1
|
Varanasi SM, Gulani Y, Rachamala HK, Mukhopadhyay D, Angom RS. Neuropilin-1: A Multifaceted Target for Cancer Therapy. Curr Oncol 2025; 32:203. [PMID: 40277760 PMCID: PMC12025621 DOI: 10.3390/curroncol32040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropilin-1 (NRP1), initially identified as a neuronal guidance protein, has emerged as a multifaceted regulator in cancer biology. Beyond its role in axonal guidance and angiogenesis, NRP1 is increasingly recognized for its significant impact on tumor progression and therapeutic outcomes. This review explores the diverse functions of NRP1 in cancer, encompassing its influence on tumor cell proliferation, migration, invasion, and metastasis. NRP1 interacts with several key signaling pathways, including vascular endothelial growth factor (VEGF), semaphorins, and transforming growth factor-beta (TGF-β), modulating the tumor microenvironment and promoting angiogenesis. Moreover, NRP1 expression correlates with poor prognosis in various malignancies, underscoring its potential as a prognostic biomarker. Therapeutically, targeting NRP1 holds promise as a novel strategy to inhibit tumor growth and enhance the efficacy of regular treatments such as chemotherapy and radiotherapy. Strategies involving NRP1-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and gene silencing techniques, are being actively investigated in preclinical and clinical settings. Despite challenges in specificity and delivery, advances in understanding NRP1 biology offer new avenues for personalized cancer therapy. Although several types of cancer cells can express NRPs, the role of NRPs in tumor pathogenesis is largely unknown. Future investigations are needed to enhance our understanding of the effects and mechanisms of NRPs on the proliferation, apoptosis, and migration of neuronal, endothelial, and cancer cells. The novel frameworks or multi-omics approaches integrate data from multiple databases to better understand cancer's molecular and clinical features, develop personalized therapies, and help identify biomarkers. This review highlights the pivotal role of NRP1 in cancer pathogenesis and discusses its implications for developing targeted therapeutic approaches to improve patient outcomes, highlighting the role of OMICS in targeting cancer patients for personalized therapy.
Collapse
Affiliation(s)
| | | | | | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (Y.G.); (H.K.R.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (Y.G.); (H.K.R.)
| |
Collapse
|
2
|
Bai Z, Yan C, Chang D. Prediction and therapeutic targeting of the tumor microenvironment-associated gene CTSK in gastric cancer. Discov Oncol 2023; 14:200. [PMID: 37930479 PMCID: PMC10628060 DOI: 10.1007/s12672-023-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Cathepsin-K (CTSK) is overexpressed in Gastric cancer (GC) and the mechanism of its overexpression in GC is still unclear. The present work found CTSK as a potential predictive biomarker and immunotherapeutic target for GC based on the tumor microenvironment (TME). METHODS From public databases, gene expression profiles and clinical data of GC were downloaded to analyze the distribution of stromal and immune cells and tumor abundance in TME. Differentially expressed genes (DEGs) associated with TME were obtained by differential analysis, followed by cross-screening to obtain CTSK as a gene associated with TME. Next, a series of methods and tools were employed to explore the relationships between clinicopathological features of GC and CTSK expression as well as prognosis, tumor immune microenvironment, immune checkpoints and drug sensitivity. And GSEA was used to investigate the potential role of CTSK in the tumor microenvironment of GC. RESULTS From the dataset, we obtained a total of 656 DEGs associated with TME and the stromal component of TME was found to be closely involved in GC prognosis. CTSK was cross-screened as the key gene associated with TME by the PPI network and univariate Cox regression analysis. Pan-cancer analysis revealed significant high expression of CTSK in a variety of cancers. Subsequently, we hypothesized that high-expressed CTSK was closely correlated with poor prognosis and lymph node metastasis of tumors, and that CTSK, a GC TME-related gene, was largely involved in a range of biological behaviors of tumors, with a significant correlation between several immune cells. CONCLUSION CTSK was validated as a potential prognostic biomarker related to TME of GC and could be a promising next-generation immunotherapeutic target for GC.
Collapse
Affiliation(s)
- Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Chunyu Yan
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
3
|
Fernández-Palanca P, Payo-Serafín T, Méndez-Blanco C, San-Miguel B, Tuñón MJ, González-Gallego J, Mauriz JL. Neuropilins as potential biomarkers in hepatocellular carcinoma: a systematic review of basic and clinical implications. Clin Mol Hepatol 2023; 29:293-319. [PMID: 36726054 PMCID: PMC10121286 DOI: 10.3350/cmh.2022.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide and is characterized by complex molecular carcinogenesis. Neuropilins (NRPs) NRP1 and NRP2 are the receptors of multiple proteins involved in key signaling pathways associated with tumor progression. We aimed to systematically review all the available findings on their role in HCC. We searched the Scopus, Web of Science (WOS), PubMed, Cochrane and Embase databases for articles evaluating NRPs in preclinical or clinical HCC models. This study was registered in PROSPERO (CRD42022349774) and include 49 studies. Multiple cellular and molecular processes have been associated with one or both NRPs, indicating that they are potential diagnostic and prognostic biomarkers in HCC patients. Mainly NRP1 has been shown to promote tumor cell survival and progression by modulating several signaling pathways. NRPs mainly regulate angiogenesis, invasion and migration and have shown to induce invasion and metastasis. They also regulate the immune response and tumor microenvironment, showing a crucial interplay with the hypoxia response and microRNAs in HCC. Altogether, NRP1 and NRP2 are potential biomarkers and therapeutic targets, providing novel insight into the clinical landscape of HCC patients.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Payo-Serafín
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Barral M, El-Sanharawi I, Dohan A, Sebuhyan M, Guedon A, Delarue A, Boutigny A, Mohamedi N, Magnan B, Kemel S, Ketfi C, Kubis N, Bisdorff-Bresson A, Pocard M, Bonnin P. Blood Flow and Shear Stress Allow Monitoring of Progression and Prognosis of Tumor Diseases. Front Physiol 2021; 12:693052. [PMID: 34413786 PMCID: PMC8369886 DOI: 10.3389/fphys.2021.693052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
In the presence of tumor angiogenesis, blood flow must increase, leading to an elevation of blood flow velocities (BFVels) and wall shear stress (WSS) in upstream native arteries. An adaptive arterial remodeling is stimulated, whose purpose lies in the enlargement of the arterial inner diameter, aiming for normalization of BFVels and WSS. Remodeling engages delayed processes that are efficient only several weeks/months after initiation, independent from those governing expansion of the neovascular network. Therefore, during tumor expansion, there is a time interval during which elevation of BFVels and WSS could reflect disease progression. Conversely, during the period of stability, BFVels and WSS drop back to normal values due to the achievement of remodeling processes. Ovarian peritoneal carcinomatosis (OPC), pseudomyxoma peritonei (PMP), and superficial arteriovenous malformations (AVMs) are diseases characterized by the development of abnormal vascular networks developed on native ones. In OPC and PMP, preoperative blood flow in the superior mesenteric artery (SMA) correlated with the per-operative peritoneal carcinomatosis index (OPC: n = 21, R = 0.79, p < 0.0001, PMP: n = 66, R = 0.63, p < 0.0001). Moreover, 1 year after surgery, WSS in the SMA helped in distinguishing patients with PMP from those without disease progression [ROC-curve analysis, AUC = 0.978 (0.902-0.999), p < 0.0001, sensitivity: 100.0%, specificity: 93.5%, cutoff: 12.1 dynes/cm2]. Similarly, WSS in the ipsilateral afferent arteries close to the lesion distinguished stable from progressive AVM [ROC-curve analysis, AUC: 0.988, (0.919-1.000), p < 0.0001, sensitivity: 93.5%, specificity: 95.7%; cutoff: 26.5 dynes/cm2]. Blood flow volume is indicative of the tumor burden in OPC and PMP, and WSS represents an early sensitive and specific vascular marker of disease progression in PMP and AVM.
