1
|
Sun T, Geng S, Ru Q, Zheng Y. METTL3 and HERC4: Elevated Expression and Impact on Hepatocellular Carcinoma Progression. Cancer Biother Radiopharm 2025; 40:173-184. [PMID: 39611657 DOI: 10.1089/cbr.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Methyltransferase-like 3 (METTL3) and HECT and RLD domain containing E3 ubiquitin protein ligase 4 (HERC4) have been studied in the field of oncology; however, their roles and interaction in hepatocellular carcinoma (HCC) await elucidation. Methods: Initially, METTL3 and HERC4 expressions in normal and HCC samples were predicted employing the UALCAN database, and the targeting relationship between these two was explored via coimmunoprecipitation assay. Following the quantification on N6-methyladenosine (m6A) enrichment, the localization of METTL3 and HERC4 on HCC cells was visualized via immunofluorescence assay. The effects of METTL3 and HERC4 on HCC cells proliferation and migration were determined in vitro assays. METTL3 and HERC4 expressions were quantified via quantitative polymerase chain reaction, and those of metastasis-related proteins N-cadherin and vimentin were calculated with immunoblotting assay. Furthermore, the levels of angiogenic factors such as vascular endothelial growth factor and basic fibroblast growth factor were measured by enzyme-linked immunosorbent assay. Results: METTL3 and HERC4 expressed highly in HCC and their expressions were positively correlated with tumor grade. METTL3 overexpression enhanced the expression of HERC4 and promoted the proliferation and migration abilities of HCC cells. Specifically, METTL3 overexpression increased vimentin and N-cadherin expressions, while its silencing did conversely. Besides, HERC4 overexpression reversed the effects of METTL3 silencing on the proliferation and migration as well as the levels of angiogenic factors in HCC cells. Conclusion: This study reveals the upregulation of METTL3 and HERC4 expression in HCC and their role in HCC by enhancing the proliferation, migration, and angiogenesis potential of HCC cells.
Collapse
Affiliation(s)
- Tao Sun
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiyu Geng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingjing Ru
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zheng
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Zhu L, Qiu X, Liang S, Huang S, Ning Q, Chen X, Chen N, Qin L, Huang J, Liu S. Identification of a novel signature based on RNA methylation-associated anoikis-related genes for predicting prognosis and characterizing immune landscape in colorectal cancer. Discov Oncol 2025; 16:239. [PMID: 40000539 PMCID: PMC11861771 DOI: 10.1007/s12672-025-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND RNA methylation is a potential target for cancer therapy, while anoikis, a form of programmed cell death, is linked to cancer metastasis. However, the prognostic and immune significance of RNA methylation- and anoikis-related genes in colorectal cancer (CRC) remains unknown. METHODS Transcriptomic and clinicopathological data for CRC were obtained from TCGA and the GEO databases. A novel signature was constructed based on RNA methylation- and anoikis-related genes using univariate and multivariate Cox regression as well as LASSO Cox regression methods. CRC patients were stratified into low- and high-risk groups based on this signature. Differences in prognosis, immune infiltration, and drug sensitivity between two groups were analyzed. Finally, immunohistochemistry, western blot, and RT-qPCR were employed to validate the expression of the key gene SERPINE1 in CRC tissues and cells, as well as the effect of FTO on its expression. RESULTS We identified 79 differentially expressed RNA methylation-associated anoikis-related genes (RMRARGs) in both cancerous and normal tissues. A signature composed of 9 key genes (BID, FASN, PLK1, CDKN3, MYC, EPHA2, SERPINE1, CD36, PDK4) was established. Kaplan-Meier analysis revealed a poorer prognosis in the high-risk group. Compared to the other three published models, this signature demonstrated superior predictive performance based on the ROC curve analysis. Functional analyses highlighted differences in drug sensitivities and signaling pathways between risk groups. Furthermore, immune analysis results showed that risk score was associated with some immune cells and immune checkpoints. Immunohistochemistry showed high SERPINE1 expression in CRC tissues, with FTO expression positively correlated with SERPINE1. Furthermore, RT-qPCR and western blot indicated FTO knockdown markedly downregulated SERPINE1 levels. CONCLUSION Our findings underscore the prognostic value of this signature in CRC patients and its utility in assessing immune status. Additionally, the m6A demethylase FTO regulates the expression of the anoikis-related gene SERPINE1.
