1
|
Ertunc O, Smearman E, Zheng Q, Hicks JL, Brosnan-Cashman JA, Jones T, Gomes-Alexandre C, Trabzonlu L, Meeker AK, De Marzo AM, Heaphy CM. Chromogenic detection of telomere lengths in situ aids the identification of precancerous lesions in the prostate. Prostate 2024; 84:148-157. [PMID: 37849074 PMCID: PMC10843147 DOI: 10.1002/pros.24633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Telomeres are terminal chromosomal elements that are essential for the maintenance of genomic integrity. The measurement of telomere content provides useful diagnostic and prognostic information, and fluorescent methods have been developed for this purpose. However, fluorescent-based tissue assays are cumbersome for investigators to undertake, both in research and clinical settings. METHODS A robust chromogenic in situ hybridization (CISH) approach was developed to visualize and quantify telomere content at single cell resolution in human prostate tissues, both frozen and formalin-fixed, paraffin-embedded (FFPE). RESULTS This new assay (telomere chromogenic in situ hybridization ["Telo-CISH"]) produces permanently stained slides that are viewable with a standard light microscope, thus avoiding the need for specialized equipment and storage. The assay is compatible with standard immunohistochemistry, thereby allowing simultaneous assessment of histomorphology, identification of specific cell types, and assessment of telomere status. In addition, Telo-CISH eliminates the problem of autofluorescent interference that frequently occurs with fluorescent-based methods. Using this new assay, we demonstrate successful application of Telo-CISH to help identify precancerous lesions in the prostate by the presence of markedly short telomeres specifically in the luminal epithelial cells. CONCLUSIONS In summary, with fewer restrictions on the types of tissues that can be tested, and increased histologic information provided, the advantages presented by this novel chromogenic assay should extend the applicability of tissue-based telomere length assessment in research and clinical settings.
Collapse
Affiliation(s)
- Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erica Smearman
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Levent Trabzonlu
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K. Meeker
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Christopher M. Heaphy
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
2
|
Ertunc O, Smearman E, Zheng Q, Hicks JL, Brosnan-Cashman JA, Jones T, Gomes-Alexandre C, Trabzonlu L, Meeker AK, De Marzo AM, Heaphy CM. Chromogenic detection of telomere lengths in situ aids the identification of precancerous lesions in the prostate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535575. [PMID: 37066381 PMCID: PMC10104079 DOI: 10.1101/2023.04.04.535575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Telomeres are terminal chromosomal elements that are essential for the maintenance of genomic integrity. The measurement of telomere content provides useful diagnostic and prognostic information, and fluorescent methods have been developed for this purpose. However, fluorescent-based tissue assays are cumbersome for investigators to undertake, both in research and clinical settings. Here, a robust chromogenic in situ hybridization (CISH) approach was developed to visualize and quantify telomere content at single cell resolution in human prostate tissues, both frozen and formalin-fixed, paraffin-embedded (FFPE). This new assay ("Telo-CISH") produces permanently stained slides that are viewable with a standard light microscope, thus avoiding the need for specialized equipment and storage. The assay is compatible with standard immunohistochemistry, thereby allowing simultaneous assessment of histomorphology, identification of specific cell types, and assessment of telomere status. In addition, Telo-CISH eliminates the problem of autofluorescent interference that frequently occurs with fluorescent-based methods. Using this new assay, we demonstrate successful application of Telo-CISH to help identify precancerous lesions in the prostate by the presence of markedly short telomeres specifically in the luminal epithelial cells. In summary, with fewer restrictions on the types of tissues that can be tested, and increased histologic information provided, the advantages presented by this novel chromogenic assay should extend the applicability of tissue-based telomere length assessment in research and clinical settings.
Collapse
Affiliation(s)
- Onur Ertunc
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Erica Smearman
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Qizhi Zheng
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Jessica L. Hicks
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | | | - Tracy Jones
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | | | - Levent Trabzonlu
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Alan K. Meeker
- The Department of Pathology, The Johns Hopkins University School of Medicine
- The Department of Urology, The Johns Hopkins University School of Medicine
- The Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Angelo M. De Marzo
- The Department of Pathology, The Johns Hopkins University School of Medicine
- The Department of Urology, The Johns Hopkins University School of Medicine
- The Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Christopher M. Heaphy
- The Department of Medicine, Boston University, School of Medicine and Boston Medical Center, Boston, Massachusetts
- The Department Pathology and Laboratory Medicine, Boston University, School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
3
|
Guo JZ, Wu QJ, Liu FH, Gao C, Gong TT, Li G. Review of Mendelian Randomization Studies on Endometrial Cancer. Front Endocrinol (Lausanne) 2022; 13:783150. [PMID: 35615721 PMCID: PMC9124776 DOI: 10.3389/fendo.2022.783150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/30/2022] [Indexed: 01/04/2023] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer. In some parts of the world, the incidence and mortality of EC are on the rise. Understanding the risk factors of EC is necessary to prevent the occurrence of this disease. Observational studies have revealed the association between certain modifiable environmental risk factors and EC risk. However, due to unmeasured confounding, measurement errors, and reverse causality, observational studies sometimes have limited ability to judge robust causal inferences. In recent years, Mendelian randomization (MR) analysis has received extensive attention, providing valuable insights for cancer-related research, and is expected to identify potential therapeutic interventions. In MR analysis, genetic variation (alleles are randomly assigned during meiosis and are usually independent of environmental or lifestyle factors) is used instead of modifiable exposure to study the relationship between risk factors and disease. Therefore, MR analysis can make causal inference about exposure and disease risk. This review briefly describes the key principles and assumptions of MR analysis; summarizes published MR studies on EC; focuses on the correlation between different risk factors and EC risks; and discusses the application of MR methods in EC research. The results of MR studies on EC showed that type 2 diabetes, uterine fibroids, higher body mass index, higher plasminogen activator inhibitor-1 (PAI-1), higher fasting insulin, early insulin secretion, longer telomere length, higher testosterone and higher plasma cortisol levels are associated with increased risk of EC. In contrast, later age of menarche, higher circulatory tumor necrosis factor, higher low-density lipoprotein cholesterol, and higher sex hormone-binding globulin levels are associated with reduced risk of EC. In general, despite some limitations, MR analysis still provides an effective way to explore the causal relationship between different risk factors and EC.
