linked to both systemic and oral health impairments. The use of various medications for systemic diseases in the elderly can also contribute to the development of oral diseases. Oral microbiota dysbiosis refers to an imbalance in the composition of oral microbial communities. This imbalance, along with disruptions in the host immune response and prolonged inflammation, is closely associated with the onset and progression of several diseases. It contributes to oral conditions such as dental caries, periodontal disease, and halitosis. It is also linked to systemic diseases, including Alzheimer's disease, type 2 diabetes mellitus, rheumatoid arthritis, atherosclerotic cardiovascular disease, and aspiration pneumonia. This review aims to explore how oral microbiota influences specific health outcomes in older individuals, focusing on Alzheimer's disease, type 2 diabetes mellitus, rheumatoid arthritis, atherosclerotic cardiovascular disease, and aspiration pneumonia. The oral microbiota holds promise as a diagnostic tool, therapeutic target, and prognostic biomarker for managing cardiovascular disease, metabolic diseases, infectious diseases and autoimmune diseases. Emphasizing proper oral health care and instilling an understanding of how drugs prescribed for systemic disease impact the oral microbiome, is anticipated to emerge as a key strategy for promoting the general health of older adults.
Collapse
Affiliation(s)
- Ling Deng
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, PR China
| | - Guangzhao Guan
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
González Rosas Z, Martínez-Jiménez HS, Arroyo-Landín M, Fragoso G, Chávez-Canales M, Hernández M, Rosetti MF, López-Alvarenga JC, Sciutto E, Cárdenas G. Long-Term Neuropsychiatric Sequelae of COVID-19 in an Open Population: A Prospective Pilot Study. J Neuropsychiatry Clin Neurosci 2025:appineuropsych20240040. [PMID: 40384037 DOI: 10.1176/appi.neuropsych.20240040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
OBJECTIVE COVID-19 has been associated with a wide range of systemic and neurological complications, known as long COVID or postacute sequelae of COVID-19 (PASC). Such sequelae can be observed among all infected individuals, even among those with a mild disease course. Dysbiosis, a common condition associated with low-grade inflammation, has been proposed as a potential mechanism of PASC by altering levels of circulating lipopolysaccharide (LPS) and the tryptophan pathway metabolites kynurenine and quinolinic acid, known to affect neurocognitive function. The authors evaluated the evolution of neurological, neurocognitive, and neuropsychiatric COVID-19 sequelae and their relationship with circulating LPS and kynurenine and quinolinic acid levels. METHODS A prospective, longitudinal, and analytical study was conducted. Neurological, neurocognitive, and neuropsychiatric assessments of participants who had recovered from COVID-19 and did not require hospitalization during the acute stages of the infection were performed. Peripheral levels of LPS and tryptophan metabolites were measured 1, 3, 6, and 12 months after infection. RESULTS Of 95 participants recruited, 67 COVID-19-convalescent individuals and 20 COVID-19-free individuals were included. Significantly higher occurrences of asthenia, olfaction and taste alterations, headache, memory dysfunction, and systemic symptoms such as dyspnea, cough, and periodontal diseases were found among participants in the COVID-19-convalescent group compared with participants in the comparison group. A significant decrease in kynurenine levels, which correlated with cognitive impairment, was observed among PASC convalescents. CONCLUSIONS Significant neurocognitive and neuropsychiatric impairments were observed among COVID-19-convalescent individuals, along with decreased kynurenine levels, which recovered during a 12-month follow-up period.
Collapse
Affiliation(s)
- Zeltzin González Rosas
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Hanna Samara Martínez-Jiménez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Manuel Arroyo-Landín
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Gladis Fragoso
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - María Chávez-Canales
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Marisela Hernández
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Marcos Francisco Rosetti
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Juan Carlos López-Alvarenga
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Edda Sciutto
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| | - Graciela Cárdenas
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (González Rosas, Fragoso, Hernández, Sciutto); Department of Neurology, Instituto Nacional de Neurología y Neurocirugía, Mexico City (González Rosas, Martínez-Jiménez, Arroyo-Landín, Cárdenas); Department of Neurology, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Chávez-Canales); Department of Cellular Biology and Physiology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, and Psychopathology and Development Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City (Rosetti); School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas (López-Alvarenga)
| |
Collapse
|
5
|
Xie Y, Ran L, Yue C, Wang C, Chen F, Su Y, Qin Y, Zhang Q, Liu J, Du N, Zhang L, Jiang Y, Liu G. Delivery of miR-26a-5p by Subcutaneous Adipose Tissue-Derived Extracellular Vesicles Alleviates Acute Lung Injury in Mice Through CHUK/NF-κB Pathway. Int J Nanomedicine 2025; 20:6001-6021. [PMID: 40370804 PMCID: PMC12077418 DOI: 10.2147/ijn.s514623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung injury and high mortality rates due to severe inflammation. Adipose tissue, functioning as both an endocrine and immune organ, plays a crucial role in immune regulation by secreting a variety of adipokines. Among these, adipose tissue-derived extracellular vesicles (EVs) have emerged as novel mediators of intercellular communication, capable of delivering bioactive molecules such as microRNAs to target cells. This study aimed to elucidate the immunomodulatory roles and underlying mechanisms of adipose tissue-derived EVs in the pathogenesis of ARDS. Methods Subcutaneous adipose tissue extracellular vesicles (SAT-EVs) were collected from the mice via ultracentrifugation. C57BL/6 mice were administered SAT-EVs (1×10^9 particles per mouse) via tail vein injection, followed by an intraperitoneal Lipopolysaccharide (LPS) injection three hours later to induce acute respiratory distress syndrome (ARDS). The mice were euthanized after 18 h to evaluate the permeability of the microvessels and level of inflammation in the lungs. For in vitro experiments, RAW 264.7 macrophages were stimulated with LPS, with or without SAT-EVs, as a control, to evaluate the inflammatory response of the macrophages. Results SAT-EVs treatment enhanced the survival rate of ARDS mice and reduced pulmonary vascular permeability. SAT-EVs were internalized by alveolar macrophages, leading to an attenuation of inflammation, as indicated by decreased levels of TNF-α, IL-1β, iNOS, PTGS2, and CCL2. Notably, SAT-EVs transferred miR-26a-5p to alveolar macrophages, which directly targeted conserved helix-loop-helix ubiquitous kinase (CHUK), a key regulator of the NF-κB pathway. This inhibition resulted in reduced transcription of inflammatory mediators (iNOS, PTGS2, and IL-1β). In vitro, SAT-EVs were internalized by RAW 264.7 macrophages, leading to the suppression of LPS-induced inflammation, as shown by decreased expression of TNF-α, IL-1β, iNOS, PTGS2, and CCL2. These findings suggest that miR-26a-5p plays a crucial role in the anti-inflammatory effects of SAT-EVs by suppressing CHUK and modulating the NF-κB pathway. Conclusion SAT-EVs significantly attenuated LPS-induced ARDS, potentially through the CHUK/NF-κB pathway mediated by miR-26a-5p, thereby exerting protective effects against inflammatory lung injury. These findings provide mechanistic insights into the role of SAT-EVs in immune modulation and suggest their potential as a therapeutic strategy for ARDS.
Collapse
Affiliation(s)
- Yu Xie
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Liuyi Ran
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Ciquan Yue
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Chenxing Wang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Fengming Chen
- Hubei University of Traditional Chinese Medicine Affiliated Shiyan Hospital, Shiyan, 442000, People’s Republic of China
| | - Yadong Su
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Yin Qin
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Qiuhong Zhang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Jie Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Ning Du
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Li Zhang
- Basic Research Laboratory of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400011, People’s Republic of China
| | - Yu Jiang
- Department of Respiratory and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Gang Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| |
Collapse
|
6
|
Zhao H, Catarino J, Stack G, Albizu AK, Lara-Tejero M, Horvath TL, Galán JE. Typhoid toxin causes neuropathology by disrupting the blood-brain barrier. Nat Microbiol 2025:10.1038/s41564-025-02000-z. [PMID: 40341334 DOI: 10.1038/s41564-025-02000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
Typhoid fever, primarily caused by Salmonella Typhi, can result in severe life-threatening complications such as encephalopathy. Here we elucidate the mechanisms by which typhoid toxin, a unique virulence factor of S. Typhi, mediates the neuropathology associated with typhoid fever. Utilizing mice engineered to have specific tissues protected from toxin action and an in vitro model of the blood-brain barrier (BBB), we demonstrate that, rather than direct action on neuronal or glial cells, typhoid toxin causes neuropathology by disrupting the BBB. Intravenous tracer studies confirmed significant BBB permeability changes following toxin exposure, an effect we found to be mediated by typhoid toxin's CdtB catalytic subunit. We demonstrate that corticosteroids are effective at mitigating BBB disruption in vivo, supporting their use for managing typhoid fever neurological complications. Our data reveal mechanistic insight into how typhoid toxin causes encephalopathy and suggest targeted therapeutic interventions to alleviate the severe neurological manifestations of typhoid fever.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonatas Catarino
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Max Plank Institute for Metabolic Research, Cologne, Germany
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Elly Lilly and Company, Cork, Ireland
| | - Ashley Kristant Albizu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Pan L, Xie L, Yang W, Feng S, Mao W, Ye L, Cheng H, Wu X, Mao X. The role of brain-liver-gut Axis in neurological disorders. BURNS & TRAUMA 2025; 13:tkaf011. [PMID: 40321299 PMCID: PMC12048006 DOI: 10.1093/burnst/tkaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 05/08/2025]
Abstract
In recent years, with the increasing volume of related research, it has become apparent that the liver and gut play important roles in the pathogenesis of neurological disorders. Considering the interactions among the brain, liver, and gut, the brain-liver-gut axis has been proposed and gradually recognized. In this article, we summarized the complex network of interactions within the brain-liver-gut axis, encompassing the vagus nerve, barrier permeability, immunity and inflammation, the blood-brain barrier, gut microbial metabolites, the gut barrier, neurotoxic metabolites, and beta-amyloid (Aβ) metabolism. We also elaborated on the impact of the brain-liver-gut axis on various neurological disorders. Furthermore, we outline several therapies aimed at modulating the brain-liver-gut axis, including antibiotics, probiotics and prebiotics, fecal microbiota transplantation (FMT), vagus nerve stimulation (VNS), and dietary interventions. The focus is on elucidating possible mechanisms underlying neurological disorders pathogenesis and identifying effective treatments that are based on our understanding of the brain-liver-gut axis.