Collapse
Affiliation(s)
- Matthias Barral
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Imane El-Sanharawi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Anthony Dohan
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Maxime Sebuhyan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexis Guedon
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Audrey Delarue
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexandre Boutigny
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Nassim Mohamedi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Benjamin Magnan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Salim Kemel
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Chahinez Ketfi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Nathalie Kubis
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Annouk Bisdorff-Bresson
- AP-HP, Université de Paris, Hôpital Lariboisière, Neuroradiologie, Centre Constitutif des Malformations Artério Veineuses Superficielles de l'Enfant et de l'Adulte, Paris, France
| | - Marc Pocard
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France.,AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Chirurgie Digestive et Cancérologique, Paris, France
| | - Philippe Bonnin
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| |
Collapse
|
6
|
Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol 2021; 12:667454. [PMID: 33986756 PMCID: PMC8111175 DOI: 10.3389/fimmu.2021.667454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Barral M, Pimpie C, Kaci R, Al-Dybiat I, Mirshahi M, Pocard M, Bonnin P. Assessment of Tumor Response in Mice with Ovarian Peritoneal Carcinomatosis using Doppler Ultrasound of the Superior Mesenteric Artery and Celiac Trunk. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:759-768. [PMID: 33358050 DOI: 10.1016/j.ultrasmedbio.2020.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The goal of the work described here was to assess the performance of Doppler ultrasound (US) of the superior mesenteric artery (SMA) and celiac trunk (CT) in the evaluation of tumor response in female mice with ovarian peritoneal carcinomatosis treated either with bevacizumab or with carboplatin. Compared with untreated mice, carboplatin-treated mice had a lower weight (23.3 ± 2.0 vs. 27.9 ± 2.9 g, p < 0.001), peritoneal carcinomatosis index (PCI, 11 ± 3 vs. 28 ± 6, p < 0.001), Ki67-positive staining surfaces (p < 0.001), vascular density (p < 0.001), mean blood flow velocity (mBFVel) in the SMA (7.0 ± 1.4 vs. 10.9 ± 1.8 cm/s, p < 0.001) and CT (8.0 ± 1.8 vs. 14.3 ± 4.6 cm/s, p < 0.001) and no ascites. Weight and mBFVel were similar in bevacizumab-treated and untreated mice. The mBFVels in the SMA and CT correlated with the PCI used as an estimation of the tumor burden, R = 0.70 (p < 0.0001) and R = 0.65 (p < 0.0001), respectively. Doppler US allows non-invasive assessment of the effects of anticancer therapy in ovarian peritoneal carcinomatosis-induced mice.
Collapse
Affiliation(s)
- Matthias Barral
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Cynthia Pimpie
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Rachid Kaci
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France; Anatomopathologie, hôpital Lariboisière, Université de Paris, Paris, France
| | - Iman Al-Dybiat
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Massoud Mirshahi
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France
| | - Marc Pocard
- INSERM Unité 1275 CAP Paris-Tech, Université de Paris, Paris, France; Chirurgie Digestive et cancérologique, hôpital Lariboisière, Université de Paris, Paris, France
| | - Philippe Bonnin
- Physiologie Clinique-Explorations-Fonctionnelles, hopital Lariboisière, Université de Paris, Paris, France; INSERM U1148, LVTS, hôpital Bichat, Université de Paris, Paris, France.
| |
Collapse
|
8
|
De Vlaeminck Y, Bonelli S, Awad RM, Dewilde M, Rizzolio S, Lecocq Q, Bolli E, Santos AR, Laoui D, Schoonooghe S, Tamagnone L, Goyvaerts C, Mazzone M, Breckpot K, Van Ginderachter JA. Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development. Cancers (Basel) 2020; 12:cancers12123582. [PMID: 33266104 PMCID: PMC7760077 DOI: 10.3390/cancers12123582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Neuropilin-1 is a co-receptor for semaphorins and vascular endothelial growth factor family members. Neuropilin-1 can be expressed on tumor cells, tumor-infiltrating myeloid and lymphoid cells and has been linked to a tumor-promoting environment. We investigated nanobodies (Nbs) targeting neuropilin-1 for their potential to hamper colorectal carcinoma development in mice. Our data suggest that targeting neuropilin-1 in cancer using neuropilin-1 blocking Nbs delays tumor growth and extends the survival through a shift in the anti-tumor macrophage/pro-tumor macrophage ratio and activation of colorectal cancer-specific CD8+ T cells. These findings provide a rationale for the further development of Nbs targeting human neuropilin-1 and bringing them from the bench to the bedside. Abstract Neuropilin-1 (NRP-1) is a co-receptor for semaphorins and vascular endothelial growth factor (VEGF) family members that can be expressed on cancer cells and tumor-infiltrating myeloid, endothelial and lymphoid cells. It has been linked to a tumor-promoting environment upon interaction with semaphorin 3A (Sema3A). Nanobodies (Nbs) targeting NRP-1 were generated for their potential to hamper the NRP-1/Sema3A interaction and their impact on colorectal carcinoma (CRC) development was evaluated in vivo through the generation of anti-NRP-1-producing CRC cells. We observed that tumor growth was significantly delayed and survival prolonged when the anti-NRP-1 Nbs were produced in vivo. We further analyzed the tumor microenvironment and observed that the pro-inflammatory MHC-IIhigh/trophic MHC-IIlow macrophage ratio was increased in tumors that produce anti-NRP-1 Nbs. This finding was corroborated by an increase in the expression of genes associated with MHC-IIhigh macrophages and a decrease in the expression of MHC-IIlow macrophage-associated genes in the macrophage pool sorted from anti-NRP-1 Nb-producing tumors. Moreover, we observed a significantly higher percentage of tumor-associated antigen-specific CD8+ T cells in tumors producing anti-NRP-1 Nbs. These data demonstrate that an intratumoral expression of NRP-1/Sema3A blocking biologicals increases anti-tumor immunity.
Collapse
Affiliation(s)
- Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Y.D.V.); (R.M.A.); (Q.L.); (C.G.)
| | - Stefano Bonelli
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1040 Brussels, Belgium; (S.B.); (E.B.); (D.L.); (S.S.)
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1040 Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Y.D.V.); (R.M.A.); (Q.L.); (C.G.)
| | - Maarten Dewilde
- VIB Discovery Sciences, 3000 Leuven, Belgium; (M.D.); (A.R.S.)
| | | | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Y.D.V.); (R.M.A.); (Q.L.); (C.G.)
| | - Evangelia Bolli
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1040 Brussels, Belgium; (S.B.); (E.B.); (D.L.); (S.S.)
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1040 Brussels, Belgium
| | - Ana Rita Santos
- VIB Discovery Sciences, 3000 Leuven, Belgium; (M.D.); (A.R.S.)
| | - Damya Laoui
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1040 Brussels, Belgium; (S.B.); (E.B.); (D.L.); (S.S.)
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1040 Brussels, Belgium
| | - Steve Schoonooghe
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1040 Brussels, Belgium; (S.B.); (E.B.); (D.L.); (S.S.)
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1040 Brussels, Belgium
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00100 Rome, Italy;
- Department of Oncology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00100 Rome, Italy
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Y.D.V.); (R.M.A.); (Q.L.); (C.G.)
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, 3000 Leuven, Belgium;
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Y.D.V.); (R.M.A.); (Q.L.); (C.G.)
- Correspondence: (K.B.); (J.A.V.G.)
| | - Jo A. Van Ginderachter
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1040 Brussels, Belgium; (S.B.); (E.B.); (D.L.); (S.S.)
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1040 Brussels, Belgium
- Correspondence: (K.B.); (J.A.V.G.)