Collapse
Affiliation(s)
- Jian-Zeng Guo
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chang Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Gang Li, ; Ting-Ting Gong,
| | - Gang Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Gang Li, ; Ting-Ting Gong,
| |
Collapse
|
4
|
Endometrial polyps are non-neoplastic but harbor epithelial mutations in endometrial cancer drivers at low allelic frequencies. Mod Pathol 2022; 35:1702-1712. [PMID: 35798968 PMCID: PMC9596374 DOI: 10.1038/s41379-022-01124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Endometrial polyps (EMPs) are common exophytic masses associated with abnormal uterine bleeding and infertility. Unlike normal endometrium, which is cyclically shed, EMPs persist over ovulatory cycles and after the menopause. Despite their usual classification as benign entities, EMPs are paradoxically associated with endometrial carcinomas of diverse histologic subtypes, which frequently arise within EMPs. The etiology and potential origins of EMPs as clonally-derived neoplasms are uncertain, but previous investigations suggested that EMPs are neoplasms of stromal origin driven by recurring chromosomal rearrangements. To better define benign EMPs at the molecular genetic level, we analyzed individual EMPs from 31 women who underwent hysterectomy for benign indications. The 31 EMPs were subjected to comprehensive genomic profiling by exome sequencing of a large panel of tumor-related genes including oncogenes, tumor suppressors, and chromosomal translocation partners. There were no recurring chromosomal rearrangements, and copy-number analyses did not reveal evidence of significant chromosome-level events. Surprisingly, there was a high incidence of single nucleotide variants corresponding to classic oncogenic drivers (i.e., definitive cancer drivers). The spectrum of known oncogenic driver events matched that of endometrial cancers more closely than any other common cancer. Further analyses including laser-capture microdissection showed that these mutations were present in the epithelial compartment at low allelic frequencies. These results establish a link between EMPs and the acquisition of endometrial cancer driver mutations. Based on these findings, we propose a model where the association between EMPs and endometrial cancer is explained by the age-related accumulation of endometrial cancer drivers in a protected environment that-unlike normal endometrium-is not subject to cyclical shedding.
Collapse
|
5
|
Maru Y, Hippo Y. Two-Way Development of the Genetic Model for Endometrial Tumorigenesis in Mice: Current and Future Perspectives. Front Genet 2021; 12:798628. [PMID: 34956336 PMCID: PMC8696168 DOI: 10.3389/fgene.2021.798628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the female reproductive tract worldwide. Although comprehensive genomic analyses of EC have already uncovered many recurrent genetic alterations and deregulated signaling pathways, its disease model has been limited in quantity and quality. Here, we review the current status of genetic models for EC in mice, which have been developed in two distinct ways at the level of organisms and cells. Accordingly, we first describe the in vivo model using genetic engineering. This approach has been applied to only a subset of genes, with a primary focus on Pten inactivation, given that PTEN is the most frequently altered gene in human EC. In these models, the tissue specificity in genetic engineering determined by the Cre transgenic line has been insufficient. Consequently, the molecular mechanisms underlying EC development remain poorly understood, and preclinical models are still limited in number. Recently, refined Cre transgenic mice have been created to address this issue. With highly specific gene recombination in the endometrial cell lineage, acceptable in vivo modeling of EC development is warranted using these Cre lines. Second, we illustrate an emerging cell-based model. This hybrid approach comprises ex vivo genetic engineering of organoids and in vivo tumor development in immunocompromised mice. Although only a few successful cases have been reported as proof of concept, this approach allows quick and comprehensive analysis, ensuring a high potential for reconstituting carcinogenesis. Hence, ex vivo/in vivo hybrid modeling of EC development and its comparison with corresponding in vivo models may dramatically accelerate EC research. Finally, we provide perspectives on future directions of EC modeling.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
6
|