Collapse
Affiliation(s)
- Li Pan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Lizheng Xie
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230022, China
| | - Wenpei Yang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230022, China
| | - Shi Feng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Wenbao Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xiao Wu
- Department of Emergency, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230022, China
| |
Collapse
|
8
|
Mafe AN, Büsselberg D. Could a Mediterranean Diet Modulate Alzheimer's Disease Progression? The Role of Gut Microbiota and Metabolite Signatures in Neurodegeneration. Foods 2025; 14:1559. [PMID: 40361641 PMCID: PMC12071848 DOI: 10.3390/foods14091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), the most common form of dementia, represent a growing global health crisis, yet current treatment strategies remain primarily palliative. Recent studies have shown that neurodegeneration through complex interactions within the gut-brain axis largely depends on the gut microbiota and its metabolites. This review explores the intricate molecular mechanisms linking gut microbiota dysbiosis to cognitive decline, emphasizing the impact of microbial metabolites, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites, on neuroinflammation, blood-brain barrier (BBB) integrity, and amyloid-β and tau pathology. The paper highlights major microbiome signatures associated with Alzheimer's disease, detailing their metabolic pathways and inflammatory crosstalk. Dietary interventions have shown promise in modulating gut microbiota composition, potentially mitigating neurodegenerative processes. This review critically examines the influence of dietary patterns, such as the Mediterranean and Western diets, on microbiota-mediated neuroprotection. Bioactive compounds like prebiotics, omega-3 fatty acids, and polyphenols exhibit neuroprotective effects by modulating gut microbiota and reducing neuroinflammation. Furthermore, it discusses emerging microbiome-based therapeutic strategies, including probiotics, prebiotics, postbiotics, and fecal microbiota transplantation (FMT), as potential interventions for slowing Alzheimer's progression. Despite these advances, several knowledge gaps remain, including interindividual variability in microbiome responses to dietary interventions and the need for large-scale, longitudinal studies. The study proposes an integrative, precision medicine approach, incorporating microbiome science into Alzheimer's treatment paradigms. Ultimately, cognizance of the gut-brain axis at a mechanistic level could unlock novel therapeutic avenues, offering a non-invasive, diet-based strategy for managing neurodegeneration and improving cognitive health.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Ar-Rayyan P.O. Box 22104, Qatar
| |
Collapse
|
9
|
Ma X, Liu J, Jiang L, Gao Z, Shi Z, Zhang N, Wang Z, Li S, Zhang R, Xu S. Dynamic changes in the gut microbiota play a critical role in age-associated cognitive dysfunction via SCFAs and LPS synthesis metabolic pathways during brain aging. Int J Biol Macromol 2025; 304:140945. [PMID: 39947548 DOI: 10.1016/j.ijbiomac.2025.140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Gut microbiota plays an essential role in cognitive dysfunction during aging. The aim of this study was to investigate the dynamic alterations in the gut microbiota and screen for key gut bacterial taxa correlated with age-associated cognitive dysfunction during natural aging. METHODS 16S rRNA gene sequencing was performed to determine the composition of the gut microbiota in faecal samples from SAMR1 and SAMP8 mice, cognitively normal controls (NC), and patients with amnestic mild cognitive impairment (aMCI). Faecal microbiota transplantation (FMT) and GMrepo database were used to screen key gut microbiota associated with cognitive decline in aging mice and humans. RESULTS The composition of the gut microbiota dynamically changed during natural aging in SAMR1 and SAMP8 mice, as well as in healthy subjects of different ages extracted from the GMrepo database. FMT from SAMR1 to SAMP8 mice altered the gut microbiota composition and improved the cognitive impairment in SAMP8 mice. Key gut bacterial taxa, including Lactobacillus, Akkermansia, Clostridium, Oscillospira and Dorea, were screened and validated to correlate with aging-associated cognitive decline. The function of the key gut bacterial taxa predicted by PICRUSt2 indicated that the metabolic pathways related to short-chain fatty acids (SCFAs) and lipopolysaccharide (LPS) synthesis were involved in age-associated cognitive dysfunction during natural aging. CONCLUSION These results demonstrate that the composition of the gut microbiota changes dynamically during brain aging, with some key gut bacterial taxa playing critical roles in age-associated cognitive dysfunction through SCFAs and LPS synthesis metabolic pathways.
Collapse
Affiliation(s)
- Xiaoying Ma
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China
| | - Zhongli Shi
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China
| | - Zhen Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, PR China
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, PR China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China.
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Hebei International Joint Research Center for Brain Science, Shijiazhuang 050031, PR China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang 050031, PR China.
| |
Collapse
|
10
|
Wei C, Jiang W, Luo M, Shao F. BBB breakdown caused by plasma membrane pore formation. Trends Cell Biol 2025:S0962-8924(25)00064-9. [PMID: 40140333 DOI: 10.1016/j.tcb.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
The blood-brain barrier, recently reintroduced as the blood-brain border (BBB), is a dynamic interface between the central nervous system (CNS) and the bloodstream. Disruption of the BBB exposes the CNS to peripheral pathogens and harmful substances, causing or worsening various CNS diseases. While traditional views attribute BBB failure to tight junction disruption or increased transcytosis, recent studies highlight the critical role of gasdermin D (GSDMD) pore formation in brain endothelial cells (bECs) during BBB disruption by lipopolysaccharide (LPS) or bacterial infections. This mechanism may also be involved in neurological complications like the 'brain fog' seen in long COVID. Pore formation in bECs may represent a prevalent mechanism causing BBB leakage. Investigating membrane-permeabilizing pores or channels and their effects on BBB integrity is a growing area of research. Further exploration of molecular processes that maintain, disrupt, and restore bEC membrane integrity will advance our understanding of brain vasculature and aid in developing new therapies for BBB-related diseases.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, PR China
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China.
| |
Collapse
|
11
|
Zhang L, Ma L, Wang Y, Li X, Yang Y, Yang L, Yu X. NOD-like receptor protein 3 inhibition by MCC950 improves the cognitive function of rats with sepsis-associated encephalopathy. J Neuroimmunol 2025; 400:578517. [PMID: 39879946 DOI: 10.1016/j.jneuroim.2024.578517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
This study aimed to investigate the effects of MCC950 in a rat model of sepsis-associated encephalopathy (SAE). Adult male rats were randomly assigned to 12 groups according to the surgery or treatment received and evaluation times. The SAE model was established using the cecal ligation and puncture (CLP) method. Intraperitoneal injections of normal saline (10 mL/kg) or MCC950 (10 mg/kg) were administered 30 min pre-surgery and daily post-surgery. Changes in survival rates, weight loss, and heart rate were assessed at four time points, and neurobehavioral changes were evaluated using the composite neural reflex function scores, light/dark box test, and open-field test (OFT). Compared with the SAE group, the SAE + MCC950 group had significantly higher survival rates (P < 0.05), lower postoperative weight loss rates (P < 0.05), and higher neurological function scores (P < 0.05); the SAE + MCC950 group also traveled further and crossed the central area more frequently in the OFT (P < 0.05), spent more time in the light compartment at different time points (P < 0.05), and exhibited a lower heart rate at different time points (P < 0.05). MCC950 treatment significantly improved cognitive function and related indices in the SAE rats.
Collapse
Affiliation(s)
- Li Zhang
- Xinjiang Medical University, Urumchi 830017, China; School of Nursing, Xinjiang Medical University, Urumchi 830054, China; Nursing Department The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830054, China
| | - Long Ma
- Centre for Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830054, China
| | - Yi Wang
- Centre for Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830054, China
| | - Xiang Li
- School of Basic Medicine, Xinjiang Medical University, Urumchi 830054, China
| | - Yanjie Yang
- Xinjiang Medical University, Urumchi 830017, China; School of Nursing, Xinjiang Medical University, Urumchi 830054, China
| | - Ling Yang
- Xinjiang Medical University, Urumchi 830017, China; School of Nursing, Xinjiang Medical University, Urumchi 830054, China
| | - Xiangyou Yu
- Centre for Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830054, China.
| |
Collapse
|
12
|
Guo C, Li W, Liu Y, Mahaman Yacoubou AR, Wang J, Liu R, Li S, Wang X. LCN2 induces neuronal loss and facilitates sepsis-associated cognitive impairments. Cell Death Dis 2025; 16:146. [PMID: 40025014 PMCID: PMC11873032 DOI: 10.1038/s41419-025-07469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe neurological syndrome marked by widespread brain dysfunctions due to sepsis. Despite increasing data supporting the hypothesis of neuronal damage, the exact mechanism of sepsis-related cognitive disorders and therapeutic strategies remain unclear and need further investigation. In this study, a sepsis model was established in C57 mice using lipopolysaccharide (LPS). The findings demonstrated that LPS exposure induced neuronal loss, synaptic and cognitive deficits accompanied by mitochondrial damage. Bioinformatics and western blot analyses demonstrated a significant increase in Lipocalin-2 (LCN2) during sepsis as a key hub gene involved in immune and neurological inflammation. Interestingly, the recombinant LCN2 protein exhibited similar effects on synaptic dysfunction and cognitive deficits in C57 mice. Conversely, downregulating LCN2 effectively nullified the impact of LPS, leading to the amelioration of synaptic and cognitive deficits, neuronal loss, and reactive oxygen species (ROS)-associated mitochondrial damage. These findings suggest a novel etiopathogenic mechanism of SAE, which is initiated by the increased LCN2, leading to neuronal loss and cognitive deficit. Inhibition of LCN2 could be therapeutically beneficial in treating sepsis-induced synaptic and cognitive impairments.
