1
|
Walker CS, Aitken JF, Vazhoor Amarsingh G, Zhang S, Cooper GJS. Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01125-9. [PMID: 40360789 DOI: 10.1038/s41574-025-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The identification of amylin as a glucoregulatory peptide hormone with roles in meal-ending satiation sparked a surge of experimental development, which culminated in the amylin mimetic drug pramlintide. Pramlintide was approved by the FDA in 2005 for the treatment of type 1 diabetes mellitus and insulin-requiring type 2 diabetes, and was also explored as a novel anti-obesity treatment. Despite this exciting potential, efforts to develop an amylin-based anti-obesity therapeutic stalled owing to challenges around dosage frequency, safety and formulation. Generally, anti-obesity therapies have displayed modest efficacy and mixed safety profiles, leaving a clear unmet clinical need that requires addressing. Advances in peptide chemistry have reinvigorated the amylin field by enabling the manufacture of effective new amylin-based molecules, resulting in therapeutics that are now on the cusp of approval. At present, there are growing concerns around GLP1 receptor agonist-based therapeutics, in particular their association with loss of lean body mass. Additionally, treatment of patients with overweight or obesity without associated comorbidities is increasingly common. The widespread pharmacotherapy of otherwise healthy populations with overweight or obesity with the goal of improving future health requires further regulatory and ethical consideration. This Review describes how amylin controls energy homeostasis and provides a current overview of amylin-based therapeutic development.
Collapse
Affiliation(s)
| | - Jacqueline F Aitken
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Shaoping Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- School of Medical Sciences, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Volčanšek Š, Koceva A, Jensterle M, Janež A, Muzurović E. Amylin: From Mode of Action to Future Clinical Potential in Diabetes and Obesity. Diabetes Ther 2025:10.1007/s13300-025-01733-8. [PMID: 40332747 DOI: 10.1007/s13300-025-01733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Precision diabetology is increasingly becoming diabetes phenotype-driven, whereby the specific hormonal imbalances involved are taken into consideration. Concomitantly, body weight-favorable therapeutic approaches are being dictated by the obesity pandemic, which extends to all diabetes subpopulations. Amylin, an anorexic neuroendocrine hormone co-secreted with insulin, is deficient in individuals with diabetes and plays an important role in postprandial glucose homeostasis, with additional potential cardiovascular and neuroprotective functions. Its actions include suppressing glucagon secretion, delaying gastric emptying, increasing energy expenditure and promoting satiety. While amylin holds promise as a therapeutic agent, its translation into clinical practice is hampered by complex receptor biology, the limitations of animal models, its amyloidogenic properties and pharmacokinetic challenges. In individuals with advanced β-cell dysfunction, supplementing insulin therapy with pramlintide, the first and currently only approved injectable short-acting selective analog of amylin, has demonstrated efficacy in enhancing both postprandial and overall glycemic control in both type 2 diabetes (T2D) and type 1 diabetes (T1D) without increasing the risk of hypoglycemia or weight gain. Current research focuses on several key strategies, from enhancing amylin stability by attaching polyethylene glycol or carbohydrate molecules to amylin, to developing oral amylin formulations to improve patients' convenience, as well as developing various combination therapies to enhance weight loss and glucose regulation by targeting multiple receptors in metabolic pathways. The novel synergistically acting glucagon-like peptide-1 (GLP-1) receptor agonist combined with the amylin agonist, CagriSema, shows promising results in both glucose regulation and weight management. As such, amylin agonists (combined with other members of the incretin class) could represent the elusive drug candidate to address the multi-hormonal dysregulations of diabetes subtypes and qualify as a precision medicine approach that surpasses the long overdue division into T1DM and T2DM. Further development of amylin-based therapies or delivery systems is crucial to fully unlock the therapeutic potential of this intriguing hormone.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Emir Muzurović
- Endocrinology Section, Department of Internal Medicine, Clinical Centre of Montenegro, Podgorica, Montenegro.