Collapse
Affiliation(s)
- Liye Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Xinze Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Shengmei Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Shanpei Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qiting Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Xingmei Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Ni Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Longjie Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
3
|
Li M, Tian H, Zhuang Y, Zhang Z. New insights into N6-methyladenosine in hepatocellular carcinoma immunotherapy. Front Immunol 2025; 16:1533940. [PMID: 39911396 PMCID: PMC11794227 DOI: 10.3389/fimmu.2025.1533940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
N6-methylation is a modification in which a methyl group is added to the adenine base of a nucleotide. This modification is crucial for controlling important functions that are vital for gene expression, including mRNA splicing, stability, and translation. Due to its intricate participation in both normal cellular processes and the course of disease, as well as its critical role in determining cell fate, N6-methyladenosine (m6A) alteration has recently attracted a lot of interest. The formation and progression of many diseases, especially cancer, can be attributed to dysregulated m6A alteration, which can cause disturbances in a variety of cellular functions, such as immunological responses, cell proliferation, and differentiation. In this study, we examine how m6A dysregulation affects hepatocellular carcinoma (HCC), with a particular emphasis on how it contributes to immunological evasion and carcinogenesis. We also investigate its potential as a novel therapeutic target, providing new perspectives on potential therapeutic approaches meant to enhance clinical results for patients with HCC.
Collapse
Affiliation(s)
- Mengran Li
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hu Tian
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| | - Yanshuang Zhuang
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| | - Zili Zhang
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Escuder-Rodríguez JJ, Rodríguez-Alonso A, Jove L, Quiroga M, Alfonsín G, Figueroa A. Beyond destruction: emerging roles of the E3 ubiquitin ligase Hakai. Cell Mol Biol Lett 2025; 30:9. [PMID: 39833727 PMCID: PMC11749156 DOI: 10.1186/s11658-025-00693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N6-methyladenosine (m6A) writer complex and its impact on the methylation of RNA. The involvement of Hakai in this mRNA modification process has renewed the relevance of this protein as an important contributor in cancer. Moreover, Hakai potential as a cancer biomarker and its prognostic value in malignant disease also emphasize its untapped potential in precision medicine, which would also be discussed in detail in our review. The development of the first small-molecule inhibitor that targets its atypical substrate binding domain is a promising step that could eventually lead to patient benefit, and we would cover its discovery and ongoing efforts toward its use in clinic.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Andrea Rodríguez-Alonso
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Lía Jove
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Macarena Quiroga
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Gloria Alfonsín
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain.
| |
Collapse
|
5
|
Xie B, Dai Z, Jiang C, Gao X, Yang S, Peng M, Chen Q, Chen X. ZC3H13 promotes ITGA6 m 6A modification for chronic obstructive pulmonary disease progression. Cell Signal 2024; 120:111190. [PMID: 38670474 DOI: 10.1016/j.cellsig.2024.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is potentially fatal, and as society ages, its effects on human health are predicted to deteriorate. The potential function of m6A modifications within COPD has become a hot topic recently. This study was conducted to clarify the function and related mechanisms of the m6A methylation transferase ZC3H13 in COPD. The expression of m6A-associated protease and ITGA6 in COPD tissues was assessed using GEO data, qRT-PCR, and western blot. COPD models in cells and mice were established through cigarette smoke extract (CSE) and smoke exposure. Inflammatory marker levels were measured by ELISA, apoptosis by flow cytometry, and mRNA stability with Actinomycin D assay. m6A modification levels were checked by MeRIP-PCR. HE and Masson staining evaluated lung pathology, and alveolar lavage fluid analysis included total cell count and Giemsa staining. ZC3H13 and METTL3 were differentially expressed m6A regulators in COPD, with ZC3H13 being more significantly upregulated. Further analysis revealed the ZC3H13 expression-related differentially expressed genes (DEGs) functions were enriched in the immunoinflammatory pathway, indicating ZC3H13's involvement in COPD pathogenesis through inflammation, and immune responses. Knockdown studies in cellular and mouse models demonstrated ZC3H13's role in exacerbating COPD symptoms, including inflammation, apoptosis, and EMT, and its suppression led to significant improvements. The identification of ITGA6 as a target gene further elucidated the mechanism, showing that ZC3H13 enhances ITGA6 expression and mRNA stability through m6A modification, influencing bronchial epithelial cell inflammation and fibrosis. In conclusion, targeting ZC3H13/ITGA6 could be an underlying therapeutic approach for treating COPD.
