1
|
Son WC, Lee HR, Koh EK, Park GY, Kang HB, Song J, Ahn SY, Park YS. Combination Effect of Radiotherapy and Targeted Therapy with NK Cell-Based Immunotherapy in head and Neck Squamous Cell Carcinoma. Immunol Invest 2025; 54:185-201. [PMID: 39560204 DOI: 10.1080/08820139.2024.2428199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis, and current treatments are limited by high toxicity and low survival rates, highlighting the need for new therapeutic approaches. Natural killer (NK) cells can identify and eliminate cancer cells without prior antigen exposure. Radiotherapy directly targets tumors and increases activating ligands on tumor cells, promoting NK cell interactions. Cetuximab, an EGFR-targeting antibody, enhances NK cell cytotoxicity. Additionally, anti-PD-1 antibodies may further boost NK cell function by blocking inhibitory signals. The study aimed to enhance HNSCC treatment efficacy by combining radiotherapy and targeted therapy with expanded NK cells. METHODS NK cells were isolated, activated, and expanded from healthy donors. The FaDu and SCC-47 cell lines were inoculated into NOD/SCID mice. The mice were treated with PD-1 inhibitors, cetuximab, and radiation, followed by intravenous injection of NK cells. RESULTS Radiation increased ligands that regulate NK cell sensitivity. The combination of cetuximab, radiotherapy, and expanded NK cells significantly suppressed cancer progression and improved survival rates. However, adding anti-PD-1 antibodies did not further enhance outcomes. CONCLUSION This study suggests that a multimodal approach combining cetuximab, radiotherapy, and NK cells can significantly improve HNSCC therapy efficacy, offering a novel and promising treatment strategy.
Collapse
Affiliation(s)
- Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Hyun Bon Kang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - JinHoo Song
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - Soo-Yeon Ahn
- Department of Otorhinolaryngology, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea
| |
Collapse
|
2
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, Del Moral-Hernández O, Vences-Velázquez A, Cortés-Sarabia K, Alarcón-Romero LDC. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023; 11:1610. [PMID: 37371712 DOI: 10.3390/biomedicines11061610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Monoclonal antibodies are among the most effective tools for detecting tumor-associated antigens. The U.S. Food and Drug Administration (FDA) has approved more than 36 therapeutic antibodies for developing novel alternative therapies that have significant success rates in fighting cancer. However, some functional limitations have been described, such as their access to solid tumors and low interaction with the immune system. Single-chain variable fragments (scFv) are versatile and easy to produce, and being an attractive tool for use in immunotherapy models. The small size of scFv can be advantageous for treatment due to its short half-life and other characteristics related to the structural and functional aspects of the antibodies. Therefore, the main objective of this review was to describe the current situation regarding the mechanisms of action, applications, and limitations of monoclonal antibodies and scFv in the treatment of cancer.
Collapse
Affiliation(s)
- Cynthia Rodríguez-Nava
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Proteínas y Ácidos Nucleicos, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | | | - Amalia Vences-Velázquez
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Karen Cortés-Sarabia
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| |
Collapse
|
4
|
Koh EK, Lee HR, Son WC, Park GY, Bae J, Park YS. Antitumor effects of NK cells expanded by activation pre‑processing of autologous feeder cells before irradiation in colorectal cancer. Oncol Lett 2023; 25:232. [PMID: 37153058 PMCID: PMC10157612 DOI: 10.3892/ol.2023.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Natural killer (NK) cells play a crucial role in early immune defenses against transformed cells and are used in the therapeutic management of cancer. However, it is difficult to sufficiently obtain high purity activated NK cells for clinical application. The function of NK cells is dependent on the balance of activating and inhibitory signals. Strong and diverse stimuli are required to increase the function of NK cells. Radiotherapy modulates the expression of various immunomodulatory molecules that recruit and activate NK cells. NK cell-mediated antibody-dependent cellular cytotoxicity is one of the most potent cytotoxic effects of NK cells against target cancer cells. To generate activated and irradiated autologous peripheral blood mononuclear cells (PBMCs), cytokine and monoclonal antibody stimulation followed by ionizing radiation was performed in the present study. The expanded NK cells were cultured for 21 days using activated/irradiated autologous PBMCs. Colorectal cancer cells (SW480 and HT-29) were used to analyze the expression of NK group 2D ligands and EGFR by radiation. The cytotoxicity of radiation plus NK cell-based targeted therapy against colorectal cancer cell lines was analyzed using flow cytometry. Activated and irradiated PBMCs exhibited significantly increased expression of various activating ligands that stimulated NK cells. In total, >10,000-fold high-purity activated NK cells were obtained, with negligible T-cell contamination. To confirm the antitumor activity of the NK cells expanded by this method, the expanded NK cells were treated with cetuximab, radiotherapy, or a combination of cetuximab and radiotherapy in the presence of human colorectal cancer cells. Expanded NK cells were effective at targeting human colorectal cancer cells, particularly when combined with cetuximab and radiotherapy. Thus, in the present study, a novel method for high-purity activated NK cell expansion was developed using activated and irradiated PBMCs. In addition, combined radiotherapy and antibody-based immunotherapy with expanded NK cells may be an effective strategy to enhance the efficiency of treatment against colorectal cancer.
Collapse
Affiliation(s)
- Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Professor Jaeho Bae, Department of Biochemistry, Pusan National University School of Medicine, 49 Busandaehak-ro, Mulgeum-eup, Yangsan, Gyeongsangnam-do 50612, Republic of Korea, E-mail:
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan 46033, Republic of Korea
- Correspondence to: Dr You-Soo Park, Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea, E-mail:
| |
Collapse
|
5
|
Nguyen TMT, Van Tran K, Ta VT, Tran LM, Tran CK, Trinh HL, Ta DT, Nguyen BT, Tran TH. A case of response to combination treatment with autologous immunotherapy and bevacizumab in advanced non-small cell lung cancer. Respir Med Case Rep 2022; 42:101804. [PMID: 36845645 PMCID: PMC9945779 DOI: 10.1016/j.rmcr.2022.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells have developed as a potent tool in cancer immunotherapy. Especially, patients who have failed in the first-line or maintenance treatment received a good response with immunotherapy in association with other approaches. We report the case of a 61-year-old male patient with programmed cell death ligand - 1(PD-L1) expression in advanced non-small cell lung cancer (NSCLC) (stage IV). Even though the patient was treated with standard therapy using keytruda, he still appeared with new lesions. Therefore, the patient was treated in combination with autologous NK cells therapy, gemcitabine, bevacizumab. NK cells were expanded from peripheral blood mononuclear cells (PBMCs) of the patient, and after that, they were transferred back to the patient. After 6 infusions of autologous NK cells in combination with gemcitabine, bevacizumab, the patient decreased significantly the size of primary, metastatic lesions and had a marked improvement in the quality of life. Besides, during combination therapy, no side effects have been reported and there was no toxicity observed in the hematopoietic system, liver as well as kidneys. Our case suggests that this treatment regimen is a potential treatment approach for advanced NSCLC with PD-L1 expression.
Collapse
Affiliation(s)
- Thuy Mau Thi Nguyen
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
- University of Medicine and Pharmacy, Vietnam National University Hanoi, 144 Xuan Thuy Street, Cau Giay, Hanoi, Viet Nam
| | - Khanh Van Tran
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| | - Van Thanh Ta
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| | - Linh Mai Tran
- University of Medicine and Pharmacy, Vietnam National University Hanoi, 144 Xuan Thuy Street, Cau Giay, Hanoi, Viet Nam
| | - Chi Khanh Tran
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| | - Huy Le Trinh
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| | - Dat Thanh Ta
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| | - Binh Thanh Nguyen
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| | - Thinh Huy Tran
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da, Hanoi, Viet Nam
| |
Collapse
|
6
|
Lopez KJ, Cross-Najafi AA, Farag K, Obando B, Thadasina D, Isidan A, Park Y, Zhang W, Ekser B, Li P. Strategies to induce natural killer cell tolerance in xenotransplantation. Front Immunol 2022; 13:941880. [PMID: 36072599 PMCID: PMC9441937 DOI: 10.3389/fimmu.2022.941880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Eliminating major xenoantigens in pig cells has drastically reduced human antibody-mediated hyperacute xenograft rejection (HXR). Despite these advancements, acute xenograft rejection (AXR) remains one of the major obstacles to clinical xenotransplantation, mediated by innate immune cells, including macrophages, neutrophils, and natural killer (NK) cells. NK cells play an 'effector' role by releasing cytotoxicity granules against xenogeneic cells and an 'affecter' role on other immune cells through cytokine secretion. We highlight the key receptor-ligand interactions that determine the NK cell response to target cells, focusing on the regulation of NK cell activating receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts from cytotoxicity. Recent successful approaches to reducing NK cell-mediated HXR and AXR are reviewed, including genetic modifications of porcine xenografts aimed at improving pig-to-human compatibility. Future directions to promote xenograft acceptance are discussed, including NK cell tolerance in pregnancy and NK cell evasion in viral infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Li
- *Correspondence: Ping Li, ; Burcin Ekser,
| |
Collapse
|
7
|
Manukyan G, Martirosyan A, Slavik L, Margaryan S, Ulehlova J, Mikulkova Z, Hlusi A, Papajik T, Kriegova E. Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK Cells and CD8+ cells in vitro. AUTOIMMUNITY HIGHLIGHTS 2020; 11:5. [PMID: 32127041 PMCID: PMC7065342 DOI: 10.1186/s13317-020-00128-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Background β2-Glycoprotein I (β2GPI) represents the major antigenic target for antiphospholipid antibodies (aPL), with domain 1 (D1) being identified as a risk factor for thrombosis and pregnancy complications in APS. We aimed to analyse the ability of aPL, and particularly anti-D1 β2GPI, to stimulate prothrombotic and proinflammatory activity of immune cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs) from 11 healthy individuals were incubated with: (1) “anti-D1(+)”—pooled plasma derived from patients suspected of having APS contained anticardiolipin antibodies (aCL), lupus anticoagulant (LA), anti-β2GPI and anti-D1 β2GPI; (2) “anti-D1(−)”—pooled plasma from patients suspected of having APS contained aCL, LA, anti-β2GPI, and negative for anti-D1 β2GPI; (3) “seronegative”—negative for aPL. Results The presence of anti-D1(+) and anti-D1(−) plasma resulted in increased HLA-DR and CD11b on monocytes. While only anti-D1(+) plasma markedly increased the percentage and median fluorescence intensity (MFI) of CD142 (tissue factor, TF) on monocytes in comparison with those cultured with anti-D1(−) and seronegative plasma. Anti-D1(+) plasma resulted in increased percentage and MFI of activation marker CD69 on NK and T cytotoxic cells. Expression of IgG receptor FcγRIII(CD16) on monocytes and NK cells was down-regulated by the anti-D1(+) plasma. Conclusions Taking together, our study shows the ability of patient-derived aPL to induce immune cell activation and TF expression on monocytes. For the first time, we demonstrated the influence of anti-D1 β2GPI on the activation status of monocytes, NK and cytotoxic T cells. Our findings further support a crucial role of D1 epitope in the promotion of thrombosis and obstetrical complications in APS.