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
3
|
Ishibashi C, Yoneda S, Fujita Y, Fujita S, Mitsushio K, Ozawa H, Baden MY, Nammo T, Kozawa J, Eguchi H, Shimomura I. Decreased islet amyloid polypeptide staining in the islets of insulinoma patients. Islets 2024; 16:2379650. [PMID: 39028826 PMCID: PMC11262209 DOI: 10.1080/19382014.2024.2379650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Islet amyloid polypeptide (IAPP) is a factor that regulates food intake and is secreted from both pancreatic islets and insulinoma cells. Here, we aimed to evaluate IAPP immunohistochemically in islets or insulinoma cells in association with clinical characteristics. We recruited six insulinoma patients and six body mass index-matched control patients with pancreatic diseases other than insulinoma whose glucose tolerance was confirmed to be normal preoperatively. IAPP and IAPP-insulin double staining were performed on pancreatic surgical specimens. We observed that the IAPP staining level and percentage of IAPP-positive beta cells tended to be lower (p = 0.1699) in the islets of insulinoma patients than in those of control patients, which might represent a novel IAPP expression pattern under persistent hyperinsulinemia and hypoglycemia.
Collapse
Affiliation(s)
- Chisaki Ishibashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Yoneda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Yoneda Clinic, Osaka, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shingo Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kento Mitsushio
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Megu Y Baden
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
4
|
De Fano M, Porcellati F, Fanelli CG, Corio S, Mazzieri A, Lucidi P, Bolli GB, Bassotti G. The role of gastric emptying in glucose homeostasis and defense against hypoglycemia: Innocent bystander or partner in crime? Diabetes Res Clin Pract 2023; 203:110828. [PMID: 37481116 DOI: 10.1016/j.diabres.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Maintenance of plasma glucose (PG) homeostasis is due to a complex network system. Even a minor fall in PG activates multiple neuroendocrine actions promoting hormonal, metabolic and behavioral responses, which prevent and ultimately recover hypoglycemia, primarily neuroglycopenia. Among these responses, gastric emptying (GE) plays an important role by coordinated mechanisms which regulate transit and absorption of nutrients through the small intestine. A bidirectional relationship between GE and glycemia has been established: GE may explain the up to 30-40 % variance in glycemic response following a carbohydrate-rich meal. In addition, acute and chronic hyperglycemia induce deceleration of GE after meals. Hypoglycemia accelerates GE, but its role in counterregulation has been poorly investigated. The role of GE as a counterregulatory mechanism has been confirmed in pathophysiological conditions, such as gastroparesis or following recurrent hypoglycemia. Therefore, it could represent an "ancestral" mechanism, highly conservative and effective in all individuals, conditions and clinical contexts. Recent guidelines recommend GLP-1 receptor agonists (GLP-1RAs) either as the first injectable therapy for type 2 diabetes mellitus or in combination with insulin. Considering the potential impact on GE, it would be important to study subjects on GLP-1 RAs during hypoglycemia, to establish whether a possible deceleration of GE impairs glucose counterregulation.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Porcellati
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Carmine G Fanelli
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sofia Corio
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessio Mazzieri
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Lucidi
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Geremia B Bolli
- Endocrine and Metabolic Sciences Section, Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology and Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Sheehan A, Goldfine A, Bajwa M, Wolfs D, Kozuka C, Piper J, Fowler K, Patti ME. Pramlintide for post-bariatric hypoglycaemia. Diabetes Obes Metab 2022; 24:1021-1028. [PMID: 35137513 PMCID: PMC9035096 DOI: 10.1111/dom.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to examine the hypothesis that pramlintide would reduce hypoglycaemia by slowing gastric emptying and reducing postprandial glucagon secretion, thus limiting postprandial glycaemic excursions and insulin secretion, and thus to determine the efficacy of pramlintide on frequency and severity of hypoglycaemia in post-bariatric hypoglycaemia (PBH). MATERIALS AND METHODS Participants with PBH following gastric bypass were recruited from outpatient clinics at the Joslin Diabetes Center, Boston, Massachusetts for an open-label study of pramlintide efficacy over 8 weeks. Twenty-three participants were assessed for eligibility, 20 participants had at least one pramlintide dose, and 14 completed the study. A mixed-meal tolerance test (MMTT) was performed at baseline and after 8 weeks of subcutaneous pramlintide with a sequential dose increase to a maximum of 120 micrograms (mean 69 ± 32 mcg) three times daily. The primary endpoint was change in glucose excursions during the MMTT. Secondary measures included MMTT insulin response, satiety and dumping score, percentage time with sensor glucose (SG) <3.9 mM, and number of days with minimum SG <3 mM, during masked continuous glucose monitoring. RESULTS There were no differences in MMTT glucose, glucagon or insulin between baseline and post treatment. We observed no significant change in satiety or dumping scores. The overall frequency of low SG values did not change, although there was substantial inter-individual variability. CONCLUSIONS In PBH, pramlintide does not modulate glycaemic or insulin responses, satiety, or dumping scores during an MMTT and does not impact glycaemic excursions or decrease low SG levels in the outpatient setting.