Collapse
Affiliation(s)
- Bin Xie
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xufan Gao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shasha Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F, Xu Q. Role of N 6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 2024; 51:88. [PMID: 38757383 PMCID: PMC11110010 DOI: 10.3892/or.2024.8747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6‑methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro‑molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Zang Q, Ju Y, Liu S, Wu S, Zhu C, Liu L, Xu W, He Y. The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma. Hum Cell 2024; 37:752-767. [PMID: 38536633 DOI: 10.1007/s13577-024-01044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
In recent years, abnormal m6A alteration in hepatocellular carcinoma (HCC) has been a focus on investigating the biological implications. In this study, our objective is to determine whether m6A modification contributes to the progression of HBV-related HCC. To achieve this, we employed a random forest model to screen top 8 characteristic m6A regulators from 19 candidate genes. Subsequently, we developed a nomogram model that utilizes these 8 characteristic m6A regulators to predict the prevalence of HBV-related HCC. According to decision curve analysis, patients may benefit from the nomogram model. The clinical impact curves exhibited a robust predictive capability of the nomogram models. Additionally, consensus molecular subtyping was employed to identify m6A modification patterns and m6A-related gene signature. The quantification of immune cell subsets was accomplished through the implementation of ssGSEA algorithms. PCA algorithms were developed to compute the m6A score for individual tumors. Two distinct m6A modification patterns, namely cluster A and cluster B, exhibited significant correlations with distinct immune infiltration patterns and biological pathways. Notably, patients belonging to cluster B demonstrated higher m6A scores compared to those in cluster A, as determined by the m6A score metric. Furthermore, the expression of IGFBP3 proteins was validated through immunofluorescence, revealing their pronounced lower expression in tumor tissues. In summary, our study underscores the importance of m6A modification in the advancement of HBV-related HCC. This research has the potential to yield novel prognostic biomarkers and therapeutic targets for the identification of HBV-related HCC.
Collapse
Affiliation(s)
- Qijuan Zang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Yalin Ju
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Shaobo Wu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengbin Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Liangru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Weicheng Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Su X, Lu R, Qu Y, Mu D. Diagnostic and therapeutic potentials of methyltransferase-like 3 in liver diseases. Biomed Pharmacother 2024; 172:116157. [PMID: 38301420 DOI: 10.1016/j.biopha.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Methyltransferase-like 3 (METTL3), a component of the RNA N6-methyladenosine (m6A) modification with a specific catalytic capacity, controls gene expression by actively regulating RNA splicing, nuclear export, stability, and translation, determines the fate of RNAs and assists in regulating biological processes. Studies conducted in recent decades have demonstrated the pivotal regulatory role of METTL3 in liver disorders, including hepatic lipid metabolism disorders, liver fibrosis, nonalcoholic steatohepatitis, and liver cancer. Although METTL3's roles in these diseases have been extensively investigated, the regulatory network of METTL3 and its potential applications remain unexplored. In this review, we provide a comprehensive overview of the roles and mechanisms of METTL3 implicated in these diseases, establish a regulatory network of METTL3, evaluate the potential for targeting METTL3 for diagnosis and treatment, and discuss avenues for future development and research. We found relatively upregulated expressions of METTL3 in these liver diseases, demonstrating its potential as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China.
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China.