Collapse
Affiliation(s)
- Cuiping Guo
- Department of Emergency Medicine & Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Biomedical Sciences, School of Medicine, Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Abdoul Razak Mahaman Yacoubou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhi Wang
- Institute of Biomedical Sciences, School of Medicine, Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusheng Li
- Department of Emergency Medicine & Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaochuan Wang
- Department of Emergency Medicine & Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Biomedical Sciences, School of Medicine, Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Wang Y, Chen X, Zhou F, Pan M, Huang Y, Tsunoda M, Zhang Y, Yang H, Li LS, Song Y. Bidirectional transport studies of flavonoids from Alpiniae oxyphyllae fructus by in vitro inflammatory blood-brain barrier model combined with UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1253:124471. [PMID: 39889610 DOI: 10.1016/j.jchromb.2025.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 02/03/2025]
Abstract
Alpiniae oxyphyllae fructus (AOF) has been widely used for the treatment of central nervous system (CNS) diseases. Flavonoids, namely, baicalein, wogonin, and pinocembrin, are bioactive components with neuroprotective effects against AOF. Herein, a lipopolysaccharide (LPS)-induced in vitro inflammatory blood-brain barrier (BBB) model of a co-culture of hCMEC/D3 and HA1800 cells was constructed to investigate the permeability of flavonoids. The values of transmembrane resistance (TEER), apparent permeability (Papp) of sodium fluorescein (Na-F), and levels of TNF-α and IL-1β confirmed the construction of the in vitro inflammatory BBB model. An ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) was established to quantify the permeability of the three flavonoids. The average coefficients (R2) of the calibration curves were better than 0.99. The intraday and interday accuracies ranged from -13.75 % to 6.37 % and -14.28 % to 11.80 %, respectively. The recoveries and matrix effects were higher than 88.00 % and 92.42 %, respectively. These results indicated that the methodology was reliable. Compared with the normal BBB model, the permeability and efflux ratios of the three flavonoids significantly increased using the inflammatory BBB model. Papp BL→AP of wogonin and pinocembrin increased by approximately 1.3 and 5.5 times, respectively, thereby increasing the efflux ratios by 48 % and 76 %, respectively. The efflux ratios of the three flavonoids in the AOF were all < 2, demonstrating that they passed through the BBB in a passive diffusion way. This study investigated flavonoid transport from the AOF using the in vitro inflammatory BBB model, providing a material basis for neuroprotection as a potential drug for treating CNS diseases.
Collapse
Affiliation(s)
- Yuanxiao Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Xueying Chen
- Department of Pharmacy, the Second Affiliated hospital of Zhejiang University School of Medicine, Hangzhou 310000 Zhejiang, China
| | - Feifan Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Mingyu Pan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Yanjiao Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Haimei Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China.
| | - Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China.
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China.
| |
Collapse
|
14
|
Naja JR, Desparois L, Hebert EM, Nader MEF, Saavedra L, Minahk CJ, Houde VP. In vitro modulation of proinflammatory and proteolytic activities of Porphyromonas gingivalis by selected lactobacilli. J Oral Microbiol 2025; 17:2469894. [PMID: 40013015 PMCID: PMC11864006 DOI: 10.1080/20002297.2025.2469894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Objective The aim of the present study was to characterize the antimicrobial and anti-inflammatory activities of postbiotics from lactic acid bacteria against Porphyromonas gingivalis. Material and methods The anti-P. gingivalis activity of postbiotics from the CERELA culture collection was assessed by measuring changes in the expression of key host proteins by ELISA and qPCR, the proteolytic activity by a fluorescence and a spectrophotometric method and virulence factors from P. gingivalis by qPCR. Results Even though Lacticaseibacillus (L.) rhamnosus CRL1522 and Lactiplantibacillus (L.) plantarum CRL1363 exhibit only a discrete antibacterial activity against P. gingivalis, the cell-free supernatants of these strains significantly reduced P. gingivalis-induced secretion of interleukins IL-6 and IL-8 by keratinocytes and TNF-α and IL-6 by U937 macrophage-like cells. More importantly, P. gingivalis arginine-gingipain (Rgp) protease activity was markedly reduced by both lactic acid bacteria (LAB) strains. This finding is particularly interesting because it means that both LAB might prevent the ulterior citrullination of peptides and the consequent generation of autoantibodies. The expression of COX2 and TLR2 was also significantly downregulated in macrophages. Conclusion Postbiotics from L. rhamnosus CRL1522 and L. plantarum CRL1363 rise as suitable candidates for antagonizing the periodontopathogen P. gingivalis, since they were able to reduce the expression of proinflammatory cytokines and the protein degradation induced by this pathogen. We propose that postbiotics from these LAB could potentially halt the progression of periodontitis based on this in vitro study.
Collapse
Affiliation(s)
- Johana R. Naja
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
- Oral Ecology Research Group (GREB), Faculty of Dental Medicine, Université Laval, Québec, QC, Canada
| | - Leyla Desparois
- Oral Ecology Research Group (GREB), Faculty of Dental Medicine, Université Laval, Québec, QC, Canada
| | - Elvira M. Hebert
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
| | - Maria Elena Fátima Nader
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
| | - Lucila Saavedra
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
| | - Carlos J. Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Vanessa P. Houde
- Oral Ecology Research Group (GREB), Faculty of Dental Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
15
|
Wang Z, Ma X, Shi W, Zhu W, Feng X, Xin H, Zhang Y, Cong B, Li Y. The Gut Microbiota Metabolite Butyrate Modulates Acute Stress-Induced Ferroptosis in the Prefrontal Cortex via the Gut-Brain Axis. Int J Mol Sci 2025; 26:1698. [PMID: 40004161 PMCID: PMC11855447 DOI: 10.3390/ijms26041698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Stress has been implicated in the onset of mental disorders such as depression, with the prefrontal cortex (PFC) playing a crucial role. However, the underlying mechanisms remain to be fully elucidated. Metabolites secreted by intestinal flora can enter the bloodstream and exert regulatory effects on the body. Consequently, this study aims to investigate the molecular mechanisms by which gut flora influences ferroptosis in PFC neurons, thereby affecting depression-like behavioral changes in mice subjected to acute stress. Initially, we established a mouse model of acute restraint stress (3-day duration) and verified that stress-induced ferroptosis of PFC neurons contributed to depression-like behavioral alterations in mice, as evidenced by morphological, behavioral, and molecular biology assessments. Subsequently, through fecal microbiota transplantation (FMT) experiments, we established a significant correlation between gut microbiota and ferroptosis of PFC neurons in acute stress-exposed mice. 16S rDNA sequencing identified butyric acid-producing bacteria, specifically g_Butyricimonas and its primary metabolite, butyric acid, as critical regulators of ferroptosis in PFC neurons in acutely stressed mice. Furthermore, the intervention of butyrate demonstrated its potential to ameliorate damage to the intestinal and blood-brain barriers in these mice. This intervention also mitigated depression-like behaviors induced by ferroptosis of PFC neurons by alleviating systemic inflammatory responses. The findings of this study indicate that acute stress-induced ferroptosis of PFC neurons plays a critical role in depression-like behavioral changes in mice. Additionally, the gut microbiota metabolite butyrate can modulate ferroptosis and depression-like behavioral changes through the gut-brain axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Cong
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Z.W.); (X.M.); (W.S.); (X.F.); (H.X.); (Y.Z.)
| | - Yingmin Li
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Z.W.); (X.M.); (W.S.); (X.F.); (H.X.); (Y.Z.)
| |
Collapse
|
16
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
17
|
Custódio SV, Piccoli RC, Goularte KCM, Simões WS, de Mello JE, de Souza AA, de Mattos Almeida IP, Barschak AG, Tavares RG, Stefanello FM, de Aguiar MSS, Spanevello RM. Blackberry extract prevents lipopolysaccharide-induced depressive-like behavior in female mice: implications for redox status, inflammation, and brain enzymes. Nutr Neurosci 2025; 28:194-208. [PMID: 38861649 DOI: 10.1080/1028415x.2024.2363570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
This study evaluated the effects of Rubus sp. extract on behavioral and neurochemical parameters in female mice submitted to experimental model of depression induced by lipopolysaccharide (LPS). The results indicated that Rubus sp. extract protected against depressive-like behavior induced by LPS. Moreover, the administration of Rubus sp. extract was effective in preventing the increase in reactive species and nitrites levels, as well as the decrease in catalase activity induced by LPS in the cerebral cortex. In the serum, the Rubus sp. extract was effective in preventing the decrease in catalase activity induced by LPS. Treatment with Rubus sp. extract attenuated the increase in acetylcholinesterase activity induced by LPS in the cerebral cortex. Finally, blackberry extract also downregulated IL-1β levels in cerebral cortex. In conclusion, our findings demonstrated that treatment with Rubus sp. exerted antidepressant, antioxidant, anticholinesterase and anti-inflammatory effects in a model of depressive - like behavior induced by LPS in female mice. This highlights Rubus sp. as a potential therapeutic agent for individuals with major depressive disorder.