Collapse
Affiliation(s)
- Amanda Sheehan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Allison Goldfine
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammed Bajwa
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Danielle Wolfs
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Chisayo Kozuka
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline Piper
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Kristen Fowler
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Mediators of Amylin Action in Metabolic Control. J Clin Med 2022; 11:jcm11082207. [PMID: 35456307 PMCID: PMC9025724 DOI: 10.3390/jcm11082207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism.
Collapse
|
7
|
Honegger M, Lutz TA, Boyle CN. Hypoglycemia attenuates acute amylin-induced reduction of food intake in male rats. Physiol Behav 2021; 237:113435. [PMID: 33933418 DOI: 10.1016/j.physbeh.2021.113435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
The ability of amylin to inhibit gastric emptying and glucagon secretion in rats is reduced under hypoglycemic conditions. These effects are considered part of a fail-safe mechanism that prevents amylin from further decreasing nutrient supply when blood glucose levels are low. Because these actions and amylin-induced satiation are mediated by the area postrema (AP), it is plausible that these phenomena are based on the co-sensitivity of AP neurons to amylin and glucose. Using hyperinsulinemic glucose clamps in unrestrained and freely-feeding rats, we investigated whether amylin's ability to inhibit food intake is also reduced by hypoglycemia (HYPO). Following an 18 h fast, rats were infused with insulin and glucose for 45 min to clamp blood glucose at baseline levels (between 90 and 100 mg/dL). HYPO (approximately 55 mg/dL) was induced between 45 and 60 min and then maintained for the remainder of the clamp. Rats were injected with amylin (20 µg/kg) or saline and offered normal chow at 85 min. Food intake was measured at 30 and 60 min after amylin. Control hyperinsulinemic/euglycemic (EU) rats were maintained at approximately 150 mg/dL (which is a physiological periprandial glucose level) before and after amylin injection. Terminal experiments tested the effect of amylin to induce the phosphorylation of ERK, a marker of amylin action in the AP, in EU and HYPO conditions. Amylin significantly reduced 30- and 60-min food intake in EU rats, but the effect at 60-min was attenuated in HYPO rats. Interestingly, glucose infusion rate had to be dramatically reduced at meal onset in saline-treated, but not in amylin-treated, EU or HYPO rats; this suggests that meal-related glucose appearance in the blood was inhibited by amylin under both EU and HYPO. Finally, amylin induced a similar pERK response in the AP in EU and HYPO rats. We conclude that amylin's action to decrease eating is blunted in hypoglycemia, and this effect seems to be downstream from amylin-induced pERK in AP neurons. These data allow us to extend the idea of a hypoglycemic brake on amylin's actions to its food intake-reducing effect, but also demonstrate that amylin can buffer meal-induced glucose appearance at EU and HYPO levels.