| |
Collapse
|
9
|
Shi Q, Chu Q, Zeng Y, Yuan X, Wang J, Zhang Y, Xue C, Li L. Non-coding RNA methylation modifications in hepatocellular carcinoma: interactions and potential implications. Cell Commun Signal 2023; 21:359. [PMID: 38111040 PMCID: PMC10726651 DOI: 10.1186/s12964-023-01357-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 12/20/2023] Open
Abstract
RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
10
|
Peng C, Xiong F, Pu X, Hu Z, Yang Y, Qiao X, Jiang Y, Han M, Wang D, Li X. m 6A methylation modification and immune cell infiltration: implications for targeting the catalytic subunit m 6A-METTL complex in gastrointestinal cancer immunotherapy. Front Immunol 2023; 14:1326031. [PMID: 38187373 PMCID: PMC10768557 DOI: 10.3389/fimmu.2023.1326031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
N6-methyladenosine (m6A) methylation modification is a ubiquitous RNA modification involved in the regulation of various cellular processes, including regulation of RNA stability, metabolism, splicing and translation. Gastrointestinal (GI) cancers are some of the world's most common and fatal cancers. Emerging evidence has shown that m6A modification is dynamically regulated by a complex network of enzymes and that the catalytic subunit m6A-METTL complex (MAC)-METTL3/14, a core component of m6A methyltransferases, participates in the development and progression of GI cancers. Furthermore, it has been shown that METTL3/14 modulates immune cell infiltration in an m6A-dependent manner in TIME (Tumor immune microenvironment), thereby altering the response of cancer cells to ICIs (Immune checkpoint inhibitors). Immunotherapy has emerged as a promising approach for treating GI cancers. Moreover, targeting the expression of METTL3/14 and its downstream genes may improve patient response to immunotherapy. Therefore, understanding the role of MAC in the pathogenesis of GI cancers and its impact on immune cell infiltration may provide new insights into the development of effective therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Chen Peng
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xi Pu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhangmin Hu
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuchun Jiang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Li C, Zhu M, Wang J, Wu H, Liu Y, Huang D. Role of m6A modification in immune microenvironment of digestive system tumors. Biomed Pharmacother 2023; 164:114953. [PMID: 37269812 DOI: 10.1016/j.biopha.2023.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Digestive system tumors are huge health problem worldwide, largely attributable to poor dietary choices. The role of RNA modifications in cancer development is an emerging field of research. RNA modifications are associated with the growth and development of various immune cells, which, in turn, regulate the immune response. The majority of RNA modifications are methylation modifications, and the most common type is the N6-methyladenosine (m6A) modification. Here, we reviewed the molecular mechanism of m6A in the immune cells and the role of m6A in the digestive system tumors. However, further studies are required to better understand the role of RNA methylation in human cancers for designing diagnostic and treatment strategies and predicting the prognosis of patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengqi Zhu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiajia Wang
- Department of Health Management, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Hengshuang Wu
- Department of Gynecological Pelvis Floor Reconstruction Ward, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yameng Liu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China.
| |
Collapse
|
12
|
Zou R, Liu Y, Qiu S, Lu Y, Chen Y, Yu H, Zhu H, Zhu W, Zhu L, Feng J, Han J. The identification of N6-methyladenosine-related miRNAs predictive of hepatocellular carcinoma prognosis and immunotherapy efficacy. Cancer Biomark 2023; 38:551-566. [PMID: 38007640 DOI: 10.3233/cbm-230263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high degree of malignancy and poor prognosis. N6-methyladenosine (m6A) modifications and microRNAs (miRNAs) play pivotal roles in tumorigenesis and development. However, the role of m6A-related miRNAs in HCC has not been clarified yet. This study aimed to identify the role of m6A-miRNAs in HCC prognosis through bioinformatics analysis. METHODS The clinicopathological information and RNA sequencing data of 369 HCC tumor tissues and 49 tumor-adjacent tissues were downloaded from the TCGA database. A total of 23 m6A regulators were extracted to evaluated the m6A-related miRNAs using Pearson's correlation analysis. Then, we selected prognosis-related m6A-miRNAs using a univariate Cox regression model and used the consensus cluster analysis to explore the characteristics of the m6A-miRNAs. The coefficient of the least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct a prognostic risk score model. The receiver operated characteristic (ROC) analysis was applied to evaluate the prognostic value of the signature. The biological functions of targeted genes were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Then, to validate the potential predictive value for prognosis, the miRNA expression profiles from the GSE76903 and GSE6857 were used. Single sample Gene Set Enrichment Analysis (ssGSEA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) were applied to assess the immune microenvironment of HCC. Additionally, a meta-analysis was used to verify the prognostic value of the m6A-microRNAs. RT-PCR was applied to validated the expression of miRNAs in HCC tissues. Cell viability, transwell assay and RNA m6A dot blot assays of HCC cells was applied to access the function of miR-17-5p. RESULTS The expression of 48 m6A-related miRNAs was identified and 17 prognostic m6A-miRNAs was discovered. The expression profile of those 17 miRNAs was divided into three clusters, and these clusters were associated with the tumor microenvironment (TME) and prognosis. The nine m6A-related miRNA signature was associated with the prognosis of HCC, the AUC of the ROC was 0.771(TCGA dataset), 0.788(GSE76903) and 0.646(GSE6857). The TME and the expression of immune checkpoint molecules were associated with the risk score. The meta-analysis also validated the prognostic value of the m6A-related miRNAs (miR182-5p (HR:1.58, 95%CI:1.04-2.40) and miR-17-5p (HR:1.58, 95%CI: 1.04-2.40)). The expression of miR-17-5p was upregulated in HCC tissues and miR-17-5p showed an oncogenic role in HCC cells. CONCLUSION The clinical innovation is the use of m6A-miRNAs as biomarkers for predicting prognosis regarding immunotherapy response in HCC patients.