Collapse
Affiliation(s)
- Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia. .,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic.
| | - Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia
| | - Ludek Slavik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Sona Margaryan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Jana Ulehlova
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Zuzana Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Antonin Hlusi
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Tomas Papajik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| |
Collapse
|
8
|
Li Y, Huang K, Liu L, Qu Y, Huang Y, Wu Y, Wei J. Effects of complement and serum IgG on rituximab-dependent natural killer cell-mediated cytotoxicity against Raji cells. Oncol Lett 2018; 17:339-347. [PMID: 30655772 PMCID: PMC6313095 DOI: 10.3892/ol.2018.9630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that the anti-CD20 monoclonal antibody rituximab significantly improves the clinical prognosis of patients with non-Hodgkin lymphoma and chronic lymphocytic leukemia. However, a number of patients relapse or fail to respond to rituximab. To further understand the cause of this, polymorphisms of FcγRIIIa were initially detected in healthy volunteers. Subsequently, the rituximab-dependent natural killer (NK) cell-mediated cytotoxicity of different FcγRIIIa genotypes was assessed by a cytotoxicity assay in vitro. Ultimately, the effect of human serum immunoglobulin (Ig) G and complement on rituximab-dependent NK cell-mediated cytotoxicity was evaluated in vitro. It was revealed that FcγRIIIa polymorphisms were associated with the antibody-dependent cell-mediated cytotoxicity (ADCC) of NK cells. In addition, the ADCC of NK cells with FcγRIIIa-158 V/V was increased compared with that of FcγRIIIa-158 V/F. The serum IgG and rituximab Fc segment was able to bind competitively with NK cell FcγRIIIa. It was observed that serum IgG inhibited, whereas complement enhanced rituximab-induced NK-cell mediated ADCC. Therefore, various agents administered synchronously with rituximab may modulate the efficacy of this agent and ultimately its toxicity against tumor cells.
Collapse
Affiliation(s)
- Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ling Liu
- Department of Pediatric, Affiliatied Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuhua Qu
- Department of Pediatrics, Guang Zhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yanfeng Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jing Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
9
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
10
|
Tolbert WD, Gohain N, Alsahafi N, Van V, Orlandi C, Ding S, Martin L, Finzi A, Lewis GK, Ray K, Pazgier M. Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure 2017; 25:1719-1731.e4. [PMID: 29056481 PMCID: PMC5677539 DOI: 10.1016/j.str.2017.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 01/14/2023]
Abstract
Antibodies can have an impact on HIV-1 infection in multiple ways, including antibody-dependent cellular cytotoxicity (ADCC), a correlate of protection observed in the RV144 vaccine trial. One of the most potent ADCC-inducing epitopes on HIV-1 Env is recognized by the C11 antibody. Here, we present the crystal structure, at 2.9 Å resolution, of the C11-like antibody N12-i3, in a quaternary complex with the HIV-1 gp120, a CD4-mimicking peptide M48U1, and an A32-like antibody, N5-i5. Antibody N12-i3 recognizes an epitope centered on the N-terminal "eighth strand" of a critical β sandwich, which our analysis indicates to be emblematic of a late-entry state, after the gp120 detachment. In prior entry states, this sandwich comprises only seven strands, with the eighth strand instead pairing with a portion of the gp120 C terminus. The conformational gymnastics of HIV-1 gp120 thus includes altered β-strand pairing, possibly to reduce immunogenicity, although nevertheless still recognized by the human immune system.
Collapse
Affiliation(s)
- William D. Tolbert
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Nirmin Alsahafi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada,CEA, Joliot, Service d’Ingénierie Moléculaire des Protéines, F-91191 Gif-sur-Yvette, France
| | - Verna Van
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Microbiology and Immunology of University of Maryland School of Medicine, Baltimore, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Loïc Martin
- CEA, Joliot, Service d’Ingénierie Moléculaire des Protéines, F-91191 Gif-sur-Yvette, France
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Microbiology and Immunology of University of Maryland School of Medicine, Baltimore, USA
| | - Krishanu Ray
- Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA,To whom correspondence should be addressed: , 725 West Lombard Street, Baltimore, MD 21201, USA, Tel: (410) 706-4780, Fax: (410) 706-7583
| |
Collapse
|
11
|
Lee HR, Son CH, Koh EK, Bae JH, Kang CD, Yang K, Park YS. Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep 2017; 7:11075. [PMID: 28894091 PMCID: PMC5593981 DOI: 10.1038/s41598-017-09259-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are considered a promising strategy for cancer treatment. Various methods for large-scale NK cell expansion have been developed, but they should guarantee that no viable cells are mixed with the expanded NK cells because most methods involve cancer cells or genetically modified cells as feeder cells. We used an anti-CD16 monoclonal antibody (mAb) and irradiated autologous peripheral blood mononuclear cells (PBMCs) (IrAPs) to provide a suitable environment (activating receptor-ligand interactions) for the NK cell expansion. This method more potently expanded NK cells, and the final product was composed of highly purified NK cells with lesser T-cell contamination. The expanded NK cells showed greater upregulation of various activation receptors, CD107a, and secreted larger amounts of interferon gamma. IrAPs expressed NKG2D ligands and CD48, and coengagement of CD16 with NKG2D and 2B4 caused potent NK cell activation and proliferation. The expanded NK cells were cytotoxic toward various cancer cells in vitro and in vivo. Moreover, irradiation or a chemotherapeutic drug further enhanced this antitumor effect. Therefore, we developed an effective in vitro culture method for large-scale expansion of highly purified cytotoxic NK cells with potent antitumor activity using IrAPs instead of cancer cell-based feeder cells.
Collapse
Affiliation(s)
- Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Cheol-Hun Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Kwangmo Yang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| |
Collapse
|
12
|
Tiwari N, Gupta VK, Pandey P, Patel DK, Banerjee S, Darokar MP, Pal A. Adjuvant effect of Asparagus racemosus Willd. derived saponins in antibody production, allergic response and pro-inflammatory cytokine modulation. Biomed Pharmacother 2017; 86:555-561. [DOI: 10.1016/j.biopha.2016.11.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023] Open
|
13
|
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67:28-45. [PMID: 25911943 PMCID: PMC4529810 DOI: 10.1016/j.molimm.2015.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications.
Collapse
Affiliation(s)
- J M Redman
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - E M Hill
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - D AlDeghaither
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - L M Weiner
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|
14
|
OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis. Vaccine 2014; 32:5918-24. [DOI: 10.1016/j.vaccine.2014.08.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/18/2014] [Accepted: 08/30/2014] [Indexed: 11/22/2022]
|
15
|
Hawse WF, Morel PA. An immunology primer for computational modelers. J Pharmacokinet Pharmacodyn 2014; 41:389-99. [PMID: 25238901 DOI: 10.1007/s10928-014-9384-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022]
Abstract
The immune system is designed to protect an organism from infection and damage caused by a pathogen. A successful immune response requires the coordinated function of multiple cell types and molecules in the innate and adaptive immune systems. Given the complexity of the immune system, it would be advantageous to build computational models to better understand immune responses and develop models to better guide the design of immunotherapies. Often, researchers with strong quantitative backgrounds do not have formal training in immunology. Therefore, the goal of this review article is to provide a brief primer on cellular immunology that is geared for computational modelers.