| |
Collapse
|
9
|
Farkas D, Thompson AAR, Bhagwani AR, Hultman S, Ji H, Kotha N, Farr G, Arnold ND, Braithwaite A, Casbolt H, Cole JE, Sabroe I, Monaco C, Cool CD, Goncharova EA, Lawrie A, Farkas L. Toll-like Receptor 3 Is a Therapeutic Target for Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:199-210. [PMID: 30211629 PMCID: PMC6353001 DOI: 10.1164/rccm.201707-1370oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by vascular cell proliferation and endothelial cell apoptosis. TLR3 (Toll-like receptor 3) is a receptor for double-stranded RNA and has been recently implicated in vascular protection. OBJECTIVES To study the expression and role of TLR3 in PAH and to determine whether a TLR3 agonist reduces pulmonary hypertension in preclinical models. METHODS Lung tissue and endothelial cells from patients with PAH were investigated by polymerase chain reaction, immunofluorescence, and apoptosis assays. TLR3-/- and TLR3+/+ mice were exposed to chronic hypoxia and SU5416. Chronic hypoxia or chronic hypoxia/SU5416 rats were treated with the TLR3 agonist polyinosinic/polycytidylic acid (Poly[I:C]). MEASUREMENTS AND MAIN RESULTS TLR3 expression was reduced in PAH patient lung tissue and endothelial cells, and TLR3-/- mice exhibited more severe pulmonary hypertension following exposure to chronic hypoxia/SU5416. TLR3 knockdown promoted double-stranded RNA signaling via other intracellular RNA receptors in endothelial cells. This was associated with greater susceptibility to apoptosis, a known driver of pulmonary vascular remodeling. Poly(I:C) increased TLR3 expression via IL-10 in rat endothelial cells. In vivo, high-dose Poly(I:C) reduced pulmonary hypertension in both rat models in proof-of-principle experiments. In addition, Poly(I:C) also reduced right ventricular failure in established pulmonary hypertension. CONCLUSIONS Our work identifies a novel role for TLR3 in PAH based on the findings that reduced expression of TLR3 contributes to endothelial apoptosis and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Daniela Farkas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - A. A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Aneel R. Bhagwani
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Schuyler Hultman
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Hyun Ji
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Naveen Kotha
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Grant Farr
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Nadine D. Arnold
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Adam Braithwaite
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Helen Casbolt
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Jennifer E. Cole
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ian Sabroe
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Carlyne D. Cool
- Department of Pathology, University of Colorado Denver, Denver, Colorado; and
| | - Elena A. Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Laszlo Farkas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
Ding Y, Zhou J, Wang S, Li Y, Mi Y, Gao S, Xu Y, Chen Y, Yan J. Anti-neuropilin-1 monoclonal antibody suppresses the migration and invasion of human gastric cancer cells via Akt dephosphorylation. Exp Ther Med 2018; 16:537-546. [PMID: 30116312 PMCID: PMC6090285 DOI: 10.3892/etm.2018.6234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Abstract
Neuropilin-1 (NRP-1) is involved in a range of physiological and pathological processes, including neuronal cell guidance, cardiovascular development, immunity, angiogenesis and the pathogenesis of cancer. Targeting of NRP-1 is considered to be a potential cancer therapy and a number of approaches have been investigated, including the use of small interfering RNA, peptides, soluble NRP antagonists and monoclonal antibodies. The present study used a novel anti-neuropilin-1 monoclonal antibody (anti-NRP-1 mAb) to investigate its potential anti-tumor effects on human gastric cancer cells in vitro and in vivo, as well as its underlying mechanisms of action. Using an MTT assay, it was observed that anti-NRP-1 mAb (<150 µg/ml) had no effects on the viability of gastric cancer cell line BGC-823, while a Boyden chamber assay indicated that treatment with anti-NRP-1 mAb suppressed the migration and invasion of BGC-823 cells. Western blot analysis also demonstrated that phosphorylation of Akt was reduced in BGC-823 cells treated with anti-NRP-1 mAb. Furthermore, anti-NRP-1 mAb suppressed the growth of gastric cancer xenograft tumors and downregulated the expression of vascular endothelial growth factor proteins within tumors in nude mice. These data indicate the potential effects of anti-NRP-1 mAb on malignant tumors and suggest that inhibition of NRP-1 function with anti-NRP-1 mAb may be a novel therapeutic approach in the treatment of cancer.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Juan Zhou
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shengyu Wang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yue Li
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yanjun Mi
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shihua Gao
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yun Xu
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yuqiang Chen
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jianghua Yan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
11
|
Feng Y, Chen Y, Meng Y, Cao Q, Liu Q, Ling C, Wang C. Bufalin Suppresses Migration and Invasion of Hepatocellular Carcinoma Cells Elicited by Poly (I:C) Therapy. Oncoimmunology 2018; 7:e1426434. [PMID: 29721392 PMCID: PMC5927531 DOI: 10.1080/2162402x.2018.1426434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Toll-like receptor 3 (TLR3) agonists as polyriboinosinic–polyribocytidylic acid (poly (I:C)) have been implicated as potential immunotherapy adjuvant for cancer whereas the exact roles of TLR3 agonists in hepatocellular carcinoma (HCC) treatment have not been clearly evaluated. In consistent with previous reports, we found that poly (I:C) triggering of TLR3 inhibited cell proliferation and induced apoptosis in HCC cells. However, poly (I:C), when used at lower concentration that cannot remarkably inhibit proliferation and induce apoptosis in HCC cells, enhanced the migration and invasion in vitro and the metastasis in vivo. More importantly, we found that bufalin, a prominent component of toad venom, could suppress poly (I:C)-inspired migration, invasion and metastasis of HCC cells despite that bufalin could not potentiate poly (I:C)-induced inhibition of proliferation and induction of apoptosis. In MHCC97 H cells, bufalin impaired poly (I:C)-induced activation of Tank-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) pathway and NF-κB pathway. Inhibitor for TBK1 but not NF-κB suppressed poly (I:C)-inspired migration and invasion, which was further supported by using TBK1 deficient (Tbk1–/–) cells. In another model using poly (I:C) transfection, bufalin could also suppress the migration and invasion of HCC cells, which was not observed in Tbk1–/– MHCC97 H cells. Our data suggest that bufalin can suppress the metastasis of HCC cells in poly (I:C) therapy by impairing TBK1 activation, indicating that bufalin may be used in combination with poly (I:C) therapy in HCC treatment for the sake of reversing poly (I:C)-triggered metastasis of HCC cells.
Collapse
Affiliation(s)
- Yinglu Feng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao, Shandong, China
| | - Yongan Chen
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongbin Meng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qingxin Cao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qun Liu
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Abstract
The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research.
Collapse
Affiliation(s)
- Amanda L Hudson
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| | - Emily K Colvin
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| |
Collapse
|
13
|
Machitani M, Sakurai F, Wakabayashi K, Takayama K, Tachibana M, Mizuguchi H. Type I Interferons Impede Short Hairpin RNA-Mediated RNAi via Inhibition of Dicer-Mediated Processing to Small Interfering RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:173-182. [PMID: 28325284 PMCID: PMC5363498 DOI: 10.1016/j.omtn.2016.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
RNAi by short hairpin RNA (shRNA) is a powerful tool not only for studying gene functions in various organisms, including mammals, but also for the treatment of severe disorders. However, shRNA-expressing vectors can induce type I interferon (IFN) expression by activation of innate immune responses, leading to off-target effects and unexpected side effects. Several strategies have been developed to prevent type I IFN induction. On the other hand, it has remained unclear whether type I IFNs have effects on shRNA-mediated RNAi. Here, we show that the type I IFNs significantly inhibit shRNA-mediated RNAi. Treatment with recombinant human IFN-α significantly inhibited shRNA-mediated knockdown of target genes, while it did not inhibit small interfering RNA (siRNA)-mediated knockdown. Following treatment with IFN-α, increased and decreased copy numbers of shRNA and its processed form, respectively, were found in the cells transfected with shRNA-expressing plasmids. Dicer protein levels were not altered by IFN-α. These results indicate that type I IFNs inhibit shRNA-mediated RNAi via inhibition of dicer-mediated processing of shRNA to siRNA. Our findings should provide important clues for efficient RNAi-mediated knockdown of target genes in both basic researches and clinical gene therapy.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Barral M, Raballand A, Dohan A, Soyer P, Pocard M, Bonnin P. Preclinical Assessment of the Efficacy of Anti-Angiogenic Therapies in Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:438-446. [PMID: 26626491 DOI: 10.1016/j.ultrasmedbio.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/11/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Diffuse hepatocellular carcinoma (HCC) is a complex affliction in which comorbidities can bias global outcome of cancer therapy. Better methods are thus warranted to directly assess effects of therapy on tumor angiogenesis and growth. As tumor angiogenesis is invariably associated with changes in local blood flow, we assessed the utility of ultrasound imaging in evaluation of the efficacy of anti-angiogenic therapy in a spontaneous transgenic mouse model of HCC. Blood flow velocities were measured monthly in the celiac trunk before and after administration of sorafenib or bevacizumab at doses corresponding to those currently used in clinical practice. Concordant with clinical experience, sorafenib, but not bevacizumab, reduced microvascular density and suppressed tumor growth relative to controls. Evolution of blood flow velocities correlated with microvascular density and with the evolution of tumor size. Ultrasound imaging thus provides a useful non-invasive tool for preclinical evaluation of new anti-angiogenic therapies for HCC.
Collapse
Affiliation(s)
- Matthias Barral
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Annemilaï Raballand
- Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Beaujon Hospital, INSERM U728, Clichy, France
| | - Anthony Dohan
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Philippe Soyer
- Service of Visceral and Vascular Radiology, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Marc Pocard
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Digestive and Cancer Surgery, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France
| | - Philippe Bonnin
- Paris-Diderot University, Sorbonne Paris Cite, Lariboisiere Hospital, INSERM U965, Paris, France; Service of Clinical Physiology- Functional Investigations, APHP, Lariboisiere Hospital, Paris-Diderot University, Sorbonne Paris Cite, AP-HP, Paris, France.
| |
Collapse
|
15
|
Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8:162-182. [PMID: 26839640 PMCID: PMC4724579 DOI: 10.4254/wjh.v8.i3.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma (HCC) is a highly prevalent cancer worldwide and its inflammatory background was established long ago. Recent studies have shown that innate immunity is closely related to the HCC carcinogenesis. An effective innate immunity response relies on the toll-like receptors (TLR) found in several different liver cells which, through different ligands and many signaling pathways can elicit, not only a pro-inflammatory but also an oncogenic or anti-oncogenic response. Our aim was to study the role of TLRs in the liver oncogenesis and as a consequence their value as potential therapeutic targets. We performed a systematic review of PubMed searching for original articles studying the relationship between HCC and TLRs until March 2015. TLR2 appears to be a fundamental stress-sensor as its absence reveals an augmented tendency to accumulate DNA-damages and to cell survival. However, pathways are still not fully understood as TLR2 up-regulation was also associated to enhanced tumorigenesis. TLR3 has a well-known protective role influencing crucial processes like angiogenesis, cell growth or proliferation. TLR4 works as an interesting epithelial-mesenchymal transition’s inducer and a promoter of cell survival probably inducing HCC carcinogenesis even though an anti-cancer role has already been observed. TLR9’s influence on carcinogenesis is also controversial and despite a potential anti-cancer capacity, a pro-tumorigenic role is more likely. Genetic polymorphisms in some TLRs have been found and its influence on the risk of HCC has been reported. As therapeutic targets, TLRs are already in use and have a great potential. In conclusion, TLRs have been shown to be an interesting influence on the HCC’s microenvironment, with TLR3 clearly determining an anti-tumour influence. TLR4 and TLR9 are considered to have a positive relationship with tumour development even though, in each of them anti-tumorigenic signals have been described. TLR2 presents a more ambiguous role, possibly depending on the stage of the inflammation-HCC axis.