PI3K Pathway Effectors pAKT and FOXO1 as Novel Markers of Endometrioid Intraepithelial Neoplasia. Int J Gynecol Pathol 2020; 38:503-513. [PMID: 30256235 DOI: 10.1097/pgp.0000000000000549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The diagnosis of endometrioid intraepithelial neoplasia (EIN) is challenging owing to limited sampling, hormonal status, and other confounding histologic variables. Markers such as PTEN or PAX2 can delineate EIN in some cases, but are not wholly reliable. Clearly, new markers of EIN are needed. We explored several potential markers of EIN based rationally on molecular pathways most frequently misregulated in endometrial cancer: the 3-phosphoinositide kinase (PI3K)/AKT, β-catenin, and mismatch repair pathways. We studied PTEN, PAX2, β-catenin, and MLH1, in conjunction with 2 new markers-FOXO1 and phosphorylated AKT (pAKT)-not previously investigated in EIN. Benign (n=14) and EIN (n=35) endometria were analyzed by immunohistochemistry. Staining patterns were interpreted, tabulated, and scored by "clonal distinctiveness" in neoplastic lesions; that is, pattern alterations relative to normal glands. In normal endometria, FOXO1 was cytoplasmic in proliferative phase, but nuclear in secretory phase, showing that PI3K/FOXO1 participates in endometrial cycling and that FOXO1 is a readout of PI3K status. pAKT expression was low across normal endometria. FOXO1 or pAKT expression was altered in the majority of EINs (27/35, 77%), with FOXO1 and pAKT being co-altered only in some (20/35, 57%). β-catenin or MLH1 also exhibited clonal distinctiveness in EINs, showing that these are also useful markers in some cases. This is the first study to demonstrate the potential of pAKT and FOXO1 as biomarkers in the histopathologic evaluation of EIN. However, variability in expression poses challenges in interpretation.
Collapse
|
7
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Kennedy R, Kuvshinov D, Sdrolia A, Kuvshinova E, Hilton K, Crank S, Beavis AW, Green V, Greenman J. A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Sci Rep 2019; 9:6327. [PMID: 31004114 PMCID: PMC6474873 DOI: 10.1038/s41598-019-42745-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Development of personalised cancer models to predict response to radiation would benefit patient care; particularly in malignancies where treatment resistance is prevalent. Herein, a robust, easy to use, tumour-on-a-chip platform which maintains precision cut head and neck cancer for the purpose of ex vivo irradiation is described. The device utilises sintered discs to separate the biopsy and medium, mimicking in vivo microvascular flow and diffusion, maintaining tissue viability for 68 h. Integrity of tissues is demonstrated by the low levels of lactate dehydrogenase release and retained histology, accompanied by assessment of cell viability by trypan blue exclusion and flow cytometry; fluid dynamic modelling validates culture conditions. An irradiation jig is described for reproducible delivery of clinically-relevant doses (5 × 2 Gy) to newly-presenting primary tumours (n = 12); the addition of concurrent cisplatin is also investigated (n = 8) with response analysed by immunohistochemistry. Fractionated irradiation reduced proliferation (BrdU, p = 0.0064), increased DNA damage (ƴH2AX, p = 0.0043) and caspase-dependent apoptosis (caspase-cleaved cytokeratin-18) compared to control; caspase-dependent apoptosis was further increased by concurrent cisplatin compared to control (p = 0.0063). This is a proof of principle study showing the response of cancer tissue to irradiation ex vivo in a bespoke system. The novel platform described has the potential to personalise treatment for patients in a cost-effective manner with applicability to any solid tumour.
Collapse
Affiliation(s)
- R Kennedy
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
| | - D Kuvshinov
- School of Engineering & Computer Science, The University of Hull, Cottingham Road, Hull, UK
| | - A Sdrolia
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
| | - E Kuvshinova
- Department of Chemical & Biological Engineering, The University of Sheffield, Sheffield, UK
| | - K Hilton
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
| | - S Crank
- Department of Maxillofacial Surgery, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
| | - A W Beavis
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
- Faculty of Health and Well Being, Sheffield-Hallam University, Sheffield, UK
| | - V Green
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
| | - J Greenman
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK.