Collapse
Affiliation(s)
- William F Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA,
| | | |
Collapse
|
16
|
Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo-expanded γδ T cells or αβ T cells. Int Immunopharmacol 2014; 22:486-91. [PMID: 25131561 DOI: 10.1016/j.intimp.2014.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 01/05/2023]
Abstract
Adoptive immunotherapy of cancer is evolving with the development of novel technologies for generating a large number of activated killer cells such as natural killer (NK) cells, γδ T cells, and αβ T cells. We have recently established large-scale culture methods to generate activated NK cells from human peripheral blood, and demonstrated that expanded NK cells have higher cytotoxicity against cancer cells than freshly isolated NK cells. In this study, we compared cultured NK cells with cultured γδ T and αβ T cells that were prepared by conventional culture methods regarding the expression of cytotoxic molecules and cytotoxicity against cancer cells. Natural cytotoxicity receptors such as NKp30, NKp44 and NKp46, and perforin were expressed most exclusively on NK cells. Granzyme A, NKG2D, and interferon-γ were dominantly expressed in NK cells and γδ T cells but not in αβ T cells. Consistent with the expression profiles of the cytotoxic molecules, cultured NK cells from both healthy volunteers and cancer patients demonstrated significantly higher cytotoxicity against cancer cell lines, including MHC class I-positive cell lines, compared with cultured γδ T cells and cultured αβ T cells. Additionally, NK cells, unlike γδ T cells or αβ T cells, expressed high levels of CD16, and showed augmented cytotoxicity when co-administered with an anti-CD20 monoclonal antibody drug, rituximab. These results suggest the excellent efficacy of expanded NK cells for cancer treatment.
Collapse
|
17
|
Kugel CH, Hartsough EJ, Davies MA, Setiady YY, Aplin AE. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res 2014; 74:4122-32. [PMID: 25035390 DOI: 10.1158/0008-5472.can-14-0464] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ERBB3/HER3 expression and signaling are upregulated in mutant BRAF melanoma as an adaptive, prosurvival response to FDA-approved RAF inhibitors. Because compensatory ERBB3 signaling counteracts the effects of RAF inhibitors, cotargeting ERBB3 may increase the efficacy of RAF inhibitors in mutant BRAF models of melanoma. Here, we corroborate this concept by showing that the ERBB3 function-blocking monoclonal antibody huHER3-8 can inhibit neuregulin-1 activation of ERBB3 and downstream signaling in RAF-inhibited melanoma cells. Targeting mutant BRAF in combination with huHER3-8 decreased cell proliferation and increased cell death in vitro, and decreased tumor burden in vivo, compared with targeting either mutant BRAF or ERBB3 alone. Furthermore, the likelihood of a durable tumor response in vivo was increased when huHER3-8 was combined with RAF inhibitor PLX4720. Together, these results offer a preclinical proof of concept for the application of ERBB3-neutralizing antibodies to enhance the efficacy of RAF inhibitors in melanoma to delay or prevent tumor regrowth. As ERBB3 is often upregulated in response to other kinase-targeted therapeutics, these findings may have implications for other cancers as well.
Collapse
Affiliation(s)
- Curtis H Kugel
- Department of Cancer Biology and Kimmel Cancer Center; Jefferson College of Graduate Studies
| | | | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | | | - Andrew E Aplin
- Department of Cancer Biology and Kimmel Cancer Center; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania;
| |
Collapse
|
18
|
Jones BG, Sealy RE, Surman SL, Portner A, Russell CJ, Slobod KS, Dormitzer PR, DeVincenzo J, Hurwitz JL. Sendai virus-based RSV vaccine protects against RSV challenge in an in vivo maternal antibody model. Vaccine 2014; 32:3264-73. [PMID: 24721531 DOI: 10.1016/j.vaccine.2014.03.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
Abstract
Respiratory syncytial virus (RSV) is the cause of significant morbidity and mortality among infants, and despite decades of research there remains no licensed vaccine. SeVRSV is a Sendai virus (SeV)-based live intranasal vaccine that expresses the full length RSV fusion (F) gene. SeV is the murine counterpart of human parainfluenza virus type 1. Given that the target population of SeVRSV is young infants, we questioned whether maternal antibodies typical of this age group would inhibit SeVRSV vaccine efficacy. After measuring SeV- and RSV-specific serum neutralizing antibody titers in human infants, we matched these defined titers in cotton rats by the passive transfer of polyclonal or monoclonal antibody products. Animals were then vaccinated with SeVRSV followed by a 3 month rest period to allow passively transferred antibodies to wane. Animals were finally challenged with RSV to measure the de novo vaccine-induced immune responses. Despite the presence of passively-transferred serum neutralizing antibodies at the time of vaccination, SeVRSV induced immune responses that were protective against RSV challenge. The data encourage advancement of SeVRSV as a candidate vaccine for the protection of children from morbidity and mortality caused by RSV.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Allen Portner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - John DeVincenzo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
19
|
Jans J, Vissers M, Heldens JGM, de Jonge MI, Levy O, Ferwerda G. Fc gamma receptors in respiratory syncytial virus infections: implications for innate immunity. Rev Med Virol 2013; 24:55-70. [PMID: 24227634 DOI: 10.1002/rmv.1773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/30/2022]
Abstract
RSV infections are a major burden in infants less than 3 months of age. Newborns and infants express a distinct immune system that is largely dependent on innate immunity and passive immunity from maternal antibodies. Antibodies can regulate immune responses against viruses through interaction with Fc gamma receptors leading to enhancement or neutralization of viral infections. The mechanisms underlying the immunomodulatory effect of Fc gamma receptors on viral infections have yet to be elucidated in infants. Herein, we will discuss current knowledge of the effects of antibodies and Fc gamma receptors on infant innate immunity to RSV. A better understanding of the pathogenesis of RSV infections in young infants may provide insight into novel therapeutic strategies such as vaccination.
Collapse
Affiliation(s)
- Jop Jans
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Terunuma H, Deng X, Nishino N, Watanabe K. NK cell-based autologous immune enhancement therapy (AIET) for cancer. J Stem Cells Regen Med 2013. [PMID: 24693203 PMCID: PMC3908307 DOI: 10.46582/jsrm.0901003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells have been known to enhance the host immune responses against cancer. NK cell number and cytotoxicity in patients with cancer is often low. Therefore, we developed a large-scale ex vivo NK cell expansion method without feeder layers and introduced NK cell-based autologous immune enhancement therapy (AIET). In this paper, we discuss the epidemiological data that show the relationship between NK activity and cancer incidence, monitoring of NK cell number and activity, anti-cancer activities of NK cells in vitro and in vivo and the effects of the combination of expanded NK cells with monoclonal antibody drugs on cancers through antibody-dependent cellular cytotoxicity. Finally, we also present the clinical cases of NK cell-based AIET and the effect of AIET on advanced stage of pancreatic cancer and on various advanced cancers refractory to conventional therapies. NK cell-based AIET might be a useful strategy in the multidisciplinary approach to cancer.
Collapse
Affiliation(s)
- H Terunuma
- Tokyo Clinic ; Southern Tohoku General Hospital ; Biotherapy Institute of Japan
| | - X Deng
- Biotherapy Institute of Japan
| | | | - K Watanabe
- Tokyo Clinic ; Southern Tohoku General Hospital
| |
Collapse
|
21
|
Deng X, Terunuma H, Nieda M, Xiao W, Nicol A. Synergistic cytotoxicity of ex vivo expanded natural killer cells in combination with monoclonal antibody drugs against cancer cells. Int Immunopharmacol 2012; 14:593-605. [PMID: 23063974 DOI: 10.1016/j.intimp.2012.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
The adoptive transfer of highly cytotoxic natural killer (NK) cells is an emerging tool for cancer immunotherapy. Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical factors for the clinical efficacy of anticancer antibodies, in which NK cells are the major effectors of ADCC. NK cells were expanded from PBMC by a feeder-cell-free expansion method. NK cell expansion efficiency was evaluated within a period of 21 days. The kinetics of NK cell expansion and the expression of activating and inhibitory receptors on NK cells were monitored. NK cells producing IFN-γ and TNF-α were detected by intracellular cytokine staining. The cytotoxicity of expanded NK cells against various cancer cells was compared with that of freshly isolated NK cells. The ADCC functions of expanded NK cells in combination with rituximab against CD20+ lymphoma cell lines were evaluated. Our method efficiently expanded NK cells ex vivo, which showed a much higher activity to induce the expression of activating receptors and to produce IFN-γ and TNF-α as well as cytotoxicity against various cancer cell lines including CD133+ primary cancer cells than freshly isolated NK cells. We observed a synergistic cytotoxicity of our expanded NK cells against CD20+ B lymphoma cell lines as well as higher IFN-γ and TNF-α production when combined with rituximab. Our results suggest that the adoptive transfer of a large number of ex vivo expanded NK cells, particularly in combination with monoclonal antibody drugs, is a useful tool for cancer immunotherapy.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan, Tokyo 135-0051, Japan.
| | | | | | | | | |
Collapse
|
22
|
Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity. Cancer Immunol Immunother 2012; 61:2055-65. [PMID: 22543528 DOI: 10.1007/s00262-012-1264-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.
Collapse
|
23
|
Johnston MF, Ortiz Sánchez E, Vujanovic NL, Li W. Acupuncture May Stimulate Anticancer Immunity via Activation of Natural Killer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:481625. [PMID: 21785626 PMCID: PMC3135660 DOI: 10.1093/ecam/nep236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 12/19/2009] [Indexed: 02/07/2023]
Abstract
This article presents the hypothesis that acupuncture enhances anticancer immune functions by stimulating natural killer (NK) cells. It provides background information on acupuncture, summarizes the current scientific understanding of the mechanisms through which NK cells act to eliminate cancer cells, and reviews evidence that acupuncture is associated with increases in NK cell quantity and function in both animals and humans. The key contribution of this article involves the use of cellular immunology and molecular biological theory to interpret and synthesize evidence from disparate animal and human studies in formulating the 'acupuncture immuno-enhancement hypothesis': clinicians may use acupuncture to promote the induction and secretion of NK-cell activating cytokines that engage specific NK cell receptors that endogenously enhance anticancer immune function.