Collapse
Affiliation(s)
- Miriam Honegger
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Murthy TA, Grivell J, Hatzinikolas S, Chapple LAS, Chapman MJ, Stevens JE, Malbert CH, Rayner CK, Horowitz M, Jones KL, Marathe CS. Acceleration of Gastric Emptying by Insulin-Induced Hypoglycemia is Dependent on the Degree of Hypoglycemia. J Clin Endocrinol Metab 2021; 106:364-371. [PMID: 33230553 DOI: 10.1210/clinem/dgaa854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Hypoglycemia is a major barrier to optimal glycemic control in insulin-treated diabetes. Recent guidelines from the American Diabetes Association have subcategorized "non-severe" hypoglycemia into level 1 (<3.9 mmol/L) and 2 (<3 mmol/L) hypoglycemia. Gastric emptying of carbohydrate is a major determinant of postprandial glycemia but its role in hypoglycemia counter-regulation remains underappreciated. "Marked" hypoglycemia (~2.6 mmol/L) accelerates gastric emptying and increases carbohydrate absorption in health and type 1 diabetes, but the impact of "mild" hypoglycemia (3.0-3.9 mmol/L) is unknown. OBJECTIVE To determine the effects of 2 levels of hypoglycemia, 2.6 mmol/L ("marked") and 3.6 mmol/L ("mild"), on gastric emptying in health. DESIGN, SETTING, AND SUBJECTS Fourteen healthy male participants (mean age: 32.9 ± 8.3 years; body mass index: 24.5 ± 3.4 kg/m2) from the general community underwent measurement of gastric emptying of a radiolabeled solid meal (100 g beef) by scintigraphy over 120 minutes on 3 separate occasions, while blood glucose was maintained at either ~2.6 mmol/L, ~3.6 mmol/L, or ~6 mmol/L in random order from 15 minutes before until 60 minutes after meal ingestion using glucose-insulin clamp. Blood glucose was then maintained at 6 mmol/L from 60 to 120 minutes on all days. RESULTS Gastric emptying was accelerated during both mild (P = 0.011) and marked (P = 0.001) hypoglycemia when compared to euglycemia, and was more rapid during marked compared with mild hypoglycemia (P = 0.008). Hypoglycemia-induced gastric emptying acceleration during mild (r = 0.57, P = 0.030) and marked (r = 0.76, P = 0.0014) hypoglycemia was related to gastric emptying during euglycemia. CONCLUSION In health, acceleration of gastric emptying by insulin-induced hypoglycemia is dependent on the degree of hypoglycemia and baseline rate of emptying.
Collapse
Affiliation(s)
- Tejaswini Arunachala Murthy
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia
| | | | - Seva Hatzinikolas
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lee-Anne S Chapple
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Marianne J Chapman
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | - Christopher K Rayner
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Chinmay S Marathe
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
9
|
Marathe CS, Marathe JA, Rayner CK, Kar P, Jones KL, Horowitz M. Hypoglycaemia and gastric emptying. Diabetes Obes Metab 2019; 21:491-498. [PMID: 30378748 DOI: 10.1111/dom.13570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Hypoglycaemia is arguably the most important complication of insulin therapy in type 1 and type 2 diabetes. Counter-regulation of hypoglycaemia is dependent on autonomic function and frequent hypoglycaemia may lead to reductions in both autonomic warning signals and the catecholamine response, the so-called "impaired awareness of hypoglycaemia". It is now appreciated that gastric emptying is a major determinant of the glycaemic response to carbohydrate-containing meals in both health and diabetes, that disordered (especially delayed) gastric emptying occurs frequently in diabetes, and that acute hypoglycaemia accelerates gastric emptying substantially. However, the potential relevance of gastric emptying to the predisposition to, and counter-regulation of, hypoglycaemia has received little attention. In insulin-treated patients, the rate of gastric emptying influences the timing of the postprandial insulin requirement, and gastroparesis is likely to predispose to postprandial hypoglycaemia. Conversely, the marked acceleration of gastric emptying induced by hypoglycaemia probably represents an important counter-regulatory response to increase the rate of carbohydrate absorption. This review summarizes the current knowledge of the inter-relationships between hypoglycaemia and gastric emptying, with a focus on clinical implications.