Collapse
Affiliation(s)
- Renrui Zou
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaqian Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Sangsang Qiu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ya Lu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hangju Zhu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Zhu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbiao Zhu
- Department of The Sixth Dental Division, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Jifeng Feng
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Han
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
An Analysis of BMP1 Associated with m6A Modification and Immune Infiltration in Pancancer. DISEASE MARKERS 2022; 2022:7899961. [PMID: 36267461 PMCID: PMC9578879 DOI: 10.1155/2022/7899961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Background. This research explores the underlying link between diagnosis and therapy between bone morphogenetic protein 1 (BMP1) and various cancers. Methods. Three immunotherapeutic cohorts, by the composition of IMvigor210, GSE35640, and GSE78220 were obtained from previously published articles and the Gene Expression Omnibus database. The different expressions of BMP1 in various clinical parameters were conducted, and prognostic analysis was executed utilizing Cox proportional hazard regression and Gene Expression Profiling Interactive Analysis. Moreover, the correlation between BMP1 and tumor microenvironment was analyzed using ESTIMATE and CIBERSORT algorithms. Tumor mutational burden and microsatellite instability were also included. The correlation between m6A modification and the gene expression level was analyzed using Tumor IMmune Estimation Resource, the University of Alabama at Birmingham Cancer data analysis portal. Gene Set Cancer Analysis analyzed the correlation of BMP1 expression level with copy number variations and methylation. Furthermore, the correlation between BMP1 and therapeutic response after antineoplastic drug use was illustrated for further discussion. Results. BMP1 expression had significant differences in 14 cancers. It presented an intimate relationship with immune-relevant biomarkers. A variation analysis indicated that BMP1 had a significant association with immunotherapeutic response. The expression level of BMP1 was closely associated with insulin-like growth factor binding protein 3, an m6A modification relative gene. Except for a few cancer types, methylation negatively correlated with BMP1, and copy number variations positively correlated with BMP1. Notably, low BMP1 expression was connected with immunotherapeutic response in the cohorts, and its expression was related to increased sectional sensitivity of drugs. Conclusion. BMP1 may serve as a potential biomarker for prognostic prediction and immunologic infiltration in diversified cancers, providing a new thought approach for oncotherapy.
Collapse
|
14
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
15
|
Shi B, Liu WW, Yang K, Jiang GM, Wang H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer 2022; 21:163. [PMID: 35974338 PMCID: PMC9380308 DOI: 10.1186/s12943-022-01634-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer is the most common human malignancy characterized by high lethality and poor prognosis. Emerging evidences indicate that N6-methyladenosine (m6A), the most abundant post-transcriptional modification in eukaryotes, exerts important roles in regulating mRNA metabolism including stability, decay, splicing, transport, and translation. As the key component of the m6A methyltransferase complex, methyltransferase-like 14 (METTL14) catalyzes m6A methylation on mRNA or non-coding RNA to regulate gene expression and cell phenotypes. Dysregulation of METTL14 was deemed to be involved in various aspects of gastrointestinal cancer, such as tumorigenesis, progression, chemoresistance, and metastasis. Plenty of findings have opened up new avenues for exploring the therapeutic potential of gastrointestinal cancer targeting METTL14. In this review, we systematically summarize the recent advances regarding the biological functions of METTL14 in gastrointestinal cancer, discuss its potential clinical applications and propose the research forecast.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Wei-Wei Liu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ke Yang
- School of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Heifei, China.