Collapse
Affiliation(s)
| | - Elizabeth Ortiz Sánchez
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA, USA
| | - Nikola L. Vujanovic
- University of Pittsburgh Cancer Institute, Departments of Pathology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenhui Li
- Department of Chemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
24
|
The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect Immun 2010; 78:1895-904. [PMID: 20176791 DOI: 10.1128/iai.01165-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of spotted fever group (SFG) Rickettsia species, including R. conorii and R. rickettsii, is acutely dependent on adherence to and invasion of host cells, including cells of the mammalian endothelial system. Bioinformatic analyses of several rickettsia genomes revealed the presence of a cohort of genes designated sca genes that are predicted to encode proteins with homology to autotransporter proteins of Gram-negative bacteria. Previous work demonstrated that three members of this family, rOmpA (Sca0), Sca2, and rOmpB (Sca5) are involved in the interaction with mammalian cells; however, very little was known about the function of other conserved rickettsial Sca proteins. Here we demonstrate that sca1, a gene present in nearly all SFG rickettsia genomes, is actively transcribed and expressed in R. conorii cells. Alignment of Sca1 sequences from geographically diverse SFG Rickettsia species showed that there are high degrees of sequence identity and conservation of these sequences, suggesting that Sca1 may have a conserved function. Using a heterologous expression system, we demonstrated that production of R. conorii Sca1 in the Escherichia coli outer membrane is sufficient to mediate attachment to but not invasion of a panel of cultured mammalian epithelial and endothelial cells. Furthermore, preincubation of a recombinant Sca1 peptide with host cells blocked R. conorii cell association. Together, these results demonstrate that attachment to mammalian cells can be uncoupled from the entry process and that Sca1 is involved in the adherence of R. conorii to host cells.
Collapse
|
25
|
Abstract
Monoclonal antibodies are effective treatments for many malignant diseases. However, the ability of antibodies to initiate tumour-antigen-specific immune responses has received less attention than have other mechanisms of antibody action. We describe the rationale and evidence for the development of antibodies that can stimulate host tumour-antigen-specific immune responses. Such responses can be induced through the induction of antibody-dependent cellular cytotoxicity, promotion of antibody-targeted cross-presentation of tumour antigens, or by triggering of the idiotypic network. Future treatment modifications or combinations might be able to prolong, amplify, and shape these immune responses to increase the clinical benefits of antibody therapy for human cancer.
Collapse
Affiliation(s)
- Louis M. Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20016
| | - Madhav V. Dhodapkar
- Section of Hematology, Yale University, New Haven, CT 06510; Lab of Tumor Immunology and Immunotherapy, The Rockefeller university, New York, NY 10065
| | - Soldano Ferrone
- University of Pittsburgh Cancer Institute, Departments of Surgery, Pathology and Immunology, Pittsburgh, PA
| |
Collapse
|
26
|
Berntzen G, Andersen JT, Ustgård K, Michaelsen TE, Mousavi SA, Qian JD, Kristiansen PE, Lauvrak V, Sandlie I. Identification of a high affinity FcgammaRIIA-binding peptide that distinguishes FcgammaRIIA from FcgammaRIIB and exploits FcgammaRIIA-mediated phagocytosis and degradation. J Biol Chem 2008; 284:1126-35. [PMID: 18957413 DOI: 10.1074/jbc.m803584200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FcgammaRIIA is a key activating receptor linking immune complex formation with cellular effector functions. FcgammaRIIA has 93% identity with an inhibitory receptor, FcgammaRIIB, which negatively regulates FcgammaRIIA. FcgammaRIIA is important in the therapeutic action of several monoclonal antibodies. Binding molecules that discriminate FcgammaRIIA from FcgammaRIIB may optimize receptor activity and serve as a lead for development of therapeutics with FcgammaRIIA as a key target. Here we report the use of phage display libraries to select short peptides with distinct FcgammaRIIA binding properties. An 11-mer peptide (WAWVWLTETAV) was characterized that bound FcgammaRIIA with a K(d) of 500 nm. It mediated cell internalization and degradation of a model antigen. The peptide-binding site on FcgammaRIIA was shown to involve Phe(163) and the IgG binding amino acids Trp(90) and Trp(113). It is thus overlapping but not identical to that of IgG. Neither activating receptors FcgammaRI and FcgammaRIII, nor FcgammaRIIB, all of which lack Phe(163), bound the peptide.
Collapse
Affiliation(s)
- Gøril Berntzen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Binyamin L, Alpaugh RK, Hughes TL, Lutz CT, Campbell KS, Weiner LM. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. THE JOURNAL OF IMMUNOLOGY 2008; 180:6392-401. [PMID: 18424763 DOI: 10.4049/jimmunol.180.9.6392] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human NK cells lyse Ab-coated target cells through the process of Ab-dependent cellular cytotoxicity (ADCC). Improving ADCC responses is desirable because it is thought to be an important antitumor mechanism for some Abs. NK cell inhibitory receptors, such as killer cell Ig-like receptors, engage with MHC class I molecules on self-cells to block NK cell activation. Accordingly, we enhanced ADCC responses by blocking NK cell inhibitory receptors, thus perturbing induction of the self-recognition signal. In a cell line model of anti-lymphoma therapy, the combination of rituximab with an Ab that blocks inhibitory self-recognition yielded increased NK cell-mediated target cell lysis when compared with rituximab alone. To validate this proof-of-concept, we then used a more representative approach in which an individual's fresh primary NK cells encountered autologous, EBV-transformed B cells. In this system, rituximab and a combination of Abs that block NK cell inhibitory receptors yielded improved NK cell-mediated lysis over rituximab alone. The results show, for the first time, that disruption of inhibitory self-recognition can efficiently promote ADCC in a human model, applying an autologous system in which physiologic checkpoints are in place. This method provides an alternative approach to potentiate the therapeutic benefit of antitumor Abs that mediate ADCC.
Collapse
Affiliation(s)
- Liat Binyamin
- Department of Medical Oncology and Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hanai H, Iida T, Takeuchi K, Watanabe F, Yamada M, Kikuyama M, Maruyama Y, Iwaoka Y, Hirayama K, Nagata S, Takai K. Adsorptive depletion of elevated proinflammatory CD14+CD16+DR++ monocytes in patients with inflammatory bowel disease. Am J Gastroenterol 2008; 103:1210-6. [PMID: 18177452 DOI: 10.1111/j.1572-0241.2007.01714.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In human blood, two monocyte populations exist, CD14(++)CD16(-) classical monocytes and CD14(+)CD16(+) proinflammatory monocytes, which account for about 10% of total monocytes, but can expand to promote inflammatory conditions. CD14(+)CD16(+) monocytes produce large amounts of inflammatory cytokines including TNF-alpha and IL-1. Adacolumn adsorptive carriers adsorb from the blood in the column most of the monocytes/macrophages and granulocytes and this has been associated with clinical efficacy in patients with active inflammatory bowel disease (IBD). This study was to investigate the CD14(+)CD16(+) monocyte profile in patients with IBD and the impact of Adacolumn on this proinflammatory phenotype. METHODS A total of 58 patients with ulcerative colitis (UC, N = 37) or Crohn's disease (CD, N = 21) together with 11 healthy controls were included in this study. Peripheral blood CD14(+)CD16(+) monocytes were determined by three-color immunofluorescence and flow cytometry. RESULTS The percentage of CD14(+)CD16(+) monocytes in patients with active CD was significantly (P= 0.0089) higher than the level in the control group, in patients with quiescent CD (P= 0.0419) or quiescent UC (P= 0.0063). Further, the percentage of CD14(+)CD16(+) monocytes in patients with active UC who were on prednisolone (PSL) was less than the level in those not on PSL (P < 0.0001), thus PSL might have a suppressive effect on CD14(+)CD16(+) monocytes. Patients with active IBD were each given up to 10 Adacolumn granulocye/monocyte adsorption (GMA) sessions over an 8-wk period. The percentage of CD14(+)CD16(+) monocytes decreased dramatically (P= 0.0077 in UC and P= 0.0117 in CD) compared with entry levels. CONCLUSIONS A significant reduction in peripheral CD14(+)CD16(+) monocytes by GMA should mitigate the inflammatory drive and contribute to the clinical efficacy of this procedure. Reduction of CD14(+)CD16(+) monocytes by corticosteroids was also seen. Hence, corticosteroids should enhance the efficacy of GMA. This is the first report on CD14(+)CD16(+) monocytes being decreased by Adacolumn GMA in patients with IBD.
Collapse
Affiliation(s)
- Hiroyuki Hanai
- Centre for Gastroenterology and Inflammatory Bowel Disease Research, Hamamatsu South Hospital, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tang Y, Lou J, Alpaugh RK, Robinson MK, Marks JD, Weiner LM. Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. THE JOURNAL OF IMMUNOLOGY 2007; 179:2815-23. [PMID: 17709495 DOI: 10.4049/jimmunol.179.5.2815] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However, the factors that regulate the magnitude of ADCC are incompletely understood. In this study, we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M, and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting, a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.