Collapse
Affiliation(s)
- Solange Vega Custódio
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Raphaela Cassol Piccoli
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - William Sanabria Simões
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Alethéa Gatto Barschak
- Laboratório de Análises Clínicas, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Rejane Giacomelli Tavares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
18
|
Zhou XP, Sun LB, Liu WH, Zhu WM, Li LC, Song XY, Xing JP, Gao SH. The complex relationship between gut microbiota and Alzheimer's disease: A systematic review. Ageing Res Rev 2025; 104:102637. [PMID: 39662839 DOI: 10.1016/j.arr.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the central nervous system. Despite extensive research conducted on this disorder, its precise pathogenesis remains unclear. In recent years, the microbiota-gut-brain axis has attracted considerable attention within the field of AD. The gut microbiota communicates bidirectionally with the central nervous system through the gut-brain axis, and alterations in its structure and function can influence the progression of AD. Consequently, regulating the gut microbiota to mitigate the progression of AD has emerged as a novel therapeutic approach. Currently, numerous studies concentrate on the intrinsic relationship between the microbiota-gut-brain axis and AD. In this paper, we summarize the multifaceted role of the gut microbiota in AD and present detailed therapeutic strategies targeting the gut microbiota, including the treatment of AD with Traditional Chinese Medicine (TCM), which has garnered increasing attention in recent years. Finally, we discuss potential therapeutic strategies for modulating the gut microbiota to alleviate the progression of AD, the current challenges in this area of research, and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wu-Ming Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Lin-Chun Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
19
|
Zhu D, Wang P, Chen X, Wang K, Wu Y, Zhang M, Qin J. Astrocyte-Derived Interleukin 11 Modulates Astrocyte-Microglia Crosstalk via Nuclear Factor-κB Signaling Pathway in Sepsis-Associated Encephalopathy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0598. [PMID: 39886603 PMCID: PMC11780073 DOI: 10.34133/research.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined. In this study, we aim to investigate the molecular basis of the astrocyte-microglia crosstalk underlying SAE pathogenesis and also to explore the new therapeutic strategies targeting this crosstalk in this devastating disease. We established a human astrocyte/microglia coculture system on a microfluidic device, which allows real-time and high-resolution recording of glial responses to inflammatory stimuli. Based on this microfluidic system, we can test the responses of astrocytes and microglia to lipopolysaccharide (LPS) treatment, and identify the molecular cues that mediate the astrocyte-microglia crosstalk underlying the pathological condition. In addition, the SAE mouse model was utilized to determine the state of glial cells and evaluate the therapeutic effect of drugs targeting the astrocyte-microglia crosstalk in vivo. Here, we found that activated astrocytes and microglia exhibited close spatial interaction in the SAE mouse model. Upon LPS exposure for astrocytes, we detected that more microglia migrated to the central astrocyte culture compartment on the microfluidic device, accompanied by M1 polarization and increased cell motility in microglia. Cytokine array analysis revealed that less interleukin 11 (IL11) was secreted by astrocytes following LPS treatment, which further promoted reprogramming of microglia to pro-inflammatory M1 phenotype via the nuclear factor-κB (NF-κB) signaling pathway. Intriguingly, we found that IL11 addition markedly rescued LPS-induced neuronal injuries on the microfluidic system and brain injury in the SAE mouse model. This study defines an unknown crosstalk of astrocyte-microglia mediated by IL11, which contributed to the neuropathogenesis of SAE, and suggested a potential therapeutic value of IL11 in the devastating disease.
Collapse
Affiliation(s)
- Dandan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- Department of Critical Care Medicine,
The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Peng Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Kaituo Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine,
Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
20
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2025; 32:25-45. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Yang C, Zhao E, Zhang H, Duan L, Han X, Ding H, Cheng Y, Wang D, Lei X, Diwu Y. Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation. Front Pharmacol 2025; 15:1508726. [PMID: 39834810 PMCID: PMC11743276 DOI: 10.3389/fphar.2024.1508726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated. This investigation sought to elucidate XXD's impact on various aspects of AD pathology, including blood-brain barrier (BBB) impairment, neuroinflammatory processes, and amyloid-β (Aβ) deposition, as well as the molecular pathways involved in these effects. Methods In vitro experiments were conducted using hCMEC/D3 and HBVP cell coculture to establish an in vitro blood-brain barrier (BBB) model. BBB damage was induced in this model by 24-h exposure to 1 μg/mL lipopolysaccharide (LPS). After 24, 48, and 72 h of treatment with 10% XXD-medicated serum, the effects of XXD were assessed through Western blotting, RT-PCR, and immunofluorescence techniques. In vivo, SAMP8 mice were administered various doses of XXD via gavage for 8 weeks, including high-dose XXD group (H-XXD) at 5.07 g kg-1·d-1, medium-dose XXD group (M-XXD) at 2.535 g kg-1·d-1, and low-dose XXD group (L-XXD) at 1.2675 g kg-1·d-1. Cognitive function was subsequently evaluated using the Morris water maze test. BBB integrity was evaluated using Evans blue staining, and protein expression levels were analyzed via ELISA, Western blotting, and immunofluorescence. Results In vitro experiments revealed that XXD-containing serum, when cultured for 24, 48, and 72 h, could upregulate the expression of P-gp mRNA and protein, downregulate CB1 protein expression, and upregulate CB2 and Mfsd2a protein expression. In vivo studies demonstrated that XXD improved spatial learning and memory abilities in SAMP8 mice, reduced the amount of Evans blue extravasation in brain tissues, modulated the BBB-associated P-gp/ECS axis, RAGE/LRP1 receptor system, as well as MRP2 and Mfsd2a proteins, and decreased the accumulation of Aβ in the brains of SAMP8 mice. Additionally, XXD upregulated the expression of TREM2, downregulated IBA1, TLR1, TLR2, and CMPK2 expression, and reduced the levels of pro-inflammatory factors NLRP3, NF-κB p65, COX-2, TNF-α, and IL-1β in the hippocampal tissues. Conclusion XXD may exert its effects by regulating the P-gp/ECS axis, the RAGE/LRP1 receptor system, and the expression of MRP2 and Mfsd2a proteins, thereby modulating the transport function of the BBB to expedite the clearance of Aβ, reduce cerebral Aβ accumulation, and consequently inhibit the activation of microglia induced by Aβ aggregation. This process may suppress the activation of the CMPK2/NLRP3 and TLRs/NF-κB pathways, diminish the production of inflammatory cytokines and chemokines, alleviate neuroinflammation associated with microglia in the brain of AD, and ultimately improve AD pathology.
Collapse
Affiliation(s)
- Chaokai Yang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Enlong Zhao
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hu Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liqi Duan
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinyue Han
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongli Ding
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Cheng
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dengkun Wang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojing Lei
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongchang Diwu
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
22
|
Zhou L, Shi H, Xiao M, Liu W, Wang L, Zhou S, Chen S, Wang Y, Liu C. Remimazolam attenuates lipopolysaccharide-induced neuroinflammation and cognitive dysfunction. Behav Brain Res 2025; 476:115268. [PMID: 39322063 DOI: 10.1016/j.bbr.2024.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Remimazolam, a novel benzodiazepine, is widely used as an anesthetic in endoscopic procedures; however, its effects on cognitive function remain unclear, limiting its broader application in general anaesthesia. Neuroinflammation is a well-established key factor in the etiology and progression of cognitive dysfunction, including conditions such as Alzheimer's disease, Parkinson's disease, postoperative delirium, and postoperative cognitive dysfunction. Preclinical studies have demonstrated that remimazolam exerts anti-inflammatory and neuroprotective effects, and clinical reports indicate a reduced incidence of postoperative delirium in patients treated with remimazolam. Nevertheless, whether remimazolam improves cognitive function through its anti-inflammatory properties remains uncertain. This study aimed to investigate the neuroprotective effects of remimazolam and its underlying mechanism in a lipopolysaccharide (LPS)-induced model of neuroinflammation, neuronal injury, and cognitive dysfunction METHODS: C57BL/6 J male mice were administered LPS intraperitoneally to establish a model of neuroinflammation-induced cognitive impairment. A subset of mice received remimazolam via intraperitoneal injection 30 minutes prior to LPS administration. Cognitive performance was evaluated using behavioural tests, including the Morris Water Maze (MWM), Novel Object Recognition (NOR) test, and Open Field Test (OFT). Hippocampal tissues were analyzed by haematoxylin-eosin (HE) staining to assess structural changes. Inflammatory markers, including Interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR. Immunofluorescence was used to detect translocator protein (TSPO) and markers of microglia activation (IBA-1, CD16/32, and CD206). RESULTS (1) Remimazolam reversed LPS-induced cognitive deficits, as evidenced by shorter spatial exploration latency and increased platform crossings in the MWM, and an elevated recognition index in the NOR test. (2) Remimazolam improved hippocampal morphology, reducing LPS-induced neuronal damage. (3) Remimazolam significantly decreased levels of hippocampal inflammatory cytokines, inhibited microglial activation, promoted M2-type microglia polarization, and increased TSPO expression. CONCLUSION Remimazolam demonstrated neuroprotective and anti-neuroinflammatory effects in a mouse model of LPS-induced cognitive impairment. These effects are likely mediated through the regulation of TSPO, which inhibits microglial activation and promotes the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype.
Collapse
Affiliation(s)
- Leguang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Hongzhao Shi
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mengzhe Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Lijuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shangtao Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shenghua Chen
- University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
23
|
Lee YB, Cho YJ, Kim JK. The unique role of fluoxetine in alleviating depression and anxiety by regulating gut microbiota and the expression of vagus nerve-mediated serotonin and melanocortin-4 receptors. Biomed Pharmacother 2025; 182:117748. [PMID: 39671722 DOI: 10.1016/j.biopha.2024.117748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024] Open
Abstract
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used for depression, but its potential effects on gut microbiota regulation and vagus nerve-mediated serotonin receptor expression have not been well studied. We investigated changes in the gut microbiome regulated by fluoxetine and vagus nerve-mediated expression of several serotonin (5-HT) receptor types associated with anxiety and depression. Oral administration of fluoxetine alleviated lipopolysaccharide (LPS)-induced depressive and anxiety behaviors, increased 5-HT1A, 2 C, and melanocortin 4 (MC4) receptor expression, and the composition of Lactobacillus in mice's gut microbiome. In contrast, in the vagotomized group, fluoxetine did not modulate behaviors and receptor expression. Increased Lactobacillus composition was found to correlate significantly with behavioral test results. The importance of Lactobacillus growth to the efficacy of fluoxetine was confirmed by the effectiveness of fluoxetine, which was reduced by co-administering antibiotics. To determine the additional impact of the gut microbiome, we isolated Limosilactobacillus reuteri and Ligilactobacillus murinus, which were increased in the fluoxetine-treated group and administrated. The results showed that administration of each strain improved anxious or depressive behavior, as did fluoxetine, and vagotomy eliminated these effects. These results suggest that fluoxetine administration increases the proportion of Lactobacillus in the gut, which modulates 5-HT1A, 2 C, and MC4 receptor expression through the enteric nervous system and improves depression.