| |
Collapse
|
9
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
10
|
Valentijn AJ, Saretzki G, Tempest N, Critchley HOD, Hapangama DK. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum Reprod 2015; 30:2816-28. [PMID: 26498179 DOI: 10.1093/humrep/dev267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION How does regulation of telomerase activity (TA) in human endometrial epithelial cells (EEC) by ovarian hormones impact on telomere lengths (TL) and cell proliferation? SUMMARY ANSWER Healthy endometrial epithelial cell proliferation is characterized by high TA and endometrial TL changes according to the ovarian hormone cycle, with shortest TL observed in the progesterone dominant mid-secretory phase, when TA is lowest, implicating progesterone in the negative regulation of TA and TL. WHAT IS KNOWN ALREADY Critical shortening of telomeres may result in permanent cell cycle arrest while the enzyme telomerase maintains telomere length (TL) and replicative capacity of cells. Telomerase expression and activity change in the human endometrium with the ovarian hormone cycle, however the effect of this on endometrial TL and cell growth is not known. STUDY DESIGN, SIZE, DURATION A prospective observational study, which included endometrial and blood samples collected from 196 women. PARTICIPANTS/MATERIALS, SETTING, METHODS We studied endometrial samples from five different groups of women. Endometrial and matched blood TL and circulating steroid hormones were studied in samples collected from 85 women (Group 1). Fresh epithelial and stromal cell isolation and culture in vitro for TL and TA was done on endometrial biopsies collected from a further 74 healthy women not on hormonal therapy (Group 2) and from 5 women on medroxyprogesterone acetate (MPA) for contraception (Group 3). The epithelial TL and telomerase protein expression was examined in active, peritoneal, ectopic endometriotic and matched uterine (eutopic) endometrial samples collected from 10 women with endometriosis (Group 4); the in vivo effect of mifepristone on telomerase protein expression by immunohistochemistry (IHC) was examined in endometrium from 22 healthy women in mid-secretory phase before (n = 8), and after administering 200 mg mifepristone (n = 14) (Group 5). TA was measured by telomere repeat amplification protocol (TRAP) assay; TL by qPCR, and Q-FISH; cell proliferation was assessed by immunoblotting of histone H3 and 3D-culture to assess the ability of EECs to form spheroids; telomerase reverse transcriptase protein levels and Ki-67 (proliferative index) were assessed with IHC. MAIN RESULTS AND THE ROLE OF CHANCE Endometrial TLs correlated negatively with serum progesterone levels (n = 58, r = -0.54) and were significantly longer than corresponding blood TLs (4893 ± 929 bp versus 3955 ± 557 bp, P = 0.002) suggesting a tissue-specific regulation. High TA and short TLs were observed in proliferating EECs in vivo and in vitro. During the progesterone dominant mid-secretory phase endometrial TL were significantly shorter compared with the proliferative phase (P = 0.0002). Progestagen treatment suppressed EEC TA in vivo and reduced endometrial TA in explant (P = 0.01) and in vitro cultures (P = 0.02) compared with untreated cells. Mifepristone (progesterone receptor antagonist) increased telomerase protein levels in vivo (P < 0.05). In 2D culture, Imetelstat inhibited EEC TA (P = 0.03), proliferation (P = 0.009) and in 3D culture disrupted endometrial glandular architecture (P = 0.03). LIMITATIONS, REASONS FOR CAUTION The in vitro telomerase inhibition data were tested in a mono-cellular system for a short-term. Further confirmation of the results in an in vivo model is necessary. The women in group 2 included a high proportion of women although with a regular menstrual cycle, with an increased BMI (>25) therefore this may affect extrapolation of data to other groups. WIDER IMPLICATIONS OF THE FINDINGS The observed effects of telomerase inhibition in vitro on epithelial cell proliferation, suggest that telomerase might be an attractive target in developing new therapies for proliferative disorders of the endometrium, such as endometriosis.
Collapse
Affiliation(s)
- A J Valentijn
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK
| | - G Saretzki
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - N Tempest
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - H O D Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
11
|
Peña CG, Nakada Y, Saatcioglu HD, Aloisio GM, Cuevas I, Zhang S, Miller DS, Lea JS, Wong KK, DeBerardinis RJ, Amelio AL, Brekken RA, Castrillon DH. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J Clin Invest 2015; 125:4063-76. [PMID: 26413869 DOI: 10.1172/jci82152] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities.
Collapse
|
12
|
The functional interplay between the t(9;22)-associated fusion proteins BCR/ABL and ABL/BCR in Philadelphia chromosome-positive acute lymphatic leukemia. PLoS Genet 2015; 11:e1005144. [PMID: 25919613 PMCID: PMC4412790 DOI: 10.1371/journal.pgen.1005144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/15/2015] [Indexed: 12/20/2022] Open
Abstract
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The t(9;22) is a reciprocal translocation, which causes chronic myeloid leukemia (CML) and a subset of high risk acute lymphatic leukemia (ALL). The derivative chromosome 22 is the so called Philadelphia chromosome (Ph) which encodes the BCR/ABL kinase. Targeting BCR/ABL by selective ATP competitors, such as imatinib or nilotinib, is a well validated therapeutic concept, but unable to definitively eradicate the disease. Little is known about the role of the fusion protein encoded by the reciprocal derivative chromosome 9, the ABL/BCR. In models of Ph+ ALL we show that the functional interplay between ABL/BCR and BCR/ABL not only increases the transformation potential of BCR/ABL but is also indispensable for the growth and survival of Ph+ ALL leukemic cells. The presence of ABL/BCR changed the phenotype of the leukemia most likely due to its capacity to influence the stem cell population as shown by our in vivo data. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.