Collapse
Affiliation(s)
- Yong Tang
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
30
|
Borghaei H, Alpaugh RK, Bernardo P, Palazzo IE, Dutcher JP, Venkatraj U, Wood WC, Goldstein L, Weiner LM. Induction of adaptive Anti-HER2/neu immune responses in a Phase 1B/2 trial of 2B1 bispecific murine monoclonal antibody in metastatic breast cancer (E3194): a trial coordinated by the Eastern Cooperative Oncology Group. J Immunother 2007; 30:455-67. [PMID: 17457220 DOI: 10.1097/cji.0b013e31803bb421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
2B1 is a bispecific murine monoclonal antibody that binds to the extracellular domains of HER2/neu and FcgammaRIII. 2B1 efficiently promotes the lysis of tumor cells overexpressing HER2/neu by natural killer cells and mononuclear phagocytes that express the FcgammaRIII A isoform. Here, we report the results of E3194, a phase 1B/2 trial conducted by the Eastern Cooperative Oncology Group that employed 2B1 therapy in 20 women with metastatic breast cancer. The median age was 51 years. All but 1 patient had received prior chemotherapy. After the first dose, 3 of the initial 8 patients experienced dose-limiting toxicities that required dose-reduction. The nature of these dose-limiting toxicities resulted in a reduced dose from 2.5 mg/m/d to 1 mg/m/d in the remaining 12 patients. Objective antitumor responses were not seen. However, 2B1 therapy induced adaptive immune responses to both intracellular and extracellular domains of HER2/neu. Even though 2B1 antibody therapy did not show activity in metastatic breast cancer at the current administered doses, the ability of this antibody to induce detectable immune responses against an important tumor antigen has implications for understanding the mechanisms by which antibodies that mediate antibody-directed cellular cytotoxicity may exert their clinical antitumor effects.
Collapse
|
31
|
Angyal A, Prechl J, Sármay G. Possible therapeutic applications of single-chain antibodies in systemic autoimmune diseases. Expert Opin Biol Ther 2007; 7:691-704. [PMID: 17477806 DOI: 10.1517/14712598.7.5.691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
B cells participate in the induction and maintenance of systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, via production of pathogenic autoantibodies, contributing to the formation of immune complexes. Immune complex deposition in the kidney and joints causes inflammation and organ destruction, and chemokine production enhances T cell activation and tissue damage. The development of the disorder depends on several factors, for example, genetic susceptibility, environmental factors or immune dysregulation. Traditional therapies, which aimed at the alleviation of symptoms, are giving way to biological therapies with the potential of disrupting disease progression. This article focuses on antibody therapies, especially on the applications of single-chain antibodies, as new biological agents for the treatment of systemic autoimmune disorders.
Collapse
Affiliation(s)
- Adrienn Angyal
- Eötvös Loránd University, Department of Immunology, H-1117 Budapest, Pázmány Péter s.1/c, Hungary.
| | | | | |
Collapse
|
32
|
Gazit R, Aker M, Elboim M, Achdout H, Katz G, Wolf DG, Katzav S, Mandelboim O. NK cytotoxicity mediated by CD16 but not by NKp30 is functional in Griscelli syndrome. Blood 2007; 109:4306-12. [PMID: 17255357 DOI: 10.1182/blood-2006-09-047159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Griscelli syndrome (GS) type 2 is an autosomal recessive disorder represented by pigment dilution and impaired cytotoxic T lymphocyte (CTL) activity. NK activity has been scarcely investigated in GS patients. Here, we describe a new patient, possessing a hemophagocytic syndrome with a homozygous Q118X nonsense RAB27A mutation. Single specific primer–polymerase chain reaction (SSP-PCR) was developed based on this mutation and is currently used in prenatal genetic analysis. As expected, CTLs in the patient are not functional and NK cytotoxicity against K562 or 721.221 cells is diminished. Surprisingly, however, we demonstrate that CD16-mediated killing is intact in this patient and is therefore RAB27A independent, whereas NKp30-mediated killing is impaired and is therefore RAB27A dependent. We further analyzed the signaling pathways of these 2 receptors and demonstrated phosphorylation of Vav1 after CD16 activation but not after NKp30 engagement. Thus, we identify a novel homozygous mutation in the RAB27A gene of a new GS patient, observe for the first time that some activating NK receptors function in GS patients, and demonstrate a functional dichotomy in the killing mediated by these human NK-activating receptors.
Collapse
Affiliation(s)
- Roi Gazit
- The Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pegram M, Ngo D. Application and potential limitations of animal models utilized in the development of trastuzumab (Herceptin): a case study. Adv Drug Deliv Rev 2006; 58:723-34. [PMID: 16876287 DOI: 10.1016/j.addr.2006.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/06/2006] [Indexed: 11/25/2022]
Abstract
The preclinical and clinical development of trastuzumab, a humanized monoclonal antibody directed against a juxtamembrane epitope in the HER2 receptor ectodomain, relied heavily on the use of animal models to validate HER2 as a potential MAb target. The identification of HER2 (neu) as a proto-oncogene was first established in a carcinogen-induced brain tumor in the rat. Transgenic mouse technology led to an understanding of the role of HER2 in pathogenesis of breast cancer. Transfection studies of human HER2 cDNA into murine xenograft models further explored the role HER2 plays in tumor progression and metastasis. A murine subrenal capsule fresh human tumor explant assay was utilized to test efficacy of various murine monoclonal anti-HER2 antibodies, and the data were helpful in choosing the most efficacious for subsequent human engineering for clinical use. HER2-overexpressing xenograft models in athymic mice were used to test the efficacy of anti-HER2 antibodies, develop dose-response relationships, measure drug interactions between trastuzumab and chemotherapy, and optimize dosing schedules of chemotherapeutics combined with trastuzumab. In this work, we will highlight the utility of animal models exploited in the development of trastuzumab - noting not only their contribution to drug development but also their limitations in translation of preclinical data into the clinic. It is likely that the experience we gained in the case of preclinical animal models to study in vivo effects of trastuzumab have parallels in the development of other monoclonal antibodies since overcoming the species boundaries (i.e. cross-reactivity with antigenic determinant, development of cross-species neutralizing antibodies, and cross-species interaction with activating Fc receptors on immune effector cells) are major limitations in the design and interpretation of preclinical/translational experiments designed to fulfill various regulatory requirements prior to initiation of phase I human clinical trials.
Collapse
Affiliation(s)
- Mark Pegram
- University of California Los Angeles, David Geffen School of Medicine UCLA Center for the Health Sciences Los Angeles, CA, United States.
| | | |
Collapse
|
34
|
Hanai H, Iida T, Yamada M, Sato Y, Takeuchi K, Tanaka T, Kondo K, Kikuyama M, Maruyama Y, Iwaoka Y, Nakamura A, Hirayama K, Saniabadi AR, Watanabe F. Effects of adacolumn selective leukocytapheresis on plasma cytokines during active disease in patients with active ulcerative colitis. World J Gastroenterol 2006; 12:3393-9. [PMID: 16733857 PMCID: PMC4087871 DOI: 10.3748/wjg.v12.i21.3393] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between ulcerative colitis (UC) clinical activity index (CAI) and circulating levels of IL-1ra, IL-10, IL-6 and IL-18.
METHODS: Blood levels of IL-1ra, IL-10, IL-6 and IL-18 were measured in 31 patients with active UC, the mean CAI was 11.1, ranging from 5-25; and 12 healthy individuals as controls. Patients were given granulocyte and monocyte adsorptive apheresis (GMA) with Adacolumn. Leucocytes which bear the FcγR and complement receptors were adsorbed to the column leucocytapheresis carriers. Each patient could receive up to 11 GMA sessions over 8 wk.
RESULTS: We found strong correlations between CAI and IL-10 (r = 0.827, P < 0.001), IL-6 (r = 0.785, P < 0.001) and IL-18 (r = 0.791, P < 0.001). IL-1ra was not correlated with CAI. Following GMA therapy, 24 of the 31 patients achieved remission and the levels of all 4 cytokines fell to the levels in healthy controls. Further, blood levels of IL-1ra and IL-10 increased at the column outflow and inflow at 60 min suggesting release from leucocytes that adhered to the carriers.
CONCLUSION: Elevated blood levels of IL-6 and IL-18 together with peripheral blood granulocytes and monocytes/macrophages in patients with active UC show activative behaviour and increased survival time can be pro-inflammatory and the targets of GMA therapy.
Collapse
Affiliation(s)
- Hiroyuki Hanai
- Hamamatsu South Hospital, Center for Gastroenterology and IBD Research, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol 2006; 43:1183-93. [PMID: 16102830 DOI: 10.1016/j.molimm.2005.07.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
A common feature of human IgG1 antibodies used for cancer treatment is that their anti-tumour efficacy requires high serum trough levels and continued therapy for several months. Treatment cycles, thereby, consume several grams of IgG1 translating into significant drug needs and costs. The basis for the low in vivo efficacy, which is in contrast to high in vitro antibody-dependent cellular cytotoxicity (ADCC), is not well understood. Here, we have explored factors contributing to this discrepancy using adecatumumab (MT201), a fully human monoclonal IgG1 against epithelial cell adhesion molecule (Ep-CAM) and trastuzumab (Herceptin), a humanized IgG1 with specificity for the human epithelial growth factor receptor type 2 (HER-2) antigen. We found that physiological levels of human sera strongly inhibited ADCC of both IgG1 antibodies. Effects showed some dependence on the density of Ep-CAM and HER-2 targets, the tumour cell line tested and on effector cell and serum donors. Removal of IgG by affinity chromatography abolished the inhibitory effect of a serum pool. Inhibition of ADCC was fully restored by adding back the IgG fraction or by an equal amount of IgG from a commercial source. We further demonstrate that CD56-positive lymphocytes within human PBMC contributed >90% to ADCC and that normal serum levels of IgG effectively competed for in vitro binding of an IgG1 antibody to low-affinity Fcgamma receptor type III (CD16), as is present on natural killer (NK) cells. Competition of serum IgG for binding of therapeutic IgG1 to NK cell may be one important reason why high antibody doses are required in the clinic for treatment of cancer by an ADCC-based mechanism.