Collapse
Affiliation(s)
- Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea
| | - Ye-Jin Cho
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea.
| |
Collapse
|
24
|
Lahouati M, Oudart M, Alzieu P, Chapouly C, Petitcollin A, Xuereb F. Penetration of linezolid and tedizolid in cerebrospinal fluid of mouse and impact of blood-brain barrier disruption. Clin Transl Sci 2025; 18:e70100. [PMID: 39834151 PMCID: PMC11746922 DOI: 10.1111/cts.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/30/2025] Open
Abstract
Penetration of antimicrobial treatments into the cerebrospinal fluid is essential to successfully treat infections of the central nervous system. This penetration is hindered by different barriers, including the blood-brain barrier, which is the most impermeable. However, inflammation may lead to structural alterations of these barriers, modifying their permeability. The impact of blood-brain barrier disruption on linezolid and tedizolid (antibiotics that may be alternatives to treat nosocomial meningitis) penetration in cerebrospinal fluid (CSF) remains unknown. The aim of this study is to evaluate the impact of blood brain barrier disruption on CSF penetration of linezolid and tedizolid. Female C57BI/6 J mice were used. Blood-brain barrier disruption was induced by an intraperitoneal administration of lipopolysaccharide. Linezolid (40 mg/kg) or tedizolid-phosphate (20 mg/kg) were injected intraperitoneally. All the plasma and CSF samples were analyzed with a validated UPLC-MS/MS method. Pharmacokinetic parameters were calculated using a non-compartmental approach based on the free drug concentration. The penetration ratio from the plasma into the CSF was calculated by the AUC0-8h (Area Under Curve) ratio (AUC0-8hCSF/AUC0-8hplasma). Linezolid penetration ratio was 46.5% in control group and 46.1% in lipopolysaccharide group. Concerning tedizolid, penetration ratio was 5.5% in control group and 15.5% in lipopolysaccharide group. In conclusion, CSF penetration of linezolid is not impacted by blood-brain barrier disruption, unlike tedizolid, whose penetration ratio increased.
Collapse
Affiliation(s)
- Marin Lahouati
- Service de Pharmacie CliniqueCHU de Bordeaux, Hôpital PellegrinBordeauxFrance
- INSERM U1034, Biologie des Maladies CardiovasculairesUniversité de BordeauxPessacFrance
| | - Mélanie Oudart
- Service de Pharmacie CliniqueCHU de Bordeaux, Hôpital PellegrinBordeauxFrance
- INSERM U1034, Biologie des Maladies CardiovasculairesUniversité de BordeauxPessacFrance
| | - Philippe Alzieu
- INSERM U1034, Biologie des Maladies CardiovasculairesUniversité de BordeauxPessacFrance
| | - Candice Chapouly
- INSERM U1034, Biologie des Maladies CardiovasculairesUniversité de BordeauxPessacFrance
| | - Antoine Petitcollin
- Laboratoire de Pharmaco‐Toxicologie Biologique et Médico‐LégaleCH Tarbes‐LourdesTarbesFrance
| | - Fabien Xuereb
- Service de Pharmacie CliniqueCHU de Bordeaux, Hôpital PellegrinBordeauxFrance
- INSERM U1034, Biologie des Maladies CardiovasculairesUniversité de BordeauxPessacFrance
| |
Collapse
|
25
|
Vilmane A, Kolesova O, Nora-Krukle Z, Kolesovs A, Pastare D, Jaunozolina L, Kande L, Egle J, Kromane D, Micule M, Liepina S, Zeltina E, Gravelsina S, Rasa-Dzelzkaleja S, Viksna L, Karelis G. Association of Baseline Lipopolysaccharide-Binding Protein with Expanded Disability Status Score Dynamics in Patients with Relapsing-Remitting Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 26:298. [PMID: 39796152 PMCID: PMC11720422 DOI: 10.3390/ijms26010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated. The disability of the patients was evaluated using EDSS at baseline and follow-up; enzyme-linked immunosorbent assays (ELISAs) were also used to determine the level of blood-based inflammation markers in plasma at baseline. The main results demonstrated that the baseline level of LBP was correlated with an increase in EDSS in a short (8-10 months) follow-up period. Furthermore, the prognostic significance of LBP was only observed in patients who received disease-modifying treatment (DMT) before the study. Our results suggest that the baseline level of LBP may be among the predictors of disability progression in RRMS over short follow-up periods, particularly in those receiving treatment. It highlights the effect of endotoxins in the pathogenesis of RRMS.
Collapse
Affiliation(s)
- Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Oksana Kolesova
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | | | - Daina Pastare
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Liga Jaunozolina
- Center of Radiology, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Radiology, Rīga Stradiņš University, LV-1079 Riga, Latvia
| | - Linda Kande
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Jelena Egle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Daniela Kromane
- Faculty of Medicine, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Micule
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Sintija Liepina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Estere Zeltina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Santa Rasa-Dzelzkaleja
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Guntis Karelis
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| |
Collapse
|
26
|
Lei J, Zhai J, Qi J, Sun C. Identification of sepsis-associated encephalopathy biomarkers through machine learning and bioinformatics approaches. Sci Rep 2024; 14:31717. [PMID: 39738412 PMCID: PMC11685593 DOI: 10.1038/s41598-024-82885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is common in septic patients, characterized by acute and long-term cognitive impairment, and is associated with higher mortality. This study aimed to identify SAE-related biomarkers and evaluate their diagnostic potential. We analyzed three SAE-related sequencing datasets, using two as training sets and one as a validation set. Weighted Gene Co-expression Network Analysis and four machine learning methods-Elastic Net regression, LASSO, random forest, and XGBoost-were employed, dentifying 18 biomarkers with significant expression changes. External validation and in vitro experiments confirmed the differential expression of these biomarkers. These findings provide insights into SAE pathogenesis and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Jingchao Lei
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jia Zhai
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jing Qi
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Chuanzheng Sun
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
27
|
Lv Y, Xian Y, Lei X, Xie S, Zhang B. The role of the microbiota-gut-brain axis and artificial intelligence in cognitive health of pediatric obstructive sleep apnea: A narrative review. Medicine (Baltimore) 2024; 103:e40900. [PMID: 39686454 PMCID: PMC11651515 DOI: 10.1097/md.0000000000040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder associated with significant neurocognitive and behavioral impairments. Recent studies have highlighted the role of gut microbiota and the microbiota-gut-brain axis (MGBA) in influencing cognitive health in children with OSA. This narrative review aims to summarize current knowledge on the relationship between gut microbiota, MGBA, and cognitive function in pediatric OSA. It also explores the potential of artificial intelligence and machine learning in advancing this field and identifying novel therapeutic strategies. Pediatric OSA is associated with gut dysbiosis, reduced microbial diversity, and metabolic disruptions. MGBA mechanisms, such as endocrine, immune, and neural pathways, link gut microbiota to cognitive outcomes. Artificial intelligence and machine learning methodologies offer promising tools to uncover microbial markers and mechanisms associated with cognitive deficits in OSA. Future research should focus on validating these findings through clinical trials and developing personalized therapeutic approaches targeting the gut microbiota.
Collapse
Affiliation(s)
- Yunjiao Lv
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yongtao Xian
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Xinye Lei
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Siqi Xie
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Biyun Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
29
|
Xie D, Ma Y, Gao C, Pan S. Piezo1 activation on microglial cells exacerbates demyelination in sepsis by influencing the CCL25/GRP78 pathway. Int Immunopharmacol 2024; 142:113045. [PMID: 39236454 DOI: 10.1016/j.intimp.2024.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND In sepsis-associated encephalopathy (SAE), the activation of microglial cells and ensuing neuroinflammation are important in the underlying pathological mechanisms. Increasing evidence suggests that the protein Piezo1 functions as a significant regulator of neuroinflammation. However, the influence of Piezo1 on microglial cells in the context of SAE has not yet been determined. This study aims to investigate the role of Piezo1 in microglial cells in the context of SAE. METHODS By inducing cecal ligation and puncture (CLP), a mouse model of SAE was established, while the control group underwent a sham surgery in which the cecum was exposed without ligation and puncture. Piezo1 knockout mice were employed in this study. Morris water maze tests were conducted between Days 14 and 18 postop to assess both the motor activity and cognitive function. A proteomic analysis was conducted to assess the SAE-related pathways, whereas a Mendelian randomization analysis was conducted to identify the pathways associated with cognitive impairment. Dual-label immunofluorescence and flow cytometry were used to assess the secretion of inflammatory factors, microglial status, and oligodendrocyte development. Electron microscopy was used to evaluate axonal myelination. A western blot analysis was conducted to evaluate the influence of Piezo1 on oligodendrocyte ferroptosis. RESULTS The results of the bioinformatics analysis have revealed the significant involvement of CCL25 in the onset and progression of SAE-induced cognitive impairment. SAE leads to cognitive dysfunction by activating the microglial cells. The release of CCL25 by the activated microglia initiates the demyelination of oligodendrocytes in the hippocampus, resulting in ferroptosis and the disruption of hippocampal functional connectivity. Of note, the genetic knockout of the Piezo1 gene mitigates these changes. The treatment with siRNA targeting Piezo1 effectively reduces the secretion of inflammatory mediators CCL25 and IL-18 by inhibiting the p38 pathway, thus preventing the ferroptosis of oligodendrocytes through the modulation of the CCL25/GPR78 axis. CONCLUSION Piezo1 is involved in the activation of microglia and demyelinating oligodendrocytes in the animal models of SAE, resulting in cognitive impairment. Consequently, targeting Piezo1 suppression can be a promising approach for therapeutic interventions aimed at addressing cognitive dysfunction associated with SAE.