Collapse
|
16
|
García-Pascual CM, Ferrero H, Juarez I, Martínez J, Villanueva A, Pozuelo-Rubio M, Soengas M, Tormo D, Simón C, Gómez R, Pellicer A. Evaluation of the antiproliferative, proapoptotic, and antiangiogenic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of leiomyoma. Fertil Steril 2015; 105:529-38. [PMID: 26616441 DOI: 10.1016/j.fertnstert.2015.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To assess the antiproliferative, proapoptotic, and antiangiogenic effects of the double-stranded RNA mimic polyinosine-polycytidylic acid (pIC) complexed with polyethylenimine [pIC(PEI)] in xenografted human leiomyomas. DESIGN Heterologous leiomyoma mouse model. SETTING University-affiliated infertility center. ANIMAL(S) Ovariectomized and hormone-replaced nude mice (n = 16) who received human leiomyoma fragment transplantation. INTERVENTION(S) Leiomyoma fragments placed in the peritoneum of 5-week-old nude female mice and treated with the vehicle (n = 8) or 0.6 mg/kg [pIC(PEI)] (n = 8) for 4 weeks. MAIN OUTCOME MEASURE(S) The size of the leiomyoma implants, and cellular proliferation (Ki67), vascularization (PECAM), and apoptosis (OH-ends) assessed by quantitative immunohistochemical/immunofluorescent analysis of the recovered implants. RESULT(S) No significant differences were observed in the size of the leiomyoma implants between groups. Vascularization and proliferation were significantly decreased, and apoptosis was increased in the [pIC(PEI)]-treated group versus control. CONCLUSION(S) We hypothesize that the antiangiogenic and apoptotic effects exerted by [pIC(PEI)] might lead to a decrease in lesion size in this animal model if the compound is administered for longer periods of time. This study provides promising data on [pIC(PEI)] as a potential novel therapeutic agent against human leiomyoma.
Collapse
Affiliation(s)
- Carmen Maria García-Pascual
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Universidad de Valencia, Paterna, Spain
| | - Hortensia Ferrero
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Universidad de Valencia, Paterna, Spain
| | - Irene Juarez
- Departamento de Ginecología, Hospital Universitario y politécnico la Fe, Valencia, Spain
| | | | | | | | - Marisol Soengas
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | | - Carlos Simón
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Universidad de Valencia, Paterna, Spain
| | - Raúl Gómez
- Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| | - Antonio Pellicer
- Fundación IVI, Universidad de Valencia, Paterna, Spain; Departamento de Ginecología, Hospital Universitario y politécnico la Fe, Valencia, Spain
| |
Collapse
|
17
|
García-Pascual CM, Martínez J, Calvo P, Ferrero H, Villanueva A, Pozuelo-Rubio M, Soengas M, Tormo D, Simón C, Pellicer A, Gómez R. Evaluation of the potential therapeutic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of endometriosis. Fertil Steril 2015; 104:1310-8. [PMID: 26297642 DOI: 10.1016/j.fertnstert.2015.07.1147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/17/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess the therapeutic potential of polyinosine-polycytidylic acid, a double-stranded RNA molecule with selective proapoptotic and antiangiogenic activity, complexed with polyethyleneimine (pIC(PEI)) in treating endometriosis. DESIGN A heterologous mouse model of endometriosis was created by injecting human endometrial fragments into the peritoneum. Endometrial fragments were engineered to express the fluorescent protein mCherry as a reporter to monitor status over the course of the 4-week study. SETTING University-affiliated infertility center. ANIMAL(S) Ovariectomized and hormone-replaced nude mice (n = 30) injected with fluorescent-labeled human endometrial fragments at 4-6 weeks of age. INTERVENTION(S) Animals (n = 10 per group) were injected with vehicle (control), the anti-VEGF compound CBO-P11 (0.6 mg/kg), or pIC(PEI) (0.6 mg/kg) twice weekly over the course of 4 weeks. MAIN OUTCOME MEASURE(S) Variations in the size of endometriotic implants were estimated by quantifying the expression of mCherry throughout the course of the experiment. Neovascularization, cellular proliferation, and apoptosis were estimated by quantitative immunofluorescence detection of PECAM, α-SMA, Ki67, and TUNEL. RESULT(S) pIC(PEI) promoted a significant increase in apoptosis and a decrease in neovascularization in human fragments, but did not reduce the size of endometriotic implants. CONCLUSION(S) While pIC(PEI) treatment had significant antiangiogenic and pro-apoptotic effects in this setting, longer periods of exposure than the ones supported by our heterologous model and/or assays in homologous mouse models of endometriosis may be necessary to detect an effect of this compound on lesion size.
Collapse
Affiliation(s)
- Carmen Maria García-Pascual
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain
| | | | - Paula Calvo
- Departamento de Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain
| | | | | | - Marisol Soengas
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | | - Carlos Simón
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain
| | - Antonio Pellicer
- Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain; Departamento de Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Raúl Gómez
- Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| |
Collapse
|
18
|
Abstract
Neuropilins (NRPs) are highly conserved transmembrane glycoproteins that possess pleiotropic functions. Neuropilin-1 (NRP1) and its homologue neuropilin-2 interact as coreceptors with both class 3 semaphorins and vascular endothelial growth factor and are involved in neuronal guidance and angiogenesis, respectively. The contribution of NRPs to tumor angiogenesis has been highlighted in previous studies, leading to the development of NRP antagonists as novel anti-angiogenesis therapies. However, more recent studies have demonstrated that NRPs have a much broader spectrum of activity in the integration of different pathways in physiological and pathological conditions. A few studies investigated the role of NRPs in both malignant and non-neoplastic liver diseases. In normal liver, NRP1 is expressed in hepatic stellate cells and liver sinusoidal endothelial cells. NRP1 expression in hepatocytes has been associated with malignant transformation and may play an important role in tumor behavior. A contribution of NRPs in sinusoidal remodeling during liver regeneration has been also noted. Studies in chronic liver diseases have indicated that, besides its influence on angiogenesis, NRP1 might contribute to the progression of liver fibrosis owing to its effects on other growth factors, including transforming growth factor β1. As a result, NRP1 has been identified as a promising therapeutic target for future antifibrotic therapies based on the simultaneous blockade of multiple growth factor signaling pathways. In this review, the structure of NRPs and their interactions with various ligands and associated cell surface receptors are described briefly. The current understanding of the roles of the NRPs in liver diseases including tumors, regeneration and fibrogenesis, are also summarized.
Collapse
|
19
|
Graziani G, Lacal PM. Neuropilin-1 as Therapeutic Target for Malignant Melanoma. Front Oncol 2015; 5:125. [PMID: 26090340 PMCID: PMC4453476 DOI: 10.3389/fonc.2015.00125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that acts as a co-receptor for various members of the vascular endothelial growth factor (VEGF) family. Its ability to bind or modulate the activity of a number of other extracellular ligands, such as class 3 semaphorins, TGF-β, HGF, FGF, and PDGF, has suggested the involvement of NRP-1 in a variety of physiological and pathological processes. Actually, this co-receptor has been implicated in axon guidance, angiogenesis, and immune responses. NRP-1 is also expressed in a variety of cancers (prostate, lung, pancreatic, or colon carcinoma, melanoma, astrocytoma, glioblastoma, and neuroblastoma), suggesting a critical role in tumor progression. Moreover, a growing amount of evidence indicates that NRP-1 might display important functions independently of other VEGF receptors. In particular, in the absence of VEGFR-1/2, NRP-1 promotes melanoma invasiveness, through the activation of selected integrins, by stimulating VEGF-A and metalloproteinases secretion and modulating specific signal transduction pathways. This review is focused on the role of NRP-1 in melanoma aggressiveness and on the evidence supporting its use as target of therapies for metastatic melanoma.