Collapse
|
37
|
Saniabadi AR, Hanai H, Suzuki Y, Ohmori T, Sawada K, Yoshimura N, Saito Y, Takeda Y, Umemura K, Kondo K, Ikeda Y, Fukunaga K, Nakashima M, Beretta A, Bjarnason I, Lofberg R. Adacolumn for selective leukocytapheresis as a non-pharmacological treatment for patients with disorders of the immune system: an adjunct or an alternative to drug therapy? J Clin Apher 2005; 20:171-84. [PMID: 15892107 DOI: 10.1002/jca.20046] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory and/or autoimmune diseases like ulcerative colitis (UC) or Crohn's disease (CD) are debilitating chronic disorders that poorly respond to pharmacological interventions. Further, drug therapy has adverse effects that add to disease complications. The current thinking is that disorders like inflammatory bowel disease (IBD) reflect an over exuberant immune activation driven by cytokines including TNF-alpha. Major sources of cytokines include myeloid leukocytes (granulocytes, monocytes/macrophages), which in IBD are elevated with activation behavior and are found in vast numbers within the inflamed intestinal mucosa. Accordingly, myeloid cells should be the targets of therapy. Adacolumn is filled with cellulose acetate beads that selectively adsorb and deplete myeloid cells and a small fraction of lymphocytes (FcgammaR and complement receptors bearing cells). In one study, 20 steroid naive patients with moderate (n = 14) or severe (n = 6) UC according to Rachmilewitz despite 1.5-2.25 g/day of 5-aminosalicylic acid received 6 to 10 Adacolumn sessions at 2 sessions/week. Efficacy was assessed 1 week after the last session. The majority of patients responded to 6 sessions, 17 (85%) achieved remission. In 2 of the 3 non-responders, CAI was 8 and 12 in 1; all 3 had deep colonic ulcers at study initiation. Decreases were seen in total leukocytes (P = 0.003), % neutrophils (P = 0.003), % monocytes (P = 0.004), an increase in lymphocytes (P = 0.001), decreases in C-reactive protein (P = 0.0002), and rises in blood levels of soluble TNF-alpha receptors I (P = 0.0007), II (P = 0.0045). In a separate study, a case with very severe steroid refractory UC who received up to 11 sessions responded well and avoided colectomy. Further, myeloid cell purging with Adacolumn has been associated with the release of IL-1 receptor antagonist, suppression of TNF-alpha, IL-1beta, IL-6, IL-8, down-modulation of L-selectin and the chemokine receptor CXCR3. In conclusion, selective depletion of myeloid cells appears to induce anti-inflammatory effects and represents a non-pharmacological treatment for patients with active IBD. The treatment has a clear drug-sparing role. Changes in blood levels of inflammatory and anti-inflammatory factors are thought to contribute to the efficacy of this procedure.
Collapse
Affiliation(s)
- Abbi R Saniabadi
- Japan Immunoresearch Laboratories, Nishiyokote Machi, Takasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The most significant recent advances in the application of monoclonal antibodies (mAbs) to oncology have been the introduction and approval of bevacizumab (Avastin), an anti-vascular endothelial growth factor antibody, and of cetuximab (Erbitux), an anti-epidermal growth factor antibody. In combination with standard chemotherapy regimens, bevacizumab significantly prolongs the survival of patients with metastatic cancers of the colorectum, breast and lung. Cetuximab, used alone or with salvage chemotherapy, produces clinically meaningful anti-tumor responses in patients with chemotherapy-refractory cancers of the colon and rectum. In addition, the anti-HER2/neu antibody trastuzumab (Herceptin), in combination with standard adjuvant chemotherapy, has been shown to reduce relapses and prolong disease-free and overall survival in high-risk patients after definitive local therapy for breast cancer. These exciting recent results provide optimism for the development of mAbs that bind novel targets, exploit novel mechanisms of action or possess improved tumor targeting. Progress in the clinical use of radioimmunoconjugates remains hindered by complexity of administration, toxicity concerns and insufficiently selective tumor targeting.
Collapse
Affiliation(s)
- Gregory P Adams
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
39
|
Parihar R, Trotta R, Roda JM, Ferketich AK, Tridandapani S, Caligiuri MA, Carson WE. Src Homology 2–Containing Inositol 5′-Phosphatase 1 Negatively Regulates IFN-γ Production by Natural Killer Cells Stimulated with Antibody-Coated Tumor Cells and Interleukin-12. Cancer Res 2005; 65:9099-107. [PMID: 16204085 DOI: 10.1158/0008-5472.can-04-4424] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that natural killer (NK) cells secrete a distinct profile of immunomodulatory cytokines in response to dual stimulation with antibody-coated tumor cells and interleukin-12 (IL-12). This NK cell cytokine response is dependent on synergistic signals mediated by the activating receptor for the Fc portion of IgG (FcgammaRIIIa) and the IL-12 receptor (IL-12R), both constitutively expressed on NK cells. The phosphatase Src homology 2-containing inositol 5'-phosphatase 1 (SHIP1) is known to exert inhibitory effects on Fc receptor (FcR) signaling via its enzymatic activity on phosphatidylinositol 3-kinase (PI3-K) products within many cells of the immune system, most notably mast cells, B cells, and monocytes. However, its activity in the context of FcR activation on NK cells has not been fully explored. The current study focused on the regulation of FcgammaRIIIa-induced NK cell cytokine production by SHIP1. Inhibitor studies showed that NK cell IFN-gamma production following FcR stimulation in the presence of IL-12 depended, in part, on the downstream products of PI3-K. Overexpression of wild-type (WT) SHIP1, but not a catalytic-deficient mutant, via retroviral transfection of primary human NK cells, resulted in a >70% reduction of NK cell IFN-gamma production in response to costimulation. In addition, NK cells from SHIP1-/- mice produced 10-fold greater amounts of IFN-gamma following culture with antibody-coated tumor cells plus IL-12 compared with NK cells from WT mice. Further, activation of the mitogen-activated protein kinase (MAPK) family member extracellular signal-regulated kinase (Erk; a downstream target of PI3-K) was significantly enhanced within SHIP1-/- NK cells compared with WT NK cells following costimulation. Pharmacologic inhibition of Erk activity, but not Jnk MAPK activity, led to significantly decreased IFN-gamma production from both SHIP1-/- and WT NK cells under these conditions. These results are the first to show a physiologic role for SHIP1 in the regulation of NK cell cytokine production and implicate PI3-K in the induction of MAPK signal transduction following costimulation of NK cells via the FcR and the IL-12R.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Interleukin-12/immunology
- Interleukin-12/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phosphoric Monoester Hydrolases/biosynthesis
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Receptors, IgG
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-12
- Transfection
Collapse
Affiliation(s)
- Robin Parihar
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Otten MA, Rudolph E, Dechant M, Tuk CW, Reijmers RM, Beelen RHJ, van de Winkel JGJ, van Egmond M. Immature Neutrophils Mediate Tumor Cell Killing via IgA but Not IgG Fc Receptors. THE JOURNAL OF IMMUNOLOGY 2005; 174:5472-80. [PMID: 15843545 DOI: 10.4049/jimmunol.174.9.5472] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antitumor Abs are promising therapeutics for cancer. Currently, most Ab-based therapies focus on IgG Ab, which interact with IgG FcR (FcgammaR) on effector cells. In this study, we examined human and mouse neutrophil-mediated tumor cell lysis via targeting the IgA FcR, FcalphaRI (CD89), in more detail. FcalphaRI was the most effective FcR in triggering tumor cell killing, and initiated enhanced migration of neutrophils into tumor colonies. Importantly, immature neutrophils that are mobilized from the bone marrow upon G-CSF treatment efficiently triggered tumor cell lysis via FcalphaRI, but proved incapable of initiating tumor cell killing via FcgammaR. This may provide a rationale for the disappointing results observed in some earlier clinical trials in which patients were treated with G-CSF and antitumor Ab-targeting FcgammaR.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD/biosynthesis
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, CD/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cytotoxicity Tests, Immunologic/methods
- Granulocyte Colony-Stimulating Factor/pharmacology
- Humans
- Mice
- Mice, Transgenic
- Neutrophil Infiltration/immunology
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- Receptors, Fc/biosynthesis
- Receptors, Fc/blood
- Receptors, Fc/genetics
- Receptors, Fc/physiology
- Receptors, IgG/biosynthesis
- Receptors, IgG/blood
- Receptors, IgG/genetics
- Receptors, IgG/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Video Recording
Collapse
Affiliation(s)
- Marielle A Otten