Collapse
Affiliation(s)
- Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China
| | - Yanli Ma
- Department of Pediatrics, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Hongkou District, 200434 Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China; Department of Emergency, Putuo District Central Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Putuo District, 200062 Shanghai, China.
| |
Collapse
|
30
|
Ioghen OC, Gaina G, Lambrescu I, Manole E, Pop S, Niculescu TM, Mosoia O, Ceafalan LC, Popescu BO. Bacterial products initiation of alpha-synuclein pathology: an in vitro study. Sci Rep 2024; 14:30306. [PMID: 39639092 PMCID: PMC11621565 DOI: 10.1038/s41598-024-81020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent and escalating neurodegenerative disorder with significant societal implications. Despite being considered a proteinopathy, in which the aggregation of α-synuclein is the main pathological change, the intricacies of PD initiation remain elusive. Recent evidence suggests a potential link between gut microbiota and PD initiation, emphasizing the need to explore the effects of microbiota-derived molecules on neuronal cells. In this study, we exposed dopaminergic-differentiated SH-SY5Y cells to microbial molecules such as lipopolysaccharide (LPS), rhamnolipid, curli CsgA and phenol soluble modulin α-1 (PSMα1). We assessed cellular viability, cytotoxicity, growth curves and α-synuclein levels by performing MTS, LDH, real-time impedance readings, qRT-PCR and Western Blot assays respectively. Statistical analysis revealed that rhamnolipid exhibited concentration-dependent effects, reducing viability and inducing cytotoxicity at higher concentrations, increasing α-synuclein mRNA and protein levels with negative effects on cell morphology and adhesion. Furthermore, LPS exposure also increased α-synuclein levels. Curli CsgA and PSMα-1 showed minimal or no changes. Our findings suggest that microbiota-derived molecules, particularly rhamnolipid and LPS, impact dopaminergic neurons by increasing α-synuclein levels. This study highlights the potential involvement of gut microbiota in initiating the upregulation of α-synuclein that may further initiate PD, indicating the complex interplay between microbiota and neuronal cells.
Collapse
Grants
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
Collapse
Affiliation(s)
- Octavian Costin Ioghen
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Gisela Gaina
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Ioana Lambrescu
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Emilia Manole
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | - Sevinci Pop
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | | | - Oana Mosoia
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | - Laura Cristina Ceafalan
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania.
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| |
Collapse
|
31
|
Bällgren F, Hammarlund-Udenaes M, Loryan I. Reduced oxycodone brain delivery in rats due to lipopolysaccharide-induced inflammation: microdialysis insights into brain disposition and sex-specific pharmacokinetics. Fluids Barriers CNS 2024; 21:95. [PMID: 39623471 PMCID: PMC11613587 DOI: 10.1186/s12987-024-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Oxycodone, a widely used opioid analgesic, has an unbound brain-to-plasma concentration ratio (Kp,uu) greater than unity, indicating active uptake across brain barriers associated with the putative proton-coupled organic cation (H+/OC) antiporter system. With this study, we aimed to elucidate oxycodone's CNS disposition during lipopolysaccharide (LPS)-induced systemic inflammation in Sprague-Dawley rats. METHODS Using brain microdialysis, we dynamically and simultaneously monitored unbound oxycodone concentrations in blood, striatum, lateral ventricle, and cisterna magna following intravenous administration of oxycodone post-LPS challenge. RESULTS Our results indicated a reduced, sex-independent brain net uptake of oxycodone across the blood-brain barrier (BBB) measured in the striatum. Notably, the LPS challenge has significantly altered the systemic pharmacokinetics (PK) of oxycodone, in a sex-specific manner, leading to lower clearance and higher blood concentrations in females compared to LPS-treated males and healthy rats of both sexes. Proteomic analysis using Olink Target 96 Mouse Exploratory assay confirmed the induction of systemic inflammation and neuroinflammation. The inflammation led to an increased paracellular transport, measured using 4 kDa dextran, while preserving net active uptake of oxycodone across both BBB and the blood-cerebrospinal fluid barrier (BCSFB), with Kp,uu values of 2.7 and 2.5, respectively. The extent of uptake was 1.6-fold lower (p < 0.0001) at the BBB and unchanged at the BCSFB after the LPS challenge compared to that in healthy rats. However, the mean exposure of unbound oxycodone in the brain following LPS was similar to that in healthy rats, primarily due to the LPS-induced changes in systemic exposure. CONCLUSIONS These findings highlight the dissimilar responses at blood-brain interfaces during LPS-induced inflammation. Advancing the knowledge of neuropharmacokinetic mechanisms, specifically those involving the H+/OC antiporter system, will enable the development of more effective therapeutic strategies during inflammation conditions.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
32
|
Li Y, Zhou F, You J, Gong X. Annexin A1 Mitigates Blood-Brain Barrier Disruption in a Sepsis-Associated Encephalopathy Model by Enhancing the Expression of Occludin and Zonula Occludens-1 (ZO-1). CNS Neurosci Ther 2024; 30:e70173. [PMID: 39727329 DOI: 10.1111/cns.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS This study investigated the protective role of Annexin A1 (ANXA1) in sepsis-associated encephalopathy (SAE) by examining its effects on brain vascular endothelium and blood-brain barrier (BBB) integrity. METHODS Mice were divided into four groups: wild type (WT), cecal ligation and puncture (CLP), ANXA1 knockout (ANXA1[-/-]), and ANXA1(-/-) with CLP. Neurobehavioral changes were assessed using the Y-maze test, while BBB integrity was evaluated through Evans blue dye (EBD) staining and permeability tests with fluorescein isothiocyanate (FITC)-dextran. RESULTS Results showed that ANXA1 levels were reduced in septic mice, and its deficiency exacerbated cognitive impairment and survival rate reduction. ANXA1 deficiency also upregulated proinflammatory cytokines and adhesion molecules, worsened BBB impairment, and altered expression of tight junction proteins and VEGF-A/VEGF-R2. In vitro, ANXA1 Ac2-26 prevented LPS-induced increased permeability in bEnd.3 cells by restoring tight junction proteins and reducing VEGF-A/VEGF-R2 expression. Notably, VEGF-A negated the protective effects of ANXA1 Ac2-26. CONCLUSION The study concludes that ANXA1 reduces BBB permeability to protect against sepsis-induced brain dysfunction via VEGF-A/VEGF-R2 regulation of tight junction proteins, suggesting ANXA1 as a potential therapeutic for SAE.
Collapse
Affiliation(s)
- Yao Li
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Zhou
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyue You
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinran Gong
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Kang H, Huang D, Zhang W, Wang J, Liu Z, Wang Z, Jiang G, Gao A. Pulmonary Flora-Derived Lipopolysaccharide Mediates Lung-Brain Axis through Activating Microglia Involved in Polystyrene Microplastic-Induced Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404966. [PMID: 39499619 DOI: 10.1002/advs.202404966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Indexed: 11/07/2024]
Abstract
Microplastics (MPs) have been detected in the atmospheric and the human respiratory system, indicating that the respiratory tract is a significant exposure route for MPs. However, the effect of inhaled MPs on cognitive function has not been adequately studied. Here, a C57BL/6 J mouse model of inhalation exposure to polystyrene MPs (PS-MPs, 5 µm, 60 d) is established by intratracheal instillation. Interestingly, in vivo fluorescence imaging and transmission electron microscopy reveal that PS-MPs do not accumulate in the brain. However, behavioral experiments shows that cognitive function of mice is impaired, accompanied by histopathological damage of lung and brain tissue. Transcriptomic studies in hippocampal and lung tissue have demonstrated key neuroplasticity factors as well as cognitive deficits linked to lung injury, respectively. Mechanistically, the lung-brain axis plays a central role in PS-MPs-induced neurological damage, as demonstrated by pulmonary flora transplantation, lipopolysaccharide (LPS) intervention, and cell co-culture experiments. Together, inhalation of PS-MPs reduces cognitive function by altering the composition of pulmonary flora to produce more LPS and promoting M1 polarization of microglia, which provides new insights into the mechanism of nerve damage caused by inhaled MPs and also sheds new light on the prevention of neurotoxicity of environmental pollutants.
Collapse
Affiliation(s)
- Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
34
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
35
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Błaż M, Natorska J, Bembenek JP, Członkowska A, Ząbczyk M, Polak M, Undas A. Elevated lipopolysaccharide level is largely driven by time since symptom onset in acute ischemic stroke: the impact on clinical outcomes. J Thromb Haemost 2024; 22:3161-3171. [PMID: 39122194 DOI: 10.1016/j.jtha.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gut dysbiosis leading to increased intestinal barrier permeability and translocation of lipopolysaccharide (LPS) in the circulation has been demonstrated in patients with acute myocardial infarction and pulmonary embolism. OBJECTIVES We investigated changes in circulating LPS concentrations in acute ischemic stroke (AIS) and their consequences, including prognosis. METHODS We studied 98 AIS patients, aged 74 ± 12 years, including 74 (75.5%) thrombolysed individuals. We determined serum LPS and zonulin, a marker of gut permeability, along with protein carbonyl (PC), fibrin clot properties, and thrombin generation on admission, at 24 hours and 3 months. Stroke severity was assessed using the National Institutes of Health Stroke Scale. Stroke functional outcome using modified Rankin scale and stroke-related mortality were evaluated at 3 months. RESULTS Serum LPS and zonulin levels on admission were associated with time since symptom onset (r = 0.57; P < .0001; and r = 0.40; P < .0001). Baseline LPS levels correlated with PC (r = 0.51; P < .0001) but not with coagulation and fibrinolysis markers. LPS levels increased at 24 hours in thrombolysed patients (P < .001) and correlated with the National Institutes of Health Stroke Scale score (r = 0.31; P = .002) and PC (r = 0.32; P = .0057). Both LPS and zonulin levels measured at 24 hours increased the odds of having unfavorable modified Rankin scale scores (odds ratio [OR], 1.22; 95% CI, 1.04-1.42; and OR, 2.36; 95% CI, 1.24-4.49 per unit). Elevated LPS level, but not zonulin, was associated with stroke-related mortality (OR, 1.26; 95% CI, 1.02-1.55 per unit). CONCLUSION In AIS patients intestinal permeability is mainly driven by increasing time since the symptom onset. Our findings suggest that LPS, with a trend toward its further rise following thrombolysis, adversely affects neurologic functional outcomes and 3-month mortality.
