1
|
Marchena M, Lambert E, Bogdanović B, Quadir F, Neri-Cruz CE, Luo J, Nadal C, Migliorini E, Gautrot JE. BMP-Binding Polysulfonate Brushes to Control Growth Factor Presentation and Regulate Matrix Remodelling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40455-40468. [PMID: 39072446 PMCID: PMC11310902 DOI: 10.1021/acsami.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.
Collapse
Affiliation(s)
- Metzli
Hernandez Marchena
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Lambert
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Bojana Bogdanović
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Fauzia Quadir
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Carlos E. Neri-Cruz
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jiajun Luo
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Clemence Nadal
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Migliorini
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
2
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
3
|
Ma B, Wang X, Ren H, Li Y, Zhang H, Yang M, Li J. High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist. BMC Cancer 2023; 23:594. [PMID: 37370018 PMCID: PMC10304216 DOI: 10.1186/s12885-023-11077-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC, respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM. METHODS We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC patients with or without DM from the Shanghai Tenth People's Hospital. The diabetic model of CRC cell lines in vitro and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes. Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4. RESULTS BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes (P < 0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR. Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4. CONCLUSIONS BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with diabetes.
Collapse
Affiliation(s)
- Bingwei Ma
- Colorectal Cancer Central, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
- Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Hui Ren
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yingying Li
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haijiao Zhang
- Department of Gastrointestinal Surgery, Huadong Hospital affiliated with Fudan University, 221 West Yanan Road, Shanghai, 200040, China
| | - Muqing Yang
- Department of General Surgery, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiyu Li
- Geriatric Cancer Center, Huadong Hospital Affiliated to Fudan University, 221 West Yanan Road, Shanghai, 200040, China.
| |
Collapse
|
4
|
Barguilla I, Maguer-Satta V, Guyot B, Pastor S, Marcos R, Hernández A. In Vitro Approaches to Determine the Potential Carcinogenic Risk of Environmental Pollutants. Int J Mol Sci 2023; 24:ijms24097851. [PMID: 37175558 PMCID: PMC10178670 DOI: 10.3390/ijms24097851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One important environmental/health challenge is to determine, in a feasible way, the potential carcinogenic risk associated with environmental agents/exposures. Since a significant proportion of tumors have an environmental origin, detecting the potential carcinogenic risk of environmental agents is mandatory, as regulated by national and international agencies. The challenge mainly implies finding a way of how to overcome the inefficiencies of long-term trials with rodents when thousands of agents/exposures need to be tested. To such an end, the use of in vitro cell transformation assays (CTAs) was proposed, but the existing prevalidated CTAs do not cover the complexity associated with carcinogenesis processes and present serious limitations. To overcome such limitations, we propose to use a battery of assays covering most of the hallmarks of the carcinogenesis process. For the first time, we grouped such assays as early, intermediate, or advanced biomarkers which allow for the identification of the cells in the initiation, promotion or aggressive stages of tumorigenesis. Our proposal, as a novelty, points out that using a battery containing assays from all three groups can identify if a certain agent/exposure can pose a carcinogenic risk; furthermore, it can gather mechanistic insights into the mode of the action of a specific carcinogen. This structured battery could be very useful for any type of in vitro study, containing human cell lines aiming to detect the potential carcinogenic risks of environmental agents/exposures. In fact, here, we include examples in which these approaches were successfully applied. Finally, we provide a series of advantages that, we believe, contribute to the suitability of our proposed approach for the evaluation of exposure-induced carcinogenic effects and for the development of an alternative strategy for conducting an exposure risk assessment.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | | | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Minato Y, Nakano-Doi A, Maeda S, Nakagomi T, Yagi H. A Bone Morphogenetic Protein Signaling Inhibitor, LDN193189, Converts Ischemia-Induced Multipotent Stem Cells into Neural Stem/Progenitor Cell-Like Cells. Stem Cells Dev 2022; 31:756-765. [PMID: 36053672 DOI: 10.1089/scd.2022.0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy is used to restore neurological function in stroke patients. We have previously reported that ischemia-induced multipotent stem cells (iSCs), which are likely derived from brain pericytes, develop in poststroke human and mouse brains. Although we have demonstrated that iSCs can differentiate into neural lineage cells, the factors responsible for inducing this differentiation remain unclear. In this study, we found that LDN193189, a bone morphogenetic protein (BMP) inhibitor, caused irreversible changes in the shape of iSCs. In addition, compared with iSCs incubated without LDN193189, the iSCs incubated with LDN193189 (LDN-iSCs) showed upregulated expression of neural lineage-related genes and proteins, including those expressed in neural stem/progenitor cells (NSPCs), and downregulated expression of mesenchymal and pericytic-related genes and proteins. Moreover, microarray analysis revealed that LDN-iSCs and NSPCs had similar gene expression profiles. Furthermore, LDN-iSCs differentiated into electrophysiologically functional neurons. These results indicate that LDN193189 induces NSPC-like cells from iSCs, suggesting that bioactive molecules regulating BMP signaling are potential targets for promoting neurogenesis from iSCs in the pathological brain, such as during ischemic stroke. We believe that our findings will bring us one step closer to the clinical application of iSCs.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan.,Department of Therapeutic Progress in Brain Diseases, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan.,Department of Therapeutic Progress in Brain Diseases, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
6
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
7
|
Tang Y, Wang H, He Q, Chen Y, Wang J. Bioinformatics Method Was Used to Analyze the Highly Expressed Gene FAM83A of Breast Cancer in Young Women. Appl Bionics Biomech 2022; 2022:5358030. [PMID: 35392358 PMCID: PMC8983250 DOI: 10.1155/2022/5358030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Preliminary analysis of breast cancer related to unknown functional gene FAM83A through bioinformatics knowledge to inform further experimental studies. Select high expression genes for breast cancer and use bioinformatics methods to predict the biological function of FAM83A. Methods Genes with significant differences in expression between breast tumors and normal breast tissue libraries were selected from CGAP's SAGE Digital Gene Expression Displayer (DGED) database. An unknown functional gene, FAM83A, which is highly expressed in breast cancer, was screened. We performed an analysis of the gene structure, subcellular localization, physicochemical properties of the encoding products, functional sites, protein structure, and functional domains. Results Through SAGE DGED, a total of 185 genes with expression differences were found. The structure and function of FAM83A have ideal predictions, and it is generally determined that this gene encodes a nuclear protein with a nucleoprotein. The active site of PLDc and the functional domain of DUF1669 can be involved in signal transduction and gene expression regulation in tumorigenesis and metastasis. Digital gene representation of the Tumor Genome Project Data Library was used to select differentially expressed genes in breast cancer tissue and breast benign tumor tissue. Conclusion Studies show that FAM83A is a potential research target associated with tumorigenesis and metastasis. Initial tests confirmed the expression of this gene. Lay a solid foundation for further research learning. FAM83A is a highly expressed gene in breast cancer and can serve as a target for studying molecular mechanisms in breast cancer.
Collapse
Affiliation(s)
- Yongzhe Tang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hao Wang
- Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China
| | - Qi He
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuanyuan Chen
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jie Wang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|