- Immunotherapy Laboratory, Department of Immunology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shahied LS, Tang Y, Alpaugh RK, Somer R, Greenspon D, Weiner LM. Bispecific Minibodies Targeting HER2/neu and CD16 Exhibit Improved Tumor Lysis When Placed in a Divalent Tumor Antigen Binding Format. J Biol Chem 2004; 279:53907-14. [PMID: 15471859 DOI: 10.1074/jbc.m407888200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Unconjugated monoclonal antibodies have emerged as important therapeutic agents for selected malignancies. One mechanism by which antibodies can exert cytotoxic effects is antibody-dependent cellular cytotoxicity (ADCC). In an effort to increase the efficiency of ADCC at tumor sites, we have focused on the construction of bispecific antibodies specific for the tumor antigen HER2/neu and the Fc gamma RIII-activating receptor (CD16) found on NK cells, mononuclear phagocytes, and neutrophils. Here, we describe the production of bispecific minibodies in two distinct binding formats. The parent minibody was constructed such that the IgG1 C(H)3 constant domain serves as the oligomerization domain and is attached to an anti-CD16 and an anti-HER2/ neu single-chain Fv via 19- and 29-amino acid linkers, respectively. This molecule can be expressed in mammalian cells from a dicistronic vector and has been purified using sequential affinity purification techniques. Analysis by surface plasmon resonance shows that the bispecific minibody can bind to HER2/neu and CD16, both individually and simultaneously. Furthermore, cytotoxicity studies show that the minibody can induce significant tumor cell lysis at a concentration as low as 20 nm. A trimeric, bispecific minibody (TriBi) that binds dimerically to HER2/neu and monomerically to CD16 induces equivalent cytotoxicity at lower antibody concentrations than either the parent minibody or the corresponding single-chain dimer. Both minibody constructs are stable in mouse and human serum for up to 72 h at 37 degrees C. These minibodies have the potential to target solid tumors and promote tumor lysis by natural killer cells and mononuclear phagocytes.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Neoplasm/immunology
- Binding Sites, Antibody
- Blood
- COS Cells
- Chlorocebus aethiops
- Cloning, Molecular
- Drug Stability
- Embryo, Mammalian
- Female
- Gene Expression
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Kidney
- Mice
- Neoplasms/immunology
- Ovarian Neoplasms
- Receptor, ErbB-2/immunology
- Receptors, IgG/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lillian S Shahied
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hanai H, Watanabe F, Yamada M, Sato Y, Takeuchi K, Iida T, Tozawa K, Tanaka T, Maruyama Y, Matsushita I, Iwaoka Y, Saniabadi A. Correlation of serum soluble TNF-alpha receptors I and II levels with disease activity in patients with ulcerative colitis. Am J Gastroenterol 2004; 99:1532-8. [PMID: 15307873 DOI: 10.1111/j.1572-0241.2004.30432.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES TNF-alpha has a major role in inflammatory bowel disease via two receptors, p55 (RI) and p75 (RII) expressed on many cell types, in particular neutrophils and monocytes (GM). Upon activation of these leukocytes, RI and RII are shed into the medium and can neutralize TNF. Accordingly, soluble RI and RII (s-RI/RII) are believed to have potent antiinflammatory actions. Further, in active UC, GM are elevated with activation behavior and recently adsorptive GM apheresis (GMA) in patients with severe UC was associated with a dramatic efficacy. In this study, we investigated the effects of GMA on serum s-RI/RII. METHODS Thirty-one patients with UC, clinical activity index (CAI) 11.1 were treated with GMA by using the Adacolumn. In the column, leukocytes which bear the FcgammaR and complement receptors adhere to the column apheresis carriers (neutrophils, monocytes, and a small fraction of lymphocytes). One GMA session was 60 min at 30 mL/min and each patient could receive up to 11 sessions over 8 wk. Serum s-RI/II were measured in the blood at the column inflow (peripheral blood, time 0 and 60 min) and outflow at 60 min. RESULTS Serum s-RI/RII showed strong correlation with CAI, r = 0.849 (p < 0.001) and r = 0.867 (p < 0.001), respectively and were greater than when patients were in remission or the levels in controls (p < 0.001). s-RI/RII at the column outflow were higher compared with inflow (p < 0.05) suggesting that RI/RII were shed from leukocytes which adhere to the carriers. Similarly s-RI/RII were significantly increased in the peripheral blood at the end of the 60 min GMA session compared with time 0. After 11 GMA sessions, CAI fell to remission level in 26 of 31 patients accompanied by falls of s-RI/RII. CONCLUSIONS The sources of s-RI/RII are believed to be activated monocytes and neutrophils with further release when these leukocytes adhere to the column carriers. s-RI/RII released during GMA should contribute to the clinical efficacy of this procedure.
Collapse
MESH Headings
- Adolescent
- Adult
- Antigens, CD/blood
- Colitis, Ulcerative/blood
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/physiopathology
- Colitis, Ulcerative/therapy
- Female
- Humans
- Leukapheresis
- Male
- Middle Aged
- Monocytes/physiology
- Neutrophil Activation
- Neutrophils/metabolism
- Receptors, Tumor Necrosis Factor/blood
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Remission Induction
Collapse
Affiliation(s)
- Hiroyuki Hanai
- Department of Medicine, Hamamatsu University, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vugmeyster Y, Howell K. Rituximab-mediated depletion of cynomolgus monkey B cells in vitro in different matrices: possible inhibitory effect of IgG. Int Immunopharmacol 2004; 4:1117-24. [PMID: 15222987 DOI: 10.1016/j.intimp.2004.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 04/09/2004] [Accepted: 04/14/2004] [Indexed: 11/22/2022]
Abstract
The mechanism of rituximab-mediated depletion of nonmalignant CD20+B cells remains to be clarified. In this report, we examine contributions of complement- and cell-dependent killing to the rituximab-mediated depletion of cynomolgus monkey B cells in the in vitro assay. B cell depletion was assessed in whole blood, buffer, autologus plasma (plasma), heat-inactivated plasma (H/I plasma), and cobra venom factor (CVF)-treated plasma matrices in cynomolgus monkey and human samples. Rituximab-mediated B cell depletion in buffer appeared to be greater than that in whole blood or in autologus plasma. Heat inactivation of plasma resulted in the degree of B cell depletion closer to that seen in buffer, whereas CVF treatment of plasma had no effect on B cell depletion. Addition of IgG to the buffer decreased the degree of B cell depletion. The results of these studies imply that (i) plasma components (including complement) are not the mediators of the rituximab-triggered B cell depletion in the in vitro assay, suggesting that cell-mediated mechanisms are likely to be responsible for in vitro killing of normal B cells, and that (ii) some plasma components appear to inhibit rituximab-mediated B cell depletion in the in vitro assay, with IgG identified as a possible inhibitor component.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Bioanalytical Research and Development Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
44
|
Ohta R, Kondor N, Dohi N, Tomlinson S, Imai M, Holers VM, Okada H, Okada N. Mouse Complement Receptor-Related Gene y/p65-Neutralized Tumor Vaccine Induces Antitumor Activity In Vivo. THE JOURNAL OF IMMUNOLOGY 2004; 173:205-13. [PMID: 15210776 DOI: 10.4049/jimmunol.173.1.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two mouse tumor cell lines, Meth A (BALB/c mouse-derived fibrosarcoma) and MM46 (C3H/He mouse-derived mammary tumor), were shown to express high levels of complement receptor-related gene y/p65 (Crry/p65), a membrane-bound complement-regulatory protein. Inhibiting the complement-regulatory activity of Crry/p65 with mAb 5D5 induced high levels of C3 deposition on in vivo tumor-derived Meth A and MM46 cells. To determine the effect of Crry/p65 blockade and increased C3 deposition on in vivo tumor growth, Meth A and MM46 cells were treated with 5D5 mAb and injected into BALB/c and C3H/He mice, respectively. Pretreating MM46 cells with 5D5 mAb significantly suppressed their tumorigenicity when injected s.c. Pretreatment with 5D5 mAb had a modest effect on Meth A s.c. tumor growth. Because complement is involved in the induction of an immune response, we investigated the effect of Crry/p65 blockade and increased C3 deposition on the immunogenicity of the tumor cells in a vaccination protocol. Vaccination of mice with irradiated Meth A cells pretreated with 5D5 mAb protected mice from subsequent challenge. In contrast, vaccination with irradiated Meth A cells without pretreatment was not protective. Survival was correlated with a high titer IgM response and specific CTL activity. These data demonstrate that the functional inhibition of Crry/p65 on tumor cells affects tumor growth and immunogenicity, and that the complement deposition resulting from this inhibition can act in concert with antitumor effector mechanisms to elicit potent antitumor immunity in vivo.