Collapse
Affiliation(s)
- Grazia Graziani
- Department of Systems Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata", Istituto di Ricovero e Cura a Carattere Scientifico , Rome , Italy
| |
Collapse
|
20
|
Gambara G, Desideri M, Stoppacciaro A, Padula F, De Cesaris P, Starace D, Tubaro A, Del Bufalo D, Filippini A, Ziparo E, Riccioli A. TLR3 engagement induces IRF-3-dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo. J Cell Mol Med 2014; 19:327-39. [PMID: 25444175 PMCID: PMC4407608 DOI: 10.1111/jcmm.12379] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/02/2014] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3-mediated apoptosis and the in vivo efficacy of poly I:C-based therapy. We show that interferon regulatory factor-3 (IRF-3) signalling plays an essential role in TLR3-mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE-1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well-established human androgen-sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C-treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF-3 in both human normal and PCa clinical samples, potentially envisaging poly I:C-based therapy for PCa.
Collapse
Affiliation(s)
- Guido Gambara
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang YC, Guo LQ, Chen X, Wang GN, Ni R, Wang MC, Wei FX. The role of death receptor 3 in the biological behavior of hepatocellular carcinoma cells. Mol Med Rep 2014; 11:797-804. [PMID: 25370568 PMCID: PMC4262488 DOI: 10.3892/mmr.2014.2858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/05/2014] [Indexed: 01/26/2023] Open
Abstract
Death receptor 3 (DR3) belongs to the tumor necrosis factor (TNF) receptor superfamily, primarily found in lymphoid tissues. Reports have determined that DR3 may also be distributed in numerous types of tumors. Therefore, it is thought that DR3 may have an important role in the process of tumorigenesis. The aim of the present study was to observe the effect of silencing DR3 expression on hepatocarcinoma cell growth, apoptosis and invasion in order to elucidate the role of DR3 in tumor development. The hepatocarcinoma cell lines (HepG2, Huh7, SMMC7721 and Bel-7402) and normal human liver cells (HL-7702) were transfected with three stealth RNA interference (RNAi) sequences that target the DR3 gene. Reverse transcription quantitative polymerase chain reaction was used to detect the expression levels of DR3 in hepatocarcinoma cell lines and normal liver HL-7702 cells. MTT assay and flow cytometry (FCM) were used to determine the rates of cell proliferation and apoptosis, respectively. Following silencing of the DR3 gene, western blot analysis was used to determine the protein expression of P53, Fas, Caspase8, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Caspase3. DR3 messenger RNA (mRNA) expression in hepatocarcinoma cell lines was significantly increased compared with that in the normal liver cell line. Three targeted DR3 gene small interfering RNAs significantly inhibited DR3 gene expression in Bel-7402 cells at the nucleic acid level. AF02670.1_stealth_883 and cocktail demonstrated the most efficient inhibition of DR3 gene expression at 48 and 72 h following transfection, with mRNA inhibition rates of 89.46 and 92.75%, and 90.53 and 94.25% (P<0.01), respectively. Cell viability was significantly reduced by AF02670.1_stealth_883 and RNAi cocktail at 24, 48 and 72 h following transfection. The inhibition rates of cell proliferation were 50.76 and 61.76% (P<0.05) at 72 h following transfection. FCM revealed that AF02670.1_stealth_883 and RNAi cocktail also induced apoptosis in Bel-7402 cells at 72 h following transfection. Reduction of NF-κB and P53 levels was observed (P<0.05) in Bel-7402 cells following DR3 silencing, whereas levels of Fas, Caspase3 and Caspase8 were markedly elevated (P<0.05). DR3 expression levels in hepatocellular carcinoma cells were significantly higher than those in normal cells. DR3 silencing effectively inhibited proliferation and invasion of hepatocellular carcinoma cells in vitro. However, silencing of the DR3 gene affect levels of apoptosis antigen-3 ligand in cells, therefore indicating that it may be involved with other pathways that regulate apoptosis in HCCs. In conclusion, the results of the present study indicated that DR3 may be a promising therapeutic target molecule for further study of hepatocellular carcinoma gene therapy.
Collapse
Affiliation(s)
- You Cheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Liu Qing Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xiao Chen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Gen Nian Wang
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Ri Ni
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Man Cai Wang
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Feng Xian Wei
- Hepato‑Biliary‑Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
22
|
Askou AL. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol 2014; 92 Thesis3:1-38. [PMID: 24953666 DOI: 10.1111/aos.12452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intraocular neovascular diseases are the leading cause of blindness in the Western world in individuals over the age of 50. Age-related macular degeneration (AMD) is one of these diseases. Exudative AMD, the late-stage form, is characterized by abnormal neovessel development, sprouting from the choroid into the avascular subretinal space, where it can suddenly cause irreversible damage to the vulnerable photoreceptor (PR) cells essential for our high-resolution, central vision. The molecular basis of AMD is not well understood, but several growth factors have been implicated including vascular endothelial growth factor (VEGF), and the advent of anti-VEGF therapy has markedly changed the outcome of treatment. However, common to all current therapies for exudative AMD are the complications of repeated monthly intravitreal injections, which must be continued throughout one's lifetime to maintain visual benefits. Additionally, some patients do not benefit from established treatments. Strategies providing long-term suppression of inappropriate ocular angiogenesis are therefore needed, and gene therapy offers a potential powerful technique. This study aimed to develop a strategy based on RNA interference (RNAi) for the sustained attenuation of VEGF. We designed a panel of anti-VEGF short hairpin RNAs (shRNA), and based on the most potent shRNAs, microRNA (miRNA)-mimicked hairpins were developed. We demonstrated an additive VEGF silencing effect when we combined the miRNAs in a tricistronic miRNA cluster. To meet the requirements for development of medical treatments for AMD with long-term effects, the shRNA/miRNA is expressed from vectors based on adeno-associated virus (AAV) or lentivirus (LV). Both vector systems have been found superior in terms of transduction efficiency and persistence in gene expression in retinal cells. The capacity of AAV-encoded RNAi effector molecules to silence endogenous VEGF gene expression was evaluated in mouse models, including the model of laser-induced choroidal neovascularization (CNV), and we found that subretinal administration of self-complementary (sc)-AAV2/8 encoding anti-VEGF shRNAs can impair vessel formation. In parallel, a significant reduction of endogenous VEGF was demonstrated following injection of scAAV2/8 vectors expressing multiple anti-VEGF miRNAs into murine hind limb muscles. Furthermore, in an ongoing project we have designed versatile, multigenic LV vectors with combined expression of multiple miRNAs and proteins, including pigment epithelium-derived factor (PEDF), a multifunctional, secreted protein that has anti-angiogenic and neurotrophic functions. Co-expression of miRNAs and proteins from a single viral vector increases safety by minimizing the viral load necessary to obtain a therapeutic effect and thereby reduces the risk of insertional mutagenesis as well as the immune response against viral proteins. Our results show co-expression of functional anti-VEGF-miRNAs and PEDF in cell studies, and in vivo studies reveal an efficient retinal pigment epithelium (RPE)-specific gene expression following the incorporation of the vitelliform macular dystrophy 2 (VMD2) promoter, demonstrating the potential applicability of our multigenic LV vectors in ocular anti-VEGF gene therapy, including combination therapy for treatment of exudative AMD. In conclusion, these highly promising data clearly demonstrate that viral-encoded RNAi effector molecules can be used for the inhibition of neovascularization and will, in combination with the growing interest of applying DNA- or RNA-based technologies in the clinic, undoubtedly contribute to the development of efficacious long-term gene therapy treatment of intraocular neovascular diseases.
Collapse
|
23
|
Dohan A, Lousquy R, Eveno C, Goere D, Broqueres-You D, Kaci R, Lehmann-Che J, Launay JM, Soyer P, Bonnin P, Pocard M. Orthotopic Animal Model of Pseudomyxoma Peritonei. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1920-9. [DOI: 10.1016/j.ajpath.2014.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 01/19/2023]
|
24
|
Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci 2014; 6:2-9. [PMID: 24459397 PMCID: PMC3895289 DOI: 10.4103/0975-7406.124301] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022] Open
Abstract
Advances in molecular biology have significantly increased the understanding of the biology of different diseases. However, these discoveries have not yet been fully translated into improved treatments for patients with diseases such as cancers. One of the factors limiting the translation of knowledge from preclinical studies to the clinic has been the limitations of in vivo diseases models. In this brief review, we will discuss the advantages and disadvantages of rodent models that have been developed to simulate human pathologies, focusing in models that employ xenografts and genetic modification. Within the framework of genetically engineered mouse (GEM) models, we will review some of the current genetic strategies for modeling diseases in the mouse and the preclinical studies that have already been undertaken. We will also discuss how recent improvements in imaging technologies may increase the information derived from using these GEMs during early assessments of potential therapeutic pathways. Furthermore, it is interesting to note that one of the values of using a mouse model is the very rapid turnover rate of the animal, going through the process of birth to death in a very short timeframe relative to that of larger mammalian species.