| |
Collapse
|
16
|
Zhou Y, Fang C, Sun Q, Dong Y. Relevance of RNA N6-Methyladenosine Regulators for Pulmonary Fibrosis: Implications for Chronic Hypersensitivity Pneumonitis and Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:939175. [PMID: 35910226 PMCID: PMC9329921 DOI: 10.3389/fgene.2022.939175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) modification plays a pivotal role in post-transcriptionally regulating gene expression and biological functions. Nonetheless, the roles of m6A modification in the regulation of chronic hypersensitivity pneumonitis (CHP) and idiopathic pulmonary fibrosis (IPF) remain unclear. Twenty-two significant m6A regulators were selected from differential gene analysis between the control and treatment groups from the GSE150910 dataset. Five candidate m6A regulators (insulin-like growth factor binding protein 2, insulin-like growth factor binding protein 3, YTH domain-containing protein 1, zinc finger CCCH domain-containing protein 13, and methyltransferase-like 3) were screened by the application of a random forest model and nomogram model to predict risks of pulmonary fibrosis. The consensus clustering method was applied to divide the treatment samples into two groups with different m6A patterns (clusters A and B) based on the 22 m6A regulators. Our study performed principal component analysis to obtain the m6A-related score of the 288 samples to quantify the two m6A patterns. The study reveals that cluster A was linked to T helper cell (Th) 2-type cytokines, while the immune infiltration of Th1 cytokines was higher in cluster B. Our results suggest that m6A cluster A is likely related to pulmonary fibrosis, indicating m6A regulators play notable roles in the occurrence of pulmonary fibrosis. The m6A patterns could be considered as biomarkers to identify CHP and IPF, which will be helpful to develop immunotherapy strategies for pulmonary fibrosis in the future.
Collapse
Affiliation(s)
| | | | - Qinying Sun
- *Correspondence: Yuchao Dong, ; Qinying Sun,
| | - Yuchao Dong
- *Correspondence: Yuchao Dong, ; Qinying Sun,
| |
Collapse
|
17
|
Peng Y, Wang Z, Li B, Tan W, Zou J, Li Y, Yoshida S, Zhou Y. N 6-methyladenosine modifications of mRNAs and long noncoding RNAs in oxygen-induced retinopathy in mice. Exp Eye Res 2022; 220:109114. [PMID: 35584758 DOI: 10.1016/j.exer.2022.109114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022]
Abstract
Retinal neovascular diseases are major causes of blindness worldwide. As a common epitranscriptomic modification of eukaryotic RNAs, N6-methyladenosine (m6A) is associated with the pathogenesis of many diseases, including angiogenesis, through the regulation of RNA metabolism and functions. The aim of this study was to identify m6A modifications of mRNAs and long noncoding RNAs (lncRNAs) and determine their potential roles in retinal neovascularization. The transcriptome-wide m6A profiles of mRNAs and lncRNAs in the retinal tissues of mice with oxygen-induced retinopathy (OIR) and controls were identified by microarray analysis of immunoprecipitated methylated RNAs. The m6A methylation levels of mRNAs and lncRNAs identified in the microarray data were validated by MeRIP-qPCR. A total of 1321 mRNAs (151 hypermethylated and 1170 hypomethylated) and 192 lncRNAs (15 hypermethylated and 177 hypomethylated) were differentially methylated with the m6A modification in OIR and control mice. Gene ontology analysis showed that hypermethylated mRNAs were enriched in the regulation of multicellular organismal process, intracellular organelle, and protein binding, while hypomethylated mRNAs were enriched in cellular metabolic process, intracellular process, and binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that hypermethylated mRNAs were involved in dopaminergic synapses, glutamatergic synapse, and PI3K-Akt signaling pathway, while hypomethylated mRNAs were involved in autophagy, ubiquitin-mediated proteolysis, and spliceosome. Moreover, the altered levels of m6A methylation of ANGPT2, GNG12, ROBO4, and ENSMUST00000153785 were validated by MeRIP-qPCR. The results revealed an altered m6A epitranscriptome in OIR retinas. These methylated RNAs may act as novel modulators and targets in retinal neovascularization.
Collapse
Affiliation(s)
- Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|