Collapse
Affiliation(s)
- Michał Błaż
- Department of Neurology, St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jan P Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Michał Ząbczyk
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
37
|
Tavares-Silva E, de Aquino Lemos V, de França E, Silvestre J, dos Santos SA, Ravacci GR, Thomatieli-Santos RV. Protective Effects of Probiotics on Runners' Mood: Immunometabolic Mechanisms Post-Exercise. Nutrients 2024; 16:3761. [PMID: 39519594 PMCID: PMC11547471 DOI: 10.3390/nu16213761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut-brain axis may mediate mood changes due to strenuous exercise. Therefore, probiotic supplementation may mitigate mood worsening. PURPOSE The present study aims to evaluate the effect of probiotic supplementation on mood and immunometabolic parameters after a marathon. MATERIALS AND METHODS Fourteen marathon runners were selected and divided into placebo and probiotic groups that were supplemented for 30 days. Before and after the marathon, mood (POMS) was assessed, and blood was collected for analysis of immunometabolic parameters. Statistical analysis was performed, and p < 0.05 was considered to determine statistically differences. RESULTS Tension decreased after the marathon in both groups. Vigor decreased only in the placebo group. Fatigue increased after the marathon in both groups. TMD increased after the marathon in placebo. The IL2/IL-4 ratio decreased in the probiotic group after the marathon compared to before and increased compared to the placebo group. The IL-10 increased after the marathon in placebo. TNF-α increased after the marathon in probiotics. The TNF-α/IL-10 ratio decreased after the marathon in both groups. LPS decreased in the probiotic group after the marathon compared to before and in the placebo group. CONCLUSIONS Thirty days of probiotic supplementation attenuated the impact of marathons on mood worsening. The decrease in LPS in the probiotic group mediated the change in the pro/anti-inflammatory balance, indicating an immunometabolic mechanism by which the gut-brain axis impacts mood after strenuous exercise.
Collapse
Affiliation(s)
- Edgar Tavares-Silva
- Post-Graduate Program in Psychobiology, Federal University of São Paulo, São Paulo 04040-003, SP, Brazil (V.d.A.L.)
| | - Valdir de Aquino Lemos
- Post-Graduate Program in Psychobiology, Federal University of São Paulo, São Paulo 04040-003, SP, Brazil (V.d.A.L.)
| | - Elias de França
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Jean Silvestre
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Samile Amorim dos Santos
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Graziela Rosa Ravacci
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| | - Ronaldo Vagner Thomatieli-Santos
- Post-Graduate Program in Psychobiology, Federal University of São Paulo, São Paulo 04040-003, SP, Brazil (V.d.A.L.)
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, 136, Vila Mathias, Santos 11015-021, SP, Brazil; (E.d.F.); (J.S.); (S.A.d.S.); (G.R.R.)
| |
Collapse
|
38
|
Zhao P, Zhang W, Zhou X, Zhao Y, Li A, Sun Y. Gypenoside XLIX alleviates sepsis-associated encephalopathy by targeting PPAR-α. Exp Neurol 2024; 383:115027. [PMID: 39490624 DOI: 10.1016/j.expneurol.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-related systemic inflammation is a deadly condition with high rates of morbidity and mortality. There is evidence that sepsis affects the brain, and the most frequent organ dysfunction linked to sepsis is sepsis-associated encephalopathy. Sepsis-related brain damage can drastically reduce a patient's chances of survival. However, a specific treatment for sepsis-associated encephalopathy is not currently available. Consequently, to treat the brain damage caused by sepsis, investigating novel therapeutic strategies is imperative. After establishing the CLP-induced mouse SAE model, we treated the mice with Gyp-XLIX and evaluated apoptosis, neuroinflammation, brain damage, and oxidative stress in the brain tissue of each group of mice. Furthermore, the protective effects of Gyp-XLIX on LPS-treated BV-2 cells were assessed. We discovered that Gyp-XLIX treatment increased the survival rate of CLP-treated mice, alleviated SAE-related cerebral nerve abnormalities, and decreased blood-brain barrier breakdown, all of which could better preserve brain tissue in vivo. Furthermore, we identified associated proteins and found that Gyp-XLIX may reduce oxidative stress, cell apoptosis, and inflammation in the brain tissues of SAE mice. This observation was further validated in vitro. We established that Gyp-XLIX alleviates SAE by targeting PPAR-α. These findings may be important for the clinical applicability of Gyp-XLIX in SAE treatment. We found that Gyp-XLIX can alleviate brain injury in SAE by targeting PPAR-α and is a potential protective agent for SAE.
Collapse
Affiliation(s)
- Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Wei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Yikun Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Aimin Li
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| |
Collapse
|
39
|
Bällgren F, Bergfast T, Ginosyan A, Mahajan J, Lipcsey M, Hammarlund-Udenaes M, Syvänen S, Loryan I. Active CNS delivery of oxycodone in healthy and endotoxemic pigs. Fluids Barriers CNS 2024; 21:86. [PMID: 39443944 PMCID: PMC11515623 DOI: 10.1186/s12987-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs. METHODS This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H+/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers. RESULTS Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 2.5. This supports the hypothesis of the presence of the H+/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean Kp,uu,LV values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean Kp,uu,lumbarCSF of 1.5. LPS challenge caused a slight decrease in Kp,uu,LV, while Kp,uu,lumbarCSF remained unaffected. CONCLUSIONS This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| | - Tilda Bergfast
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jessica Mahajan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
- School of Applied Sciences, Abertay University, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| |
Collapse
|
40
|
Mani A, Haddad F, Barreda DR, Salinas I. The telencephalon is a neuronal substrate for systemic inflammatory responses in teleosts via polyamine metabolism. Proc Natl Acad Sci U S A 2024; 121:e2404781121. [PMID: 39284055 PMCID: PMC11441480 DOI: 10.1073/pnas.2404781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 10/02/2024] Open
Abstract
Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Farah Haddad
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
41
|
Ritter K, Rissel R, Renz M, Ziebart A, Schäfer MKE, Kamuf J. Nebulized Lipopolysaccharide Causes Delayed Cortical Neuroinflammation in a Murine Model of Acute Lung Injury. Int J Mol Sci 2024; 25:10117. [PMID: 39337602 PMCID: PMC11432715 DOI: 10.3390/ijms251810117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lung injury caused by respiratory infection is a major cause of hospitalization and mortality and a leading origin of sepsis. Sepsis-associated encephalopathy and delirium are frequent complications in patients with severe lung injury, yet the pathogenetic mechanisms remain unclear. Here, 70 female C57BL/6 mice were subjected to a single full-body-exposure with nebulized lipopolysaccharide (LPS). Neuromotor impairment was assessed repeatedly and brain, blood, and lung samples were analyzed at survival points of 24 h, 48 h, 72 h, and 96 h after exposure. qRT-PCR revealed increased mRNA-expression of TNFα and IL-1β 24 h and 48 h after LPS-exposure in the lung, concomitantly with increased amounts of proteins in bronchoalveolar lavage and interstitial lung edema. In the cerebral cortex, at 72 h and/or 96 h after LPS exposure, the inflammation- and activity-associated markers TLR4, GFAP, Gadd45b, c-Fos, and Arc were increased. Therefore, single exposure to nebulized LPS not only triggers an early inflammatory reaction in the lung but also induces a delayed neuroinflammatory response. The identified mechanisms provide new insights into the pathogenesis of sepsis-associated encephalopathy and might serve as targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - René Rissel
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes-Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jens Kamuf
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
42
|
Lu S, Di John Portela I, Martino N, Bossardi Ramos R, Salinero AE, Smith RM, Zuloaga KL, Adam AP. A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice. Neuroscience 2024; 555:194-204. [PMID: 39067684 PMCID: PMC11470799 DOI: 10.1016/j.neuroscience.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge, but reductions in gene expression regulating protein translation and respiratory electron transport remained. We observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.
Collapse
Affiliation(s)
- Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Rachel M Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, United States; Department of Ophthalmology, Albany Medical College, United States.
| |
Collapse
|
43
|
Kearns R. The Kynurenine Pathway in Gut Permeability and Inflammation. Inflammation 2024:10.1007/s10753-024-02135-x. [PMID: 39256304 DOI: 10.1007/s10753-024-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Newry, Northern Ireland, United Kingdom.
| |
Collapse
|
44
|
Zhang P, Jin W, Lyu Z, Lyu X, Li L. Study on the mechanism of gut microbiota in the pathogenetic interaction between depression and Parkinson 's disease. Brain Res Bull 2024; 215:111001. [PMID: 38852651 DOI: 10.1016/j.brainresbull.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Depression and Parkinson's disease share pathogenetic characteristics, meaning that they can impact each other and exacerbate their respective progression. From a pathogenetic perspective, depression can develop into Parkinson's disease and is a precursor symptom of Parkinson's disease; Parkinson's disease is also often accompanied by depression. From a pharmacological perspective, the use of antidepressants increases the risk of developing Parkinson's disease, and therapeutic medications for Parkinson's disease can exacerbate symptoms of depression. Therefore, identifying how Parkinson's disease and depression impact each other in their development is key to formulating preventive measures and targeted treatment. One commonality in the pathogenesis of depression and Parkinson's disease are alterations in the gut microbiota, with mechanisms interacting in neural, immune inflammatory, and neuroendocrine pathways. This paper reviews the role of gut microbiota in the pathogenesis of depression and Parkinson's disease; conducts a study of the relationship between both conditions and medication; and suggests that dysregulated gut microbiota may be a key factor in explaining the relationship between Parkinson's disease and depression. Finally, on the basis of these findings, this article hopes to provide suggestions that new ideas for the prevention and treatment of depression and Parkinson's disease.