Collapse
Affiliation(s)
- Thierry F Vandamme
- University of Strasbourg, Faculty of Pharmacy, UMR 7199 CNRS, Laboratory of Concept and Application of Bioactive Molecules, Biogalenic Team, 74 Route du Rhin, 67400 Illkirch Graffenstaden, France
| |
Collapse
|
25
|
Chaudhary B, Khaled YS, Ammori BJ, Elkord E. Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother 2014; 63:81-99. [PMID: 24263240 PMCID: PMC11028473 DOI: 10.1007/s00262-013-1500-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/10/2013] [Indexed: 12/15/2022]
Abstract
Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co-receptor for a number of extracellular ligands including class III/IV semaphorins, certain isoforms of vascular endothelial growth factor and transforming growth factor beta. An exact understanding of the role of NRP1 in the immune system has been obscured by the differences in NRP1 expression observed between mice and humans. In mice, NRP1 is selectively expressed on thymic-derived Tregs and greatly enhances immunosuppressive function. In humans, NRP1 is expressed on plasmacytoid dendritic cells (pDCs) where it aids in priming immune responses and on a subset of T regulatory cells (Tregs) isolated from secondary lymph nodes. Preliminary studies that show NRP1 expression on T cells confers enhanced immunosuppressive activity. However, the mechanism by which this activity is mediated remains unclear. NRP1 expression has also been identified on activated T cells and Tregs isolated from inflammatory microenvironments, suggesting NRP1 might represent a novel T cell activation marker. Of clinical interest, NRP1 may enhance Treg tumour infiltration and a decrease in NRP1+ Tregs correlates with successful chemotherapy, suggesting a specific role for NRP1 in cancer pathology. As a therapeutic target, NRP1 allows simultaneous targeting of NRP1-expressing tumour vasculature, NRP1+ Tregs and pDCs. With the development of anti-NRP1 monoclonal antibodies and cell-penetrating peptides, NRP1 represents a promising new target for cancer therapies. This paper reviews current knowledge on the role and function of NRP1 in Tregs and pDCs, both in physiological and cancer settings, as well as its potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Belal Chaudhary
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
| | - Yazan S. Khaled
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
- Institutes of Cancer, Inflammation & Repair, University of Manchester, Manchester, UK
| | - Basil J. Ammori
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
- Institutes of Cancer, Inflammation & Repair, University of Manchester, Manchester, UK
| | - Eyad Elkord
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
- Institutes of Cancer, Inflammation & Repair, University of Manchester, Manchester, UK
- College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
26
|
Xu YY, Chen L, Wang GL, Zhou JM, Zhang YX, Wei YZ, Zhu YY, Qin J. A synthetic dsRNA, as a TLR3 pathwaysynergist, combined with sorafenib suppresses HCC in vitro and in vivo. BMC Cancer 2013; 13:527. [PMID: 24195809 PMCID: PMC3827827 DOI: 10.1186/1471-2407-13-527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/30/2013] [Indexed: 12/11/2022] Open
Abstract
Background Recent studies have demonstrated that synthetic dsRNAs may produce therapeutic effects in a target-independent manner through stimulation of the toll-like receptor-3 (TLR3)/interferon pathway; as a result, angiogenesis and proliferation of tumor cells are inhibited. Thus, this pathway may become a potential target of dsRNA in tumor suppression. In this study, we evaluated the role of synthetic dsRNA as a TLR3 synergist and by combining with sorafenib in anti-hepatocellular carcinoma (HCC) in vitro and in vivo. Methods Four dsRNAs were designed and synthesized. One of them that was capable of activating TLR3 most effectively in human HCC cell line (HepG2.2.15) was selected as a TLR3 synergist (called BM-06). Subsequently, the expression of proteins relating to TLR3 signaling pathway, such as NF-κB, caspase 8 survivin, bcl-2 and PCNA affected by BM-06, sorafenib alone or in combination, was compared. The migration, proliferation and apoptosis of HepG2.2.15 cells were evaluated in presence of BM-06, sorafenib alone or in combination of both. The similar treatments were also applied in an SD rat primary HCC model. Results qRT-PCR data showed that the expression of TLR3 and NF-κB in HepG2.2.15 cells was enhanced. BM-06 was selected as a TLR3 synergist capable of activating the TLR3/interferon pathway most effective among 4 synthetic dsRNAs. The migration and proliferation were significantly inhibited in treated HepG2.2.15 cells with BM-06 or Sorafenib alone as compared with PBS-sham control (P < 0.01). However, the role of combination BM-06 with Sorafenib was the most prominent. Tumor cell apoptotic rate was increased by BM-06 or combination when compared to PBS or poly(I:C) (P < 0.05). Similarly, in orthotopic HCC SD rats, the effect of the combination was superior to either agent alone on the inhibition of tumor growth and induction of HCC cell apoptosis (P < 0.05). Conclusions dsRNA alone was capable of inhibiting the proliferation of HepG2.2.15 cells and tumor growth of orthotopic HCC SD rats, but the effect of combination of dsRNA with sorafenib was more prominent. These findings implicate the potential role of combined use of a dsRNA, a TLR3 synergist, and sorafenib in inhibition of HCC.
Collapse
Affiliation(s)
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Xu YY, Chen L, Zhou JM, Wu YY, Zhu YY. Inhibitory effect of dsRNA TLR3 agonist in a rat hepatocellular carcinoma model. Mol Med Rep 2013; 8:1037-42. [PMID: 23970360 DOI: 10.3892/mmr.2013.1646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/31/2013] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumor. Studies have demonstrated that the toll‑like receptor 3 (TLR3)/interferon pathway is inhibitory in cancer cell proliferation, suggesting that the activation of this pathway may have therapeutic potential. In the present study, the inhibitory effects of BM‑06, a double‑stranded (ds)RNA TLR3 agonist, against HCC were studied in vivo. Using a 2‑acetylaminofluorene-induced HCC rat model, histological examination and analysis of corresponding biomarkers following treatment with BM-06, showed a decrease in tumor growth and cell proliferation, and an increase in apoptosis compared with that in a phosphate‑buffered saline control group. In addition, the observed antitumor effect of BM‑06 in the HCC rat model was demonstrated to be superior to the known TLR3 agonist, polyinosinic-polycytidylic acid.
Collapse
Affiliation(s)
- Yu-Yin Xu
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | | | | | | | | |
Collapse
|
28
|
Boese AS, Majer A, Saba R, Booth SA. Small RNA drugs for prion disease: a new frontier. Expert Opin Drug Discov 2013; 8:1265-84. [DOI: 10.1517/17460441.2013.818976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Kidd LCR, Rogers EN, Yeyeodu ST, Jones DZ, Kimbro KS. Contribution of toll-like receptor signaling pathways to breast tumorigenesis and treatment. BREAST CANCER-TARGETS AND THERAPY 2013; 5:43-51. [PMID: 24648757 DOI: 10.2147/bctt.s29172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence indicates that anomalies in the inflammatory and immune response pathways are essential to tumorigenesis. However, tumor-based innate immunity initiated by transformed breast epithelia tissues has received much less attention. This review summarizes published reports on the role of the toll-like receptor signaling pathway on breast cancer risk, disease progression, survival, and disease recurrence. Specifically, we discuss the underlying biological mechanisms that contribute to the tumorigenic and/or anti-tumorigenic properties of toll-like receptors and their associated agonists in relation to breast tumorigenesis and cancer treatment. Further, we use results from preclinical, clinical, and population-based studies as prompts for the exploration of new and more effective breast cancer therapies. As the knowledge base of innate immunity's involvement in breast cancer progression increases, current and new immune-modifying strategies will be refined to effectively treat breast cancer.
Collapse
Affiliation(s)
- La Creis R Kidd
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Erica N Rogers
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC, USA
| | - Susan T Yeyeodu
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC, USA
| | - Dominique Z Jones
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - K Sean Kimbro
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
30
|
Liu XY, Tang QS, Chen HC, Jiang XL, Fang H. Lentiviral miR30-based RNA interference against heparanase suppresses melanoma metastasis with lower liver and lung toxicity. Int J Biol Sci 2013; 9:564-77. [PMID: 23847439 PMCID: PMC3708037 DOI: 10.7150/ijbs.5425] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 05/18/2013] [Indexed: 12/30/2022] Open
Abstract
Aim: To construct short hairpin RNAs (shRNAs) and miR30-based shRNAs against heparanase (HPSE) to compare their safety and their effects on HPSE down-modulation in vitro and in vivo to develop a more ideal therapeutic RNA interference (RNAi) vector targeting HPSE. Methods: First, we constructed shRNAs and miR30-based shRNAs against HPSE (HPSE-shRNAs and HPSE-miRNAs) and packed them into lentiviral vectors. Next, we observed the effects of the shRNAs on knockdown for HPSE expression, adhesion, migration and invasion abilities in human malignant melanoma A375 cells in vitro. Furthermore, we compared the effects of the shRNAs on melanoma growth, metastasis and safety in xenograft models. Results: Our data showed that these artificial miRNAs targeting HPSE could be effective RNAi agents mediated by Pol II promoters in vitro and in vivo, although these miRNAs were not more potent than the HPSE-shRNAs. It was noted that obvious lung injuries, rarely revealed previously, as well as hepatotoxicity could be caused by lentivirus-mediated shRNAs (LV shRNAs) rather than lentivirus-mediated miRNAs (LV miRNAs) in vivo. Furthermore, enhanced expression of pro-inflammatory cytokines IL-6 and TGF-β1 and endogenous mmu-miR-21a-5p were detected in lung tissues of shRNAs groups, whereas the expression of mmu-let-7a-5p, mmu-let-7b-5p and mmu-let-7c-5p were down-regulated. Conclusion: These findings suggest that artificial miRNAs display an improved safety profile of lowered lung injury or hepatotoxicity relative to shRNAs in vivo. The mechanism of lung injuries caused by shRNAs may be correlated with changes of endogenous miRNAs in the lung. Our data here increase the flexibility of a miRNA-based RNAi system for functional genomic and gene therapy applications.