Collapse
|
13
|
Danescu A, Herrero Gonzalez S, Di Cristofano A, Mai S, Hombach-Klonisch S. Three-dimensional nuclear telomere architecture changes during endometrial carcinoma development. Genes Chromosomes Cancer 2013; 52:716-32. [PMID: 23630056 DOI: 10.1002/gcc.22067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/21/2013] [Indexed: 01/06/2023] Open
Abstract
Endometrioid or type-I endometrial carcinoma (EC) develops from hyperproliferative glandular pathologies. Inactivation of the tumor suppressor gene PTEN is frequently associated with type-I EC. Using a previously characterized Pten heterozygous (Pten+/-) mouse model, this study investigates the three-dimensional (3D) telomere profiles during progression from hyperplastic lesions to EC to test the hypothesis that altered 3D telomere profiles can be detected prior to Pten loss in early hyperproliferative lesions. We used immunohistochemistry and 3D-telomere fluorescent in-situ hybridization to investigate Pten expression, telomere length and signal distribution, average number and spatial distribution of telomeres and formation of telomere aggregates in uterine glandular epithelial cells from wildtype and Pten+/- mice. Pten showed nuclear and cytoplasmic localization in WT, predominantly cytoplasmic staining in simple hyperplasia (SH) and was markedly reduced in atypical hyperplasia (AH). Telomere length in glandular epithelial cells does not shorten with age. The average number of telomeres per nucleus was not different in WT and Pten+/- mice indicating the lack of substantial numeric chromosome aberrations during EC development. We observed telomere aggregates in lesions of AH and EC. SH lesions in Pten+/- mice differed from normal glandular epithelium by an increased relative number of shorter telomeres and by a telomere signal distribution indicative of a heterogeneous cell population. Our study revealed that alterations in the nuclear 3D telomere architecture are present in early proliferative lesions of mouse uterine tissues indicative of EC development. The changes in telomere length distribution and nuclear signal distribution precede the loss of Pten.
Collapse
Affiliation(s)
- Adrian Danescu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
14
|
Kalmbach KH, Fontes Antunes DM, Dracxler RC, Knier TW, Seth-Smith ML, Wang F, Liu L, Keefe DL. Telomeres and human reproduction. Fertil Steril 2013; 99:23-29. [PMID: 23273986 PMCID: PMC3857638 DOI: 10.1016/j.fertnstert.2012.11.039] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 12/31/2022]
Abstract
Telomeres mediate biologic aging in organisms as diverse as plants, yeast, and mammals. We propose a telomere theory of reproductive aging that posits telomere shortening in the female germ line as the primary driver of reproductive aging in women. Experimental shortening of telomeres in mice, which normally do not exhibit appreciable oocyte aging, and which have exceptionally long telomeres, recapitulates the aging phenotype of human oocytes. Telomere shortening in mice reduces synapsis and chiasmata, increases embryo fragmentation, cell cycle arrest, apoptosis, spindle dysmorphologies, and chromosome abnormalities. Telomeres are shorter in the oocytes from women undergoing in vitro fertilization, who then produce fragmented, aneuploid embryos that fail to implant. In contrast, the testes are replete with spermatogonia that can rejuvenate telomere reserves throughout the life of the man by expressing telomerase. Differences in telomere dynamics across the life span of men and women may have evolved because of the difference in the inherent risks of aging on reproduction between men and women. Additionally, growing evidence links altered telomere biology to endometriosis and gynecologic cancers, thus future studies should examine the role of telomeres in pathologies of the reproductive tract.
Collapse
Affiliation(s)
- Keri Horan Kalmbach
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York
| | - Danielle Mota Fontes Antunes
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York; Graduate Program in Pathology, Fluminense Federal University, Rio de Janeiro, and CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Roberta Caetano Dracxler
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York; São Paulo University, São Paulo, Brazil
| | - Taylor Warner Knier
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York
| | - Michelle Louise Seth-Smith
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - David Lawrence Keefe
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York City, New York.
| |
Collapse
|
15
|
Akbay EA, Peña CG, Ruder D, Michel JA, Nakada Y, Pathak S, Multani AS, Chang S, Castrillon DH. Cooperation between p53 and the telomere-protecting shelterin component Pot1a in endometrial carcinogenesis. Oncogene 2012; 32:2211-9. [PMID: 22689059 PMCID: PMC3636499 DOI: 10.1038/onc.2012.232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type II endometrial cancer (EMCA) represents only 10% of all EMCAs, but accounts for 40% of EMCA-related mortality. Previous studies of human tumors have shown an association between Type II tumors and damaged telomeres. We hypothesized that the lack of murine Type II EMCA models is due to the extremely long telomeres in laboratory mouse strains. We previously showed that telomerase-null mice with critically short telomeres developed endometrial lesions histologically resembling endometrial intraepithelial carcinoma (EIC), the accepted precursor for Type II EMCA. However, these mice did not develop invasive endometrial adenocarcinoma, and instead succumbed prematurely to multi-organ failure. Here, we modeled critical telomere attrition by conditionally inactivating Pot1a, a component of the shelterin complex that stabilizes telomeres, within endometrial epithelium. Inactivation of Pot1a by itself did not stimulate endometrial carcinogenesis, and did not result in detectable DNA damage or apoptosis in endometrium. However, simultaneous inactivation of Pot1a and p53 resulted in EIC-like lesions by 9 months indistinguishable from those seen in late generation telomerase-null mice. These lesions progressed to invasive endometrial adenocarcinomas as early as 9 months of age with metastatic disease in 100% of the animals by 15 months. These tumors were poorly differentiated endometrial adenocarcinomas with prominent nuclear atypia, resembling human Type II cancers. Furthermore, these tumors were aneuploid with double-stranded DNA breaks and end-to-end telomere fusions and most were tetraploid or near-tetraploid. These studies lend further support to the hypothesis that telomeric instability has a critical role in Type II endometrial carcinogenesis and provides an intriguing in-vivo correlate to recent studies implicating telomere-dependent tetraploidization as an important mechanism in carcinogenesis.