Collapse
Affiliation(s)
- Rieko Ohta
- Department of Biodefense, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mota G, Moldovan I, Calugaru A, Hirt M, Kozma E, Galatiuc C, Brasoveanu L, Boltz-Nitulescu G. Interaction of human immunoglobulin G with CD16 on natural killer cells: ligand clearance, FcgammaRIIIA turnover and effects of metalloproteinases on FcgammaRIIIA-mediated binding, signal transduction and killing. Scand J Immunol 2004; 59:278-84. [PMID: 15030579 DOI: 10.1111/j.0300-9475.2004.01398.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human natural killer (NK) cells express low-affinity Fc immunoglobulin G (IgG) receptor (FcgammaRIIIA/CD16). The binding of monomeric IgG (mIgG) and F(ab')(2) fragments of 3G8 anti-CD16 monoclonal antibody (mAb) to FcgammaRIIIA was investigated by flow cytometry. Over 90% of NK cells bound endogenous IgG, and during incubation at 37 degrees C, the FcgammaRIIIA occupancy decreased slowly. Approximately 90% of NK cells bind mIgG or F(ab')(2) fragments of 3G8 anti-CD16 mAb. The calculated half-time (T(1/2)) of in vitro mIgG dissociation from FcgammaRIIIA was 130 min. By cross-linking the mIgG ligand with F(ab')(2) fragments of anti-human IgG antibody, the T(1/2) decreases to 85 min. In kinetics study, it has been shown that (125)I-mIgG bound to FcgammaRIIIA is slowly released in the culture supernatant, maybe eluted at acid pH, or partially internalized and degraded. The binding of IgG to FcgammaRIIIA was increased by 53.8% on cells cultured in the presence of RU36156, a matrix metalloproteinase (MMP) inhibitor. Furthermore, an increase in phosphorylation of Lyn tyrosine kinase, after cross-linking of mIgG-FcgammaRIIIA complex, was observed on NK cells treated with RU36156. When the FcgammaRIIIA was occupied by mIgG, the capacity of NK cells to kill K562 target cells was decreased by RU36156, because the MMP inhibitor protects CD16 from proteolysis. Our data demonstrate that binding of mIgG to human NK cells is followed by ligand dissociation and/or internalization, enzymatic degradation and exocytosis. The RU36156 MMP inhibitor protects FcgammaRIIIA from cleavage, augments NK-cell activation and may interfere in their killing capacity.
Collapse
Affiliation(s)
- G Mota
- Center of Immunology, Institute of Virology, 285 Mihai Bravu st., 79650 Bucharest, Romania
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gilles JGG, Grailly SC, De Maeyer M, Jacquemin MG, VanderElst LP, Saint-Remy JMR. In vivo neutralization of a C2 domain–specific human anti–Factor VIII inhibitor by an anti-idiotypic antibody. Blood 2004; 103:2617-23. [PMID: 14670927 DOI: 10.1182/blood-2003-07-2207] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Factor VIII (FVIII) administration elicits specific inhibitory antibodies (Abs) in about 25% of patients with hemophilia A. The majority of such Abs reacts with FVIII C2 domain. mAbBO2C11 is a high-affinity human monoclonal antibody (mAb) directed toward the C2 domain, which is representative of a major class of human FVIII inhibitors. Anti-idiotypic Abs were raised to mAbBO2C11 to establish their neutralizing potential toward inhibitors. One mouse anti-idiotypic mAb, mAb14C12, specifically prevented mAbBO2C11 binding to FVIII C2 domain and fully neutralized mAbBO2C11 functional inhibitory properties. Modeling of the 3-D conformation of mAb14C12 VH and alignment with the 3-D structure of the C2 domain showed putative 31 surface-exposed amino acid residues either identical or homologous to the C2 domain. These included one C2 phospholipid-binding site, Leu2251-Leu2252, but not Met2199-Phe2200. Forty putative contact residues with mAbBO2C11 were identified. mAb14C12 dose-dependently neutralized mAbBO2C11 inhibitory activity in mice with hemophilia A reconstituted with human recombinant FVIII (rFVIII), allowing full expression of FVIII activity. It also neutralized in an immunoprecipitation assay approximately 50% of polyclonal anti-C2 Abs obtained from 3 of 6 unrelated patients. mAb14C12 is the first example of an anti-idiotypic Ab that fully restores FVIII activity in vivo in the presence of an anti-C2 inhibitor. The present results establish the in vitro and in vivo proof of concept for idiotype-mediated neutralization of a major class of FVIII inhibitors.
Collapse
Affiliation(s)
- Jean Guy G Gilles
- Center for Molecular and Vascular Biology, University of Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Renal cell carcinoma (RCC) is the most prevalent malignancy within the kidney and the incidence is rising. Due to improved radiological evaluation over 50% of the renal cancers are found incidentally. Despite the fact that these incidentalomas are often confined to the kidney, around 50% of all patients diagnosed with kidney cancer will develop systemic disease. Metastatic RCC has a poor prognosis. Traditional treatment modalities like chemo- and radiotherapy show overall response percentages of 2-6%. In view of the observed spontaneous remissions of advanced renal cancer, immune mechanisms have been suggested to play a role in the natural disease course of RCC. At present, several non-specific cytokine regimens are used in the treatment of mRCC, e.g. interleukin-2 and interferon-alpha, in combination or as monotherapy or in combination with substances like 13-cis-retinoic acid and/or 5-fluorouracil. Collective data of trials evaluating cytokine-based therapies for mRCC show an overall response rate of approximately 15%, with 5% of the patients showing complete responses. More importantly, cytokine treatment clearly translates into a significant survival benefit in a subset of patients. Nevertheless, the toxicity profile of these cytokine regimens is significant. With the enhanced knowledge of tumor-immunology, the identification of immunogenic tumor proteins, and antibodies recognizing tumor-associated antigens, new treatment strategies with increased specificity and fewer side effects are of interest. Here we review the different immunotherapeutical modalities currently used as well as new approaches for the treatment of advanced RCC.
Collapse
Affiliation(s)
- Ivar Bleumer
- Department of Urology, University Medical Center, St Radboud, Geert Grooteplein 10, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Hiraishi K, Takeda Y, Shiobara N, Shibusawa H, Jimma F, Kashiwagi N, Saniabadi AR, Adachi M. Studies on the mechanisms of leukocyte adhesion to cellulose acetate beads: an in vitro model to assess the efficacy of cellulose acetate carrier-based granulocyte and monocyte adsorptive apheresis. Ther Apher Dial 2003; 7:334-40. [PMID: 12924609 DOI: 10.1046/j.1526-0968.2003.00049.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte and monocyte adsorptive apheresis (GMA) using a column filled with cellulose acetate (CA) beads (carriers) has been associated with a significant clinical efficacy in patients with rheumatoid arthritis and ulcerative colitis. To obtain further understanding on the mechanisms of disease modification by cellulose acetate-carrier-based GMA, in the present study, we investigated the mechanisms of granulocyte and monocyte adhesion to CA beads following exposure of human peripheral blood to the carriers at 37 degrees C for up to 60 min under controlled conditions. Cellulose acetate beads selectively adsorbed granulocytes, monocytes. CD19+ (B cells) and CD56+ (NK cells) lymphocyte subpopulations. The granulocyte and monocyte adsorption was inhibited by heat-inactivated plasma and EDTA, indicating that the adsorption was plasma protein (immunoglobulin, complement) and calcium dependent. Accordingly, granulocyte and monocyte adsorption was markedly enhanced by coating the carriers with IgG. Similarly, C3b was adsorbed onto the CA beads as a marker of complement activation. The results indicated that IgG and active complement fragments mediated leukocyte adhesion to CA beads via the FcgammaR and/or leukocyte complement receptor like CR3. Additionally, CA beads induced loss of expression of TNF receptors on CD16- granulocytes and CD14+ monocytes, but not on CD3+ lymphocytes In conclusion, CA beads might be an appropriate biomaterial for inducing extracorporeal immunomodulation as a treatment for auto-immune diseases which are associated with pathological leukocyte activity.
Collapse
|
49
|
Saniabadi AR, Hanai H, Takeuchi K, Umemura K, Nakashima M, Adachi T, Shima C, Bjarnason I, Lofberg R. Adacolumn, an adsorptive carrier based granulocyte and monocyte apheresis device for the treatment of inflammatory and refractory diseases associated with leukocytes. Ther Apher Dial 2003; 7:48-59. [PMID: 12921115 DOI: 10.1046/j.1526-0968.2003.00012.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apheresis has been recognized both economically and therapeutically as a novel approach for the treatment of inflammatory diseases, and certain others, which respond poorly to drug therapy. This report is about Adacolumn, an adsorptive carrier based granulocyte and monocyte apheresis device with a volume of 335 mL, filled with about 220 g of cellulose acetate beads of 2 mm diameter as the column adsorptive carriers. Pre- and post-column leukocyte counts have shown that the carriers adsorb about 65% of granulocytes, 55% of monocytes and 2% of lymphocytes from the blood in the column. Additionally, after apheresis, there is a marked decrease in inflammatory cytokines (TNF-alpha, IL-1beta, IL-6 and IL-8) produced by blood leukocytes, together with down-modulation of L-selectin and the chemokine receptor CXCR3. Adacolumn has been used to treat patients with rheumatoid arthritis, ulcerative colitis and HIV infection. Typical apheresis sessions have been 4-10, at a frequency of one or two sessions per week. Treatment of patients with Adacolumn has been associated with very promising efficacy and safety data. Accordingly, in Japan, Adacolumn has been approved by the Ministry of Health for the treatment of ulcerative colitia. Furthermore, Adacolumn met the required quality and safety standards for medical devices and received an EC certification (CE-mark) from TUV in 1999. However, although Adacolumn carriers are very efficient in depleting excess and activated granulocytes and monocytes/macrophages, the clinical efficacy associated with Adacolumn apheresis cannot be fully explained on the basis of reducing granulocytes and monocytes per se. Hence, a long lasting effect on inflammatory cytokine generation, chemokine activities or immunomodulation is likely, but the precise mechanisms involved are not fully understood yet.
Collapse
|