Collapse
Affiliation(s)
- Xiao-yan Liu
- Department of Dermatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | |
Collapse
|
31
|
Gatti G, Nuñez NG, Nocera DA, Dejager L, Libert C, Giraudo C, Maccioni M. Direct effect of dsRNA mimetics on cancer cells induces endogenous IFN-β production capable of improving dendritic cell function. Eur J Immunol 2013; 43:1849-61. [PMID: 23636788 DOI: 10.1002/eji.201242902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/13/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
Viral double-stranded RNA (dsRNA) mimetics have been explored in cancer immunotherapy to promote antitumoral immune response. Polyinosine-polycytidylic acid (poly I:C) and polyadenylic-polyuridylic acid (poly A:U) are synthetic analogs of viral dsRNA and strong inducers of type I interferon (IFN). We describe here a novel effect of dsRNA analogs on cancer cells: besides their potential to induce cancer cell apoptosis through an IFN-β autocrine loop, dsRNA-elicited IFN-β production improves dendritic cell (DC) functionality. Human A549 lung and DU145 prostate carcinoma cells significantly responded to poly I:C stimulation, producing IFN-β at levels that were capable of activating STAT1 and enhancing CXCL10, CD40, and CD86 expression on human monocyte-derived DCs. IFN-β produced by poly I:C-activated human cancer cells increased the capacity of monocyte-derived DCs to stimulate IFN-γ production in an allogeneic stimulatory culture in vitro. When melanoma murine B16 cells were stimulated in vitro with poly A:U and then inoculated into TLR3(-/-) mice, smaller tumors were elicited. This tumor growth inhibition was abrogated in IFNAR1(-/-) mice. Thus, dsRNA compounds are effective adjuvants not only because they activate DCs and promote strong adaptive immunity, but also because they can directly act on cancer cells to induce endogenous IFN-β production and contribute to the antitumoral response.
Collapse
Affiliation(s)
- Gerardo Gatti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
32
|
Li G, Zheng Z. Toll-like receptor 3 genetic variants and susceptibility to hepatocellular carcinoma and HBV-related hepatocellular carcinoma. Tumour Biol 2013; 34:1589-94. [PMID: 23404408 DOI: 10.1007/s13277-013-0689-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/03/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with few treatment options. Toll-like receptor 3 (TLR3) plays a key role in innate immunity and may affect the development of cancers. This study aimed to investigate whether TLR3 polymorphisms were associated with susceptibility to HCC. Two polymorphisms in the TLR3 gene, -976T/A and +1234C/T, were tested by polymerase chain reaction-restriction fragment length polymorphism in 466 HCC patients and 482 healthy controls. Results showed that the prevalence of +1234CT genotype and +1234TT genotype were significantly increased in the HCC cases than in controls (odds ratio [OR] =1.51; 95 % confidence interval [CI]; 1.22-1.93; p=0.004 and OR=3.19; 95 % CI, 1.82-5.39; p=1.99 × 10(-5), respectively). The -976T/A polymorphism did not reveal any differences between cases and controls. When analyzing the TLR3 +1234C/T polymorphism with different clinical parameters in HCC patients, the cases who were hepatitis B virus (HBV) carriers had higher number of +1234CT genotype and +1234T allele than those without HBV infection (p=0.032 and p=0.043). These data indicate that TLR3 +1234C/T polymorphism could be a novel risk factor for HCC, especially the HBV-related HCC.
Collapse
Affiliation(s)
- Guanggang Li
- Department of ICU, General Hospital of Beijing Military Command, Beijing, 100700, China
| | | |
Collapse
|
33
|
Bramsen JB, Kjems J. Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering. Front Genet 2012; 3:154. [PMID: 22934103 PMCID: PMC3422727 DOI: 10.3389/fgene.2012.00154] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 12/25/2022] Open
Abstract
Recent successes in clinical trials have provided important proof of concept that small interfering RNAs (siRNAs) indeed constitute a new promising class of therapeutics. Although great efforts are still needed to ensure efficient means of delivery in vivo, the siRNA molecule itself has been successfully engineered by chemical modification to meet initial challenges regarding specificity, stability, and immunogenicity. To date, a great wealth of siRNA architectures and types of chemical modification are available for promoting safe siRNA-mediated gene silencing in vivo and, consequently, the choice of design and modification types can be challenging to individual experimenters. Here we review the literature and devise how to improve siRNA performance by structural design and specific chemical modification to ensure potent and specific gene silencing without unwarranted side-effects and hereby complement the ongoing efforts to improve cell targeting and delivery by other carrier molecules.
Collapse
Affiliation(s)
- Jesper B Bramsen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University Aarhus C, Denmark
| | | |
Collapse
|
34
|
Weber C, Müller C, Podszuweit A, Montino C, Vollmer J, Forsbach A. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology 2012; 136:64-77. [PMID: 22260507 DOI: 10.1111/j.1365-2567.2012.03559.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Toll-like receptors (TLRs) 3, 7, 8 and 9 stimulate innate immune responses upon recognizing pathogen-derived nucleic acids. TLR3 is located on the cell surface and in cellular endosomes and recognizes double-stranded viral RNA or the synthetic mimic poly rI:rC. Recently, unformulated small interfering RNA (siRNA) has been reported as ligand for surface-expressed murine TLR3. Blockage of TLR3 is achieved by single-stranded DNA. We confirm and expand the observation that poly rI:rC-mediated TLR3 immune activation is blocked in a sequence-, length-, backbone- and CpG-dependent manner. However, human TLR3 is not activated by siRNA, which may be the result of differences in the amino acid composition of the TLR3 loop 1 of mice and humans. Although CD14 was previously described as a co-receptor for murine TLR3 and other nucleic acid-recognizing TLRs, human CD14 acts only as co-receptor to human TLR9, but not TLR3, TLR7 or TLR8. We show that CD14 up-regulates the TLR9 immune response of A, B and C-class oligodeoxynucleotides but down-regulates the phosphoro-diester version of B-class oligodeoxynucleotides.
Collapse
Affiliation(s)
- Cordula Weber
- Pfizer Oligonucleotide Therapeutics Unit - Coley Pharmaceutical GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
35
|
te Boekhorst BCM, Jensen LB, Colombo S, Varkouhi AK, Schiffelers RM, Lammers T, Storm G, Nielsen HM, Strijkers GJ, Foged C, Nicolay K. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J Control Release 2012; 161:772-80. [PMID: 22580113 DOI: 10.1016/j.jconrel.2012.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 12/30/2022]
Abstract
Rheumatoid arthritis is characterized by systemic inflammation of synovial joints leading to erosion and cartilage destruction. Although efficacious anti-tumor necrosis factor α (TNF-α) biologic therapies exist, there is an unmet medical need for safe and more efficient treatment regimens for disease remission. We evaluated the anti-inflammatory effects of poly(dl-lactide-co-glycolide acid) (PLGA) nanoparticles loaded with small interfering RNA (siRNA) directed against TNF-α in vitro and in vivo. The siRNA-loaded PLGA nanoparticles mediated a dose-dependent TNF-α silencing in lipopolysaccharide-activated RAW 264.7 cells in vitro. The severity of collagen antibody-induced arthritis in DBA/1J mice was assessed by paw scoring and compared to the degree of magnetic resonance imaging (MRI)-quantified joint effusion and bone marrow edema. Two intra-articular treatments per joint with nanoparticles loaded with TNF-α siRNA (1 μg) resulted in a reduction in disease activity, evident by a significant decrease of the paw scores and joint effusions, as compared to treatment with PLGA nanoparticles loaded with non-specific control siRNA, whereas the degree of bone marrow edema in the tibial and femoral head remained unchanged. When the siRNA dose was 5 or 10 μg, there was no difference between the specific and the non-specific siRNA treatment groups. These findings suggest that MRI is a promising method for evaluation of early disease progression and treatment in murine arthritis models. In addition, proper siRNA dosing seems to be important for a positive therapeutic outcome in vivo. However, further studies are needed to fully clarify the mechanism(s) underlying the observed anti-inflammatory effects of the siRNA-loaded nanoparticles.