Collapse
Affiliation(s)
- E A Akbay
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390–9072, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guerra F, Kurelac I, Cormio A, Zuntini R, Amato LB, Ceccarelli C, Santini D, Cormio G, Fracasso F, Selvaggi L, Resta L, Attimonelli M, Gadaleta MN, Gasparre G. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet 2011; 20:2394-405. [DOI: 10.1093/hmg/ddr146] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Kompass KS, Witte JS. Co-regulatory expression quantitative trait loci mapping: method and application to endometrial cancer. BMC Med Genomics 2011; 4:6. [PMID: 21226949 PMCID: PMC3032645 DOI: 10.1186/1755-8794-4-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/12/2011] [Indexed: 01/16/2023] Open
Abstract
Background Expression quantitative trait loci (eQTL) studies have helped identify the genetic determinants of gene expression. Understanding the potential interacting mechanisms underlying such findings, however, is challenging. Methods We describe a method to identify the trans-acting drivers of multiple gene co-expression, which reflects the action of regulatory molecules. This method-termed co-regulatory expression quantitative trait locus (creQTL) mapping-allows for evaluation of a more focused set of phenotypes within a clear biological context than conventional eQTL mapping. Results Applying this method to a study of endometrial cancer revealed regulatory mechanisms supported by the literature: a creQTL between a locus upstream of STARD13/DLC2 and a group of seven IFNβ-induced genes. This suggests that the Rho-GTPase encoded by STARD13 regulates IFNβ-induced genes and the DNA damage response. Conclusions Because of the importance of IFNβ in cancer, our results suggest that creQTL may provide a finer picture of gene regulation and may reveal additional molecular targets for intervention. An open source R implementation of the method is available at http://sites.google.com/site/kenkompass/.
Collapse
Affiliation(s)
- Kenneth S Kompass
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California, San Francisco, USA
| | | |
Collapse
|
18
|
Prescott J, McGrath M, Lee IM, Buring JE, De Vivo I. Telomere length and genetic analyses in population-based studies of endometrial cancer risk. Cancer 2010; 116:4275-82. [PMID: 20549820 DOI: 10.1002/cncr.25328] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Telomeres are protective structures at the ends of linear chromosomes, regulated by a host of associated proteins. When telomeres become dysfunctional, genomic instability ensues. The vast majority of cells undergo apoptosis, although a rare cell may survive and become tumorigenic. METHODS The authors used conditional logistic regression to examine relative telomere length in peripheral blood leukocytes, genetic variants at telomere maintenance gene loci (TERT, TNKS2, POT1, TERF1, TERF2), and endometrial cancer risk in case-control studies nested within the Nurses' Health Study and the Women's Health Study. RESULTS Relative telomere length was significantly inversely correlated with body mass index and weight gain since age 18 years. The authors did not observe a relationship between relative telomere length and endometrial cancer risk. Women in the shortest quartile had a multivariate-adjusted odds ratio (OR) of 1.20 (95% confidence interval [95% CI], 0.73-1.96; P for trend = .37) compared with women in the longest quartile. The authors found an elevation in endometrial cancer risk among women carrying at least 1 minor allele of RS2736122 (TERT; OR, 1.18; 95% CI, 1.01-1.38) or RS12412538 (TNKS2; OR, 1.16; 95% CI, 1.00-1.34). CONCLUSIONS Relative telomere length was not associated with endometrial cancer risk. Other aspects of telomere maintenance remain to be explored.
Collapse
Affiliation(s)
- Jennifer Prescott
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
19
|
Shortened telomeres in serous tubal intraepithelial carcinoma: an early event in ovarian high-grade serous carcinogenesis. Am J Surg Pathol 2010; 34:829-36. [PMID: 20431479 DOI: 10.1097/pas.0b013e3181dcede7] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Short telomeres are one of the main genetic manifestations in human cancer, as they have been shown to play an important role in inducing chromosomal instability and in contributing to tumor progression. The purpose of this study was to determine if changes in telomere length occur in serous tubal intraepithelial carcinoma (STIC), the putative precursor of "ovarian" high-grade serous carcinoma (HGSC). Twenty-two STICs from 15 patients with concurrent but discrete HGSCs were analyzed for telomere length on formalin-fixed, paraffin-embedded sections by conducting p53 immunofluorescence to assist in identifying STICs and telomere-specific FISH. Telomere length (short, long, or no change) in STICs was compared with HGSCs using normal fallopian tube epithelium and stromal cells as controls. We found that STICs had the shortest telomeres, as 18 (82%) of 22 STICs had short telomeres, whereas only 2 (9%) showed no change and 2 (9%) had long telomeres compared with the normal-looking tubal epithelium. In contrast, among 12 paired HGSCs and STICs, 6 HGSCs showed an increase in telomere length, one showed a decrease in length and 5 did not show any change when compared with their matched STICs, although, such as STICs, the majority of HGSCs had shorter telomeres than the associated normal tubal epithelial cells. These differences in telomere length between normal tubal epithelial cells and STICs, and between STICs and HGSCs were statisticaly significant (P<0.05). In conclusion, the finding of short telomeres, which have been shown to be one of the earliest molecular changes in carcinogenesis, in a vast majority of STICs provides further support to the proposal that STICs are precursors of HGSC and opens new areas of research in elucidating the early events of ovarian high-grade serous carcinogenesis.