Collapse
Affiliation(s)
- Chinmay S Marathe
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jessica A Marathe
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Palash Kar
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Shi Y, Lv W, Jiao A, Zhang C, Zhang J. A Novel Pentapeptide Inhibitor Reduces Amyloid Deposit Formation by Direct Interaction with hIAPP. Int J Endocrinol 2019; 2019:9062032. [PMID: 30838043 PMCID: PMC6374824 DOI: 10.1155/2019/9062032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDS The presence of amyloid deposits of human islet amyloid polypeptide (hIAPP) in islet β-cells has been associated with type 2 diabetes occurrence and islet graft failure. Self-assembly into oligomers and fibrils during the process of aggregation by hIAPP can lead to failure and depletion of β-cells. Studies have shown that some critical regions of hIAPP might contribute to the aggregation. Thus, many studies focused on finding the effective molecules, especially the short-peptide inhibitors, that bind to these regions and disrupt the aggregation of hIAPP. In the present study, a novel pentapeptide inhibitor Phe-Leu-Pro-Asn-Phe (FLPNF) was designed and its effectiveness on the inhibition of the formation of amyloid deposits was examined. METHODS The binding mode between FLPNF and hIAPP was performed using molecular docking. The effectiveness of FLPNF on inhibiting hIAPP amyloid aggregation was tested by Thioflavin T (ThT) staining. Furthermore, negative stain electron microscopy was used to observe hIAPP fibrils. A biolayer interferometry analysis was used to identify the interaction between FLPNF and hIAPP. In addition, the cytotoxicity toward INS-1 cells was tested by a cell proliferation assay. RESULTS FLPNF was predicted to have a compact conformation to bind at the site of hIAPP. FLPNF strongly inhibited the amyloid aggregation of hIAPP at a 10 : 1 molar ratio in vitro. Coincubation of FLPNF with hIAPP decreased the amount of hIAPP fibrils. Furthermore, a direct interaction between FLPNF and hIAPP was confirmed. FLPNF could also decrease the cytotoxic effect of hIAPP. CONCLUSIONS The novel pentapeptide inhibitor FLPNF was constructed and inhibited the aggregation through direct binding to hIAPP. It is considered a suitable inhibitor for hIAPP amyloid deposit formation.
Collapse
Affiliation(s)
- Yue Shi
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wu Lv
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
- Department of General Surgery (VIP Ward), Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110001, China
| | - Ao Jiao
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jialin Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
11
|
Kar P, Jones KL, Plummer MP, Ali Abdelhamid Y, Giersch EJ, Summers MJ, Hatzinikolas S, Heller S, Horowitz M, Deane AM. Antecedent Hypoglycemia Does Not Attenuate the Acceleration of Gastric Emptying by Hypoglycemia. J Clin Endocrinol Metab 2017; 102:3953-3960. [PMID: 28973430 PMCID: PMC5673277 DOI: 10.1210/jc.2017-00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Acute hypoglycemia accelerates gastric emptying and increases cardiac contractility. However, antecedent hypoglycemia attenuates counterregulatory hormonal responses to subsequent hypoglycemia. OBJECTIVE To determine the effect of antecedent hypoglycemia on gastric and cardiac responses to subsequent hypoglycemia in health. DESIGN A prospective, single-blind, randomized, crossover study (performed at the Royal Adelaide Hospital, Adelaide, South Australia, Australia). PATIENTS Ten healthy young men 18 to 35 years of age were studied for 36 hours on two occasions. INTERVENTIONS Participants were randomly assigned to either antecedent hypoglycemia [three 45-minute periods of strict hypoglycemia (2.8 mmol/L] or control [three 45-minute periods of strict euglycemia (6 mmol/L)] during the initial 12-hour period. Participants were monitored overnight, and the following morning blood glucose was clamped at 2.8 mmol/L for 60 minutes and then at 6 mmol/L for 120 minutes. At least 6 weeks later participants returned for the alternative intervention. Gastric emptying and cardiac fractional shortening were measured with scintigraphy and two-dimensional echocardiography, respectively, on the morning of all 4 study days. RESULTS A single, acute episode of hypoglycemia accelerated gastric emptying (P = 0.01) and augmented fractional shortening (P < 0.01). Gastric emptying was unaffected by antecedent hypoglycemia (P = 0.74) whereas fractional shortening showed a trend to attenuation (P = 0.06). The adrenaline response was diminished (P < 0.05) by antecedent hypoglycemia. CONCLUSIONS In health, the acceleration of gastric emptying during hypoglycemia is unaffected by antecedent hypoglycemia, whereas the increase in cardiac contractility may be attenuated.