Collapse
Affiliation(s)
- Bernard C M te Boekhorst
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Building W-Hoog 4.11, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ferrari G, Terushkin V, Wolff MJ, Zhang X, Valacca C, Poggio P, Pintucci G, Mignatti P. TGF-β1 induces endothelial cell apoptosis by shifting VEGF activation of p38(MAPK) from the prosurvival p38β to proapoptotic p38α. Mol Cancer Res 2012; 10:605-14. [PMID: 22522454 DOI: 10.1158/1541-7786.mcr-11-0507] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.
Collapse
Affiliation(s)
- Giovanni Ferrari
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
A window to innate neuroimmunity: Toll-like receptor-mediated cell responses in the retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:3-9. [PMID: 22183308 DOI: 10.1007/978-1-4614-0631-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Yamashita M, Chattopadhyay S, Fensterl V, Zhang Y, Sen GC. A TRIF-independent branch of TLR3 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2825-33. [PMID: 22323545 PMCID: PMC3386560 DOI: 10.4049/jimmunol.1103220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
dsRNA is a common pathogen-associated molecular pattern that is recognized by cellular TLR3 and used by virus-infected cells to activate specific transcription factors and trigger induction of antiviral genes. In this article, we report a new branch of TLR3 signaling that does not lead to gene induction but affects many cellular properties, such as cell migration, adhesion, and proliferation. We demonstrated that the migration of multiple cell lineages was affected by dsRNA treatment or influenza virus infection in a TLR3-dependent fashion. Surprisingly, for this effect of TLR3 signaling, the adaptor proteins, TRIF and MyD88, were not required. The effects of the new pathway were mediated by the proto-oncoprotein c-Src, which bound to TLR3 after dsRNA stimulation of cells. The response was biphasic: upon dsRNA treatment, we observed an immediate increase in cell motility followed by its strong inhibition. Our results indicate that the first phase was mediated by dsRNA-induced phosphorylation and activation of Src, whereas the second phase resulted from the sequestration of activated Src in lipid rafts, thus decreasing its active cytoplasmic pool. As expected, two other functions of Src, its effect on cell adhesion and cell proliferation, were also inhibited by dsRNA treatment. These results demonstrate that activated TLR3 can engage Src to trigger multiple cellular effects and reveal a possible link between innate immune response and cell growth regulation. This study also provides a rare example of TLR-mediated cellular effects that do not require gene induction and the first example, to our knowledge, of an adaptor-independent effect of any TLR.
Collapse
Affiliation(s)
- Michifumi Yamashita
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurabh Chattopadhyay
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Volker Fensterl
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Zhang
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ganes C. Sen
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
39
|
Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 2012; 7:29-54. [PMID: 22399234 DOI: 10.1007/s11523-012-0213-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Pattern recognition receptors (PRRs) are known for many years for their role in the recognition of microbial products and the subsequent activation of the immune system. The 2011 Nobel Prize for medicine indeed rewarded J. Hoffmann/B. Beutler and R. Steinman for their revolutionary findings concerning the activation of the immune system, thus stressing the significance of understanding the mechanisms of activation of the innate immunity. Such immunostimulatory activities are of major interest in the context of cancer to induce long-term antitumoral responses. Ligands for the toll-like receptors (TLRs), a well-known family of PRR, have been shown to have antitumoral activities in several cancers. Those ligands are now undergoing extensive clinical investigations both as immunostimulant molecules and as adjuvant along with vaccines. However, when considering the use of these ligands in tumor therapy, one shall consider the potential effect on the tumor cells themselves as well as on the entire organism. Recent data indeed demonstrate that TLR activation in tumor cells could trigger both pro- or antitumoral effect depending on the context. This review discusses this balance between the intrinsic activation of PRR in tumor cells and the extrinsic microenvironment activation in term of overall effect of PRR ligands on tumor development. We review recent advances in the field and underline appealing prospects for clinical development of PRR agonists in the light of our current knowledge on their expression and activation.
Collapse
Affiliation(s)
- Nadège Goutagny
- Université de Lyon, Université Lyon I, UMR INSERM 1052 CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
| | | | | | | | | |
Collapse
|
40
|
Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, Blandford AD, Albuquerque RJC, Hirano Y, Terasaki H, Kondo M, Fujita T, Ambati BK, Tarallo V, Gelfand BD, Bogdanovich S, Baffi JZ, Ambati J. Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther 2011; 20:101-8. [PMID: 21988875 DOI: 10.1038/mt.2011.212] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these "naked" siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide.
Collapse
Affiliation(s)
- Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky 40536-0284, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grandclement C, Borg C. Neuropilins: a new target for cancer therapy. Cancers (Basel) 2011; 3:1899-928. [PMID: 24212788 PMCID: PMC3757396 DOI: 10.3390/cancers3021899] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/23/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023] Open
Abstract
Recent investigations highlighted strong similarities between neural crest migration during embryogenesis and metastatic processes. Indeed, some families of axon guidance molecules were also reported to participate in cancer invasion: plexins/semaphorins/neuropilins, ephrins/Eph receptors, netrin/DCC/UNC5. Neuropilins (NRPs) are transmembrane non tyrosine-kinase glycoproteins first identified as receptors for class-3 semaphorins. They are particularly involved in neural crest migration and axonal growth during development of the nervous system. Since many types of tumor and endothelial cells express NRP receptors, various soluble molecules were also found to interact with these receptors to modulate cancer progression. Among them, angiogenic factors belonging to the Vascular Endothelial Growth Factor (VEGF) family seem to be responsible for NRP-related angiogenesis. Because NRPs expression is often upregulated in cancer tissues and correlated with poor prognosis, NRPs expression might be considered as a prognostic factor. While NRP1 was intensively studied for many years and identified as an attractive angiogenesis target for cancer therapy, the NRP2 signaling pathway has just recently been studied. Although NRP genes share 44% homology, differences in their expression patterns, ligands specificities and signaling pathways were observed. Indeed, NRP2 may regulate tumor progression by several concurrent mechanisms, not only angiogenesis but lymphangiogenesis, epithelial-mesenchymal transition and metastasis. In view of their multiples functions in cancer promotion, NRPs fulfill all the criteria of a therapeutic target for innovative anti-tumor therapies. This review focuses on NRP-specific roles in tumor progression.
Collapse
Affiliation(s)
- Camille Grandclement
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-3-81-61-56-15 or +33-3-81-66-93-21; Fax: +33-3-81-61-56-17
| | - Christophe Borg
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Department of Medical Oncology, CHU Besançon, F-25000 Besançon, France
| |
Collapse
|
42
|
Ambati J. Age-related macular degeneration and the other double helix. The Cogan Lecture. Invest Ophthalmol Vis Sci 2011; 52:2165-9. [PMID: 21471430 DOI: 10.1167/iovs.11-7328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The study and therapy of age-related macular degeneration (AMD), a leading cause of blindness worldwide, have taken great strides over the past decade. During the same time, a central role for RNA in many human diseases has been discovered. We have identified anti-angiogenic functions for synthetic double stranded RNAs (dsRNAs) in neovascular AMD and cytotoxic functions for endogenous dsRNAs in atrophic AMD. These findings provide new insights into the pathogenesis and therapy of both forms of AMD.
Collapse
Affiliation(s)
- Jayakrishna Ambati
- Department of Ophthalmology and Vision Sciences, University of Kentucky, 740 S. Limestone Street, Lexington, KY 40536-0284, USA.
| |
Collapse
|
43
|
Bhagat L, Putta MR, Wang D, Yu D, Lan T, Jiang W, Sun Z, Wang H, Tang JX, La Monica N, Kandimalla ER, Agrawal S. Novel oligonucleotides containing two 3'-ends complementary to target mRNA show optimal gene-silencing activity. J Med Chem 2011; 54:3027-36. [PMID: 21466154 DOI: 10.1021/jm200113t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotides are being employed for gene-silencing activity by a variety of mechanisms, including antisense, ribozyme, and siRNA. In the present studies, we designed novel oligonucleotides complementary to targeted mRNAs and studied the effect of 3'-end exposure and oligonucleotide length on gene-silencing activity. We synthesized both oligoribonucleotides (RNAs) and oligodeoxynucleotides (DNAs) with phosphorothioate backbones, consisting of two identical segments complementary to the targeted mRNA attached through their 5'-ends, thereby containing two accessible 3'-ends; these compounds are referred to as gene-silencing oligonucleotides (GSOs). RNA and/or DNA GSOs targeted to MyD88, VEGF, and TLR9 mRNAs had more potent gene-silencing activity than did antisense phosphorothioate oligonucleotides (PS-oligos) in cell-based assays and in vivo. Of the different lengths of GSOs evaluated, 19-mer long RNA and DNA GSOs had the best gene-silencing activity both in vitro and in vivo. These results suggest that GSOs are novel agents for gene silencing that can be delivered systemically with broader applicability.
Collapse
Affiliation(s)
- Lakshmi Bhagat
- Idera Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|