Collapse
Affiliation(s)
- Peiyun Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Jin
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhaoshun Lyu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxuan Lyu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lihong Li
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
| |
Collapse
|
45
|
Peng M, Zou R, Yao S, Meng X, Wu W, Zeng F, Chen Z, Yuan S, Zhao F, Liu W. High-intensity interval training and medium-intensity continuous training may affect cognitive function through regulation of intestinal microbial composition and its metabolite LPS by the gut-brain axis. Life Sci 2024; 352:122871. [PMID: 38936602 DOI: 10.1016/j.lfs.2024.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
AIMS The gut-brain axis is the communication mechanism between the gut and the central nervous system, and the intestinal flora and lipopolysaccharide (LPS) play a crucial role in this mechanism. Exercise regulates the gut microbiota composition and metabolite production (i.e., LPS). We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on cognitive function in C57BL/6 J mice through gut-brain axis regulation of gut microbiota composition and LPS displacement. MAIN METHODS C57BL/6 J male mice were randomly divided into sedentary, HIIT, and MICT groups. After 12 weeks of exercise intervention, the cognitive function of the brain and mRNA levels of related inflammatory factors were measured. RNA sequencing, Golgi staining, intestinal microbial 16 s rDNA sequencing, and ELISA were performed. KEY FINDINGS HIIT and MICT affect brain cognitive function by regulating the gut microbiota composition and its metabolite, LPS, through the gut microbiota-gut-brain axis. HIIT is suspected to have a risk: it can induce "intestinal leakage" by regulating intestinal permeability-related microbiota, resulting in excessive LPS in the blood and brain and activating M1 microglia in the brain, leading to reduced dendritic spine density and affecting cognitive function. SIGNIFICANCE This study revealed a potential link between changes in the gut microbiota and cognitive function. It highlighted the possible risk of HIIT in reducing dendritic spine density and affecting cognitive function.
Collapse
Affiliation(s)
- Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Sisi Yao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Yangtze University College of Arts and Sciences, Jingzhou 434020, China
| | - Fei Zhao
- The First Affiliated Hospital of Hunan Normal University, Changsha 410002, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
46
|
Peng S, Sun T, Yang D, Zhao H, Lin L, Xia B, Li M, Piao M, Shi Z, Tuo Q. Dipsacoside B ameliorates cognitive impairment in sepsis-associated encephalopathy by reducing Th17 cell infiltration and neuroinflammation. Biochem Pharmacol 2024; 227:116428. [PMID: 39009096 DOI: 10.1016/j.bcp.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is the main cause of cognitive impairment in patients with sepsis. The infiltration of inflammatory signals into the central nervous system (CNS) via the compromised blood-brain barrier (BBB) represents a crucial step in the pathological progression of SAE. In particular, T-helper 17 cell (Th17 cells) has been suggested to be highly correlated with the activation of central immune responses. Thus, preventing Th17 cell infiltration into the CNS may be a possible strategy to alleviate cognitive decline in SAE. Dipsacoside B (DB) is one of the primary active components in Chuan Xu Duan (Dipsacus asper Wall). We speculate that DB may be a potential candidate for the treatment of SAE-related cognitive deficits. In the present study, we demonstrated that DB could effectively alleviate cognitive impairment in SAE mice. DB significantly suppressed the central inflammatory response induced by repeated lipopolysaccharide (LPS) injection. The mechanism underlying its therapeutic effect should be attributed to the reduction of BBB impairment and pathogenic Th17 cell infiltration into the CNS by inhibition of vascular endothelial growth factor A (VEGFA)/ Vascular endothelial growth factor receptor 2(VEGFR2)/ Endothelial nitric oxide synthase (eNOS) signaling. Our findings suggest that DB is a potential candidate for the treatment of SAE-related cognitive dysfunction.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Taoli Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Dongmei Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Basic Research Center of Integrated Chinese and Western medicine on prevention and treatment of vascular diseases, Medical School, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Meihong Piao
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Basic Research Center of Integrated Chinese and Western medicine on prevention and treatment of vascular diseases, Medical School, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China.
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Basic Research Center of Integrated Chinese and Western medicine on prevention and treatment of vascular diseases, Medical School, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China.
| |
Collapse
|
47
|
Qu Z, Luo J, Li Z, Yang R, Zhao J, Chen X, Yu S, Shu H. Advancements in strategies for overcoming the blood-brain barrier to deliver brain-targeted drugs. Front Aging Neurosci 2024; 16:1353003. [PMID: 39253614 PMCID: PMC11381257 DOI: 10.3389/fnagi.2024.1353003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.
Collapse
Affiliation(s)
- Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, China
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Juan Luo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaxi Zhao
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
48
|
Shah S, Lai J, Basuli F, Martinez-Orengo N, Patel R, Turner ML, Wang B, Shi ZD, Sourabh S, Peiravi M, Lyndaker A, Liu S, Seyedmousavi S, Williamson PR, Swenson RE, Hammoud DA. Development and preclinical validation of 2-deoxy 2-[ 18F]fluorocellobiose as an Aspergillus-specific PET tracer. Sci Transl Med 2024; 16:eadl5934. [PMID: 39141701 DOI: 10.1126/scitranslmed.adl5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
The global incidence of invasive fungal infections (IFIs) has increased over the past few decades, mainly in immunocompromised patients, and is associated with high mortality and morbidity. Aspergillus fumigatus is one of the most common and deadliest IFI pathogens. Major hurdles to treating fungal infections remain the lack of rapid and definitive diagnosis, including the frequent need for invasive procedures to provide microbiological confirmation, and the lack of specificity of structural imaging methods. To develop an Aspergillus-specific positron emission tomography (PET) imaging agent, we focused on fungal-specific sugar metabolism. We radiolabeled cellobiose, a disaccharide known to be metabolized by Aspergillus species, and synthesized 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB) by enzymatic conversion of 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) with a radiochemical yield of 60 to 70%, a radiochemical purity of >98%, and 1.5 hours of synthesis time. Two hours after [18F]FCB injection in A. fumigatus pneumonia as well as A. fumigatus, bacterial, and sterile inflammation myositis mouse models, retained radioactivity was only seen in foci with live A. fumigatus infection. In vitro testing confirmed production of β-glucosidase enzyme by A. fumigatus and not by bacteria, resulting in hydrolysis of [18F]FCB into glucose and [18F]FDG, the latter being retained by the live fungus. The parent molecule was otherwise promptly excreted through the kidneys, resulting in low background radioactivity and high target-to-nontarget ratios at A. fumigatus infectious sites. We conclude that [18F]FCB is a promising and clinically translatable Aspergillus-specific PET tracer.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Neysha Martinez-Orengo
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Reema Patel
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Suman Sourabh
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Morteza Peiravi
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Anna Lyndaker
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Sichen Liu
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20852, USA
| | | | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20852, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| |
Collapse
|
49
|
Sait AM, Day PJR. Interconnections between the Gut Microbiome and Alzheimer's Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:8619. [PMID: 39201303 PMCID: PMC11354889 DOI: 10.3390/ijms25168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is known to accumulate amyloid-β (Aβ) and tau protein. Clinical studies have not identified pathogenesis mechanisms or produced an effective cure for AD. The Aβ monoclonal antibody lecanemab reduces Aβ plaque formation for the treatment of AD, but more studies are required to increase the effectiveness of drugs to reduce cognitive decline. The lack of AD therapy targets and evidence of an association with an acute neuroinflammatory response caused by several bacteria and viruses in some individuals has led to the establishment of the infection hypothesis during the last 10 years. How pathogens cross the blood-brain barrier is highly topical and is seen to be pivotal in proving the hypothesis. This review summarizes the possible role of the gut microbiome in the pathogenesis of AD and feasible therapeutic approaches and current research limitations.
Collapse
Affiliation(s)
- Ahmad M. Sait
- Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Philip J. R. Day
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
50
|
Liu BT, Li Q, Sun K, Pan CS, Huo XM, Huang P, Yan L, He QH, Zhong LJ, Wang Y, Hu ML, Li AQ, Jiao YQ, Zhang S, Wang XY, Liu J, Han JY. Angong Niuhuang Wan ameliorates LPS-induced cerebrovascular edema by inhibiting blood‒brain barrier leakage and promoting the membrane expression of AQP4. Front Pharmacol 2024; 15:1421635. [PMID: 39148543 PMCID: PMC11324430 DOI: 10.3389/fphar.2024.1421635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Angong Niuhuang Wan (AGNHW), developed during the Qing dynasty (18th century) for the treatment of consciousness disturbances caused by severe infections, has been used to treat brain edema caused by ischemia‒reperfusion. However, it remains unclear whether AGNHW can ameliorate vascular-origin brain edema caused by lipopolysaccharides (LPS). This study explored the ameliorative effects of AGNHW on LPS-induced cerebrovascular edema in mice, as well as the potential underlying mechanisms. Methods A cerebrovascular edema model was established in male C57BL/6N mice by two intraperitoneal injections of LPS (15 mg/kg), at 0 and 24 h. AGNHW was administered by gavage at doses of 0.2275 g/kg, 0.455 g/kg, and 0.91 g/kg, 2 h after LPS administration. In control mice, normal saline (NS) or AGNHW (0.455 g/kg) was administered by gavage 2 h after intraperitoneal injection of NS. The survival rate, cerebral water content, cerebral venous FITC-dextran leakage, Evans blue extravasation, and expression of vascular endothelial cadherin (VE-cadherin), zonula occludens-1 (ZO-1), claudin-5, phosphorylated caveolin-1 (CAV-1), and cytomembrane and cytoplasmic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) were evaluated. The cerebral tissue phosphoproteome, blood levels of AGNHW metabolites, and the relationships between these blood metabolites and differentially phosphorylated proteins were analyzed. Results AGNHW inhibited the LPS-induced decrease in survival rate, increase in cerebral water content, decrease in VE-Cadherin expression and increase in phosphorylated CAV-1 (P-CAV-1). AGNHW treatment increased the expression of AQP4 on astrocyte membrane after LPS injection. AGNHW also inhibited the LPS-induced increases in the phosphorylation of 21 proteins, including protein kinase C-α (PKC-α) and mitogen-activated protein kinase 1 (MAPK1), in the cerebral tissue. Eleven AGNHW metabolites were detected in the blood. These metabolites might exert therapeutic effects by regulating PKC-α and MAPK1. Conclusion AGNHW can ameliorate cerebrovascular edema caused by LPS. This effect is associated with the inhibition of VE-Cadherin reduction and CAV-1 phosphorylation, as well as the upregulation of AQP4 expression on the astrocyte membrane, following LPS injection.
Collapse
Affiliation(s)
- Bo-Tong Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Qi-Hua He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Li-Jun Zhong
- Peking University Medical and Health Analysis Center, Peking University, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Meng-Lei Hu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - An-Qing Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ying-Qian Jiao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Shuang Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|