Collapse
|
20
|
Genetics of endometrial cancers. Obstet Gynecol Int 2010; 2010:984013. [PMID: 20396392 PMCID: PMC2852605 DOI: 10.1155/2010/984013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/07/2010] [Accepted: 02/28/2010] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancers exhibit a different mechanism of tumorigenesis and progression depending on histopathological and clinical types. The most frequently altered gene in estrogen-dependent endometrioid endometrial carcinoma tumors is PTEN. Microsatellite instability is another important genetic event in this type of tumor. In contrast, p53 mutations or Her2/neu overexpression are more frequent in non-endometrioid tumors. On the other hand, it is possible that the clear cell type may arise from a unique pathway which appears similar to the ovarian clear cell carcinoma. K-ras mutations are detected in approximately 15%–30% of endometrioid carcinomas, are unrelated to the existence of endometrial hyperplasia. A β-catenin mutation was detected in about 20% of endometrioid carcinomas, but is rare in serous carcinoma. Telomere shortening is another important type of genomic instability observed in endometrial cancer. Only non-endometrioid endometrial carcinoma tumors were significantly associated with critical telomere shortening in the adjacent morphologically normal epithelium. Lynch syndrome, which is an autosomal dominantly inherited disorder of cancer susceptibility and is characterized by a MSH2/MSH6 protein complex deficiency, is associated with the development of non-endometrioid carcinomas.
Collapse
|
21
|
Contreras CM, Akbay EA, Gallardo TD, Haynie JM, Sharma S, Tagao O, Bardeesy N, Takahashi M, Settleman J, Wong KK, Castrillon DH. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy. Dis Model Mech 2010; 3:181-93. [PMID: 20142330 DOI: 10.1242/dmm.004440] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer--the most common malignancy of the female reproductive tract--arises from the specialized epithelial cells that line the inner surface of the uterus. Although significant advances have been made in our understanding of this disease in recent years, one significant limitation has been the lack of a diverse genetic toolkit for the generation of mouse models. We identified a novel endometrial-specific gene, Sprr2f, and developed a Sprr2f-Cre transgene for conditional gene targeting within endometrial epithelium. We then used this tool to generate a completely penetrant Lkb1 (also known as Stk11)-based mouse model of invasive endometrial cancer. Strikingly, female mice with homozygous endometrial Lkb1 inactivation did not harbor discrete endometrial neoplasms, but instead underwent diffuse malignant transformation of their entire endometrium with rapid extrauterine spread and death, suggesting that Lkb1 inactivation was sufficient to promote the development of invasive endometrial cancer. Mice with heterozygous endometrial Lkb1 inactivation only rarely developed tumors, which were focal and arose with much longer latency, arguing against the idea--suggested by some prior studies--that Lkb1 is a haploinsufficient tumor suppressor. Lastly, the finding that endometrial cancer cell lines were especially sensitive to the mTOR (mammalian target of rapamycin) inhibitor rapamycin prompted us to test its efficacy against Lkb1-driven endometrial cancers. Rapamycin monotherapy not only greatly slowed disease progression, but also led to striking regression of pre-existing tumors. These studies demonstrate that Lkb1 is a uniquely potent endometrial tumor suppressor, but also suggest that the clinical responses of some types of invasive cancers to mTOR inhibitors may be linked to Lkb1 status.