Collapse
Affiliation(s)
- Palash Kar
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Karen L. Jones
- National Health and Medical Research Council Centre of Research Excellence in the Translation of Nutritional Science into Good Health, University of Adelaide, Adelaide, South Australia 5005, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark P. Plummer
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Yasmine Ali Abdelhamid
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Emma J. Giersch
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Matthew J. Summers
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Seva Hatzinikolas
- National Health and Medical Research Council Centre of Research Excellence in the Translation of Nutritional Science into Good Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Simon Heller
- Academic Unit of Diabetes, Endocrinology and Metabolism, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Michael Horowitz
- National Health and Medical Research Council Centre of Research Excellence in the Translation of Nutritional Science into Good Health, University of Adelaide, Adelaide, South Australia 5005, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Adam M. Deane
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
- Intensive Care Unit, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
12
|
Amylin-mediated control of glycemia, energy balance, and cognition. Physiol Behav 2016; 162:130-40. [PMID: 26922873 DOI: 10.1016/j.physbeh.2016.02.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms.
Collapse
|
13
|
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev 2015; 67:564-600. [PMID: 26071095 DOI: 10.1124/pr.115.010629] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Steve Chen
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Thomas A Lutz
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - David G Parkes
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Jonathan D Roth
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| |
Collapse
|
14
|
The receptive function of hypothalamic and brainstem centres to hormonal and nutrient signals affecting energy balance. Proc Nutr Soc 2012; 71:463-77. [PMID: 22931748 DOI: 10.1017/s0029665112000778] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothalamic arcuate nucleus (ARC) and the area postrema (AP) represent targets for hormonal and metabolic signals involved in energy homoeostasis, e.g. glucose, amylin, insulin, leptin, peptide YY (PYY), glucagon-like peptide 1 (GLP-1) and ghrelin. Orexigenic neuropeptide Y expressing ARC neurons are activated by food deprivation and inhibited by feeding in a nutrient-dependent manner. PYY and leptin also reverse or prevent fasting-induced activation of the ARC. Interestingly, hypothalamic responses to fasting are blunted in different models of obesity (e.g. diet-induced obesity (DIO) or late-onset obesity). The AP also responds to feeding-related signals. The pancreatic hormone amylin acts via the AP to control energy intake. Amylin-sensitive AP neurons are also glucose-responsive. Furthermore, diet-derived protein attenuates amylin responsiveness suggesting a modulation of AP sensitivity by macronutrient supply. This review gives an overview of the receptive function of the ARC and the AP to hormonal and nutritional stimuli involved in the control of energy balance and the possible implications in the context of obesity. Collectively, there is consistency between the neurophysiological actions of these stimuli and their effects on energy homoeostasis under experimental conditions. However, surprisingly little progress has been made in the development of effective pharmacological approaches against obesity. A promising way to improve effectiveness involves combination treatments (e.g. amylin/leptin agonists). Hormonal alterations (e.g. GLP-1 and PYY) are also considered to mediate body weight loss observed in obese patients receiving bariatric surgery. The effects of hormonal and nutritional signals and their interactions might hold the potential to develop poly-mechanistic therapeutic strategies against obesity.
Collapse
|
15
|
Lutz TA. Control of energy homeostasis by amylin. Cell Mol Life Sci 2012; 69:1947-65. [PMID: 22193913 PMCID: PMC11114503 DOI: 10.1007/s00018-011-0905-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/13/2011] [Accepted: 12/06/2011] [Indexed: 02/04/2023]
Abstract
Amylin is an important control of nutrient fluxes because it reduces energy intake, modulates nutrient utilization by inhibiting postprandial glucagon secretion, and increases energy disposal by preventing compensatory decreases of energy expenditure in weight-reduced individuals. The best investigated function of amylin which is cosecreted with insulin is to reduce eating by promoting meal-ending satiation. This effect is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites to mediate amylin action include the nucleus of the solitary tract and the lateral parabrachial nucleus, which convey the neural signal to the lateral hypothalamic area and other hypothalamic nuclei. Amylin may also signal adiposity because plasma levels of amylin are increased in adiposity and because higher amylin concentrations in the brain result in reduced body weight gain and adiposity, while amylin receptor antagonists increase body adiposity. The central mechanisms involved in amylin's effect on energy expenditure are much less known. A series of recent experiments in animals and humans indicate that amylin is a promising option for anti-obesity therapy especially in combination with other hormones. The most extensive dataset is available for the combination therapy of amylin and leptin. Ongoing research focuses on the mechanisms of these interactions.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.
| |
Collapse
|
16