Collapse
Affiliation(s)
- Cristina M Contreras
- Department of Pathology, UT Southwestern Medical Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng YL, Hu N, Sun Q, Wang C, Taylor PR. Telomere attrition in cancer cells and telomere length in tumor stroma cells predict chromosome instability in esophageal squamous cell carcinoma: a genome-wide analysis. Cancer Res 2009; 69:1604-14. [PMID: 19190333 DOI: 10.1158/0008-5472.can-08-3028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies showed that chromosomal instability was common in esophageal squamous cell carcinoma (ESCC); however, the mechanisms underlying this instability are unknown. Individuals with deficiencies in telomere maintenance are susceptible to enhanced telomere loss during cell proliferation; such deficiencies could result in telomere dysfunction and genomic instability. We investigated the association between genome-wide chromosomal changes in cancer cells and telomere length/attrition in cancer/stroma cells in 47 ESCC patients. Genome-wide detection of loss of heterozygosity was performed using the Affymetrix GeneChip single nucleotide polymorphism arrays. Telomere length was assessed separately for cancer cells, carcinoma-associated fibroblasts (CAF), infiltrative lymphocytes, and adjacent normal epithelial cells by quantitative fluorescent in situ hybridization using paraffin-embedded sections. Telomere length differed significantly among cell types, such that length in infiltrative lymphocytes > CAFs > cancer cells. Shortened telomeres were observed in cancer cells in 44 of 47 (94%) of the tumors examined. Telomere length in CAFs was significantly associated with chromosomal instability on 4q and 13q and lymphocyte telomere length was significantly associated with instability on chromosomal arms 15q. Although telomere length in cancer cells was not associated with chromosome arm instability, telomere attrition in cancer cells, defined as the telomere length in CAFs minus the telomere length in cancer cells, was significantly associated with chromosomal instability on 13q and 15q. This study provides evidence that telomere shortening is a common genetic alteration in ESCC and that chromosome arm instability is related to both telomere attrition in cancer cells and telomere length in tumor stroma cells.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Cancer Genetics and Epidemiology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057, USA.
| | | | | | | | | |
Collapse
|
23
|
Fadare O, Zheng W. Insights into endometrial serous carcinogenesis and progression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2009; 2:411-32. [PMID: 19294001 PMCID: PMC2655156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 01/10/2009] [Indexed: 05/27/2023]
Abstract
Endometrial serous carcinomas (ESC) constitute only approximately 10% of endometrial cancers, but have a substantially higher case-fatality rate than their more common endometrioid counterparts. The precise composite of factors driving endometrial serous carcinogenesis and progression remain largely unknown, but we attempt to review the current state of knowledge in this report. ESC probably do not evolve through a single pathway, and their underlying molecular events probably occur early in their evolution. TP53 gene mutations occur in 22.7 to 96% of cases, and p53 protein overexpression is seen in approximately 76%. By gene expression profiling, p16 is upregulated in ESC significantly above both normal endometrial cells and endometrioid carcinomas, and 92-100% of cases display diffuse expression of the p16 protein by immunohistochemistry (IHC). Together, these findings suggest dysregulation of both the p16(INKA)/Cyclin D-CDK/pRb-E2F and the ARF-MDM2-p53 cell cycle pathways in ESC. By IHC, HER2/neu is overexpressed (2+ or 3+) in approximately 32.1% of ESC, and approximately 54.5% of cases scored as 2+ or 3+ by IHC display c-erbB2 gene amplification as assessed by fluorescent in situ hybridization. Genetic instability, typically manifested as loss of heterozygosity in multiple chromosomes, is a common feature of ESC, and one study found loss of heterozygosity at 1p32-33 in 63% of cases. A subset of ESC display protein expression patterns that are characteristic of high grade endometrial carcinomas, including loss of the metastasis suppressor CD82 (KAI-1) and epithelial-to-mesenchymal transformation, the latter manifested as E-cadherin downregulation, P-cadherin upregulation, and expression of epithelial-to-mesenchymal transformation-related molecules such as zinc-finger E-box-binding homeobox 1 (ZEB1) and focal adhesion kinase. Preliminary data suggests differential patterns of expression in ESC of some isoforms of claudins, proteases, the tumor invasiveness and progression-associated oncofetal protein insulin-like growth factor II mRNA-binding protein 3 (IMP3), as well as a variety of other molecules. At the morphologic level, evidence that indicates that endometrial glandular dysplasia (EmGD) is the most likely morphologically recognizable precursor lesion to ESC is presented. We advocate use of the term endometrial intraepithelial carcinoma (EIC, or its other appellations) only as a morphologic descriptor and never as a diagnostic/pathologic statement of biologic potential. Given its potential for extrauterine extension, we consider the lesions described as EIC, when present in isolation, as examples of localized ESC, and patients should be managed as such. Morphologically normal, p53 immunoreactive endometrial cells (the so-called "p53 signatures"), show a statistically significant association with ESC, display p53 mutations in a significant subset, and form the start of a progression model, outlined herein, from p53 signatures to EmGD to localized ESC to the more conventionally invasive neoplasm. The identification of a morphologically-recognizable precursor holds the promise of early detection of ESC, with the attendant reduction in its overall associated mortality rate. Deciphering the molecular basis for endometrial serous carcinogenesis should uncover potential targets for diagnosis, therapy, and/or disease surveillance.
Collapse
Affiliation(s)
- Oluwole Fadare
- Department of Pathology, Wilford Hall Medical Center, Lackland Air Force BaseSan Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center at San AntonioSan Antonio, Texas, USA
| | - Wenxin Zheng
- Department of Pathology, University of Arizona College of MedicineTucson, Arizona, USA
- Department Obstetrics and Gynecology, University of Arizona College of MedicineTucson, Arizona, USA
- Arizona Cancer Center, University of ArizonaTucson, AZ, USA
- College of Medicine, Shandong UniversityChina
| |
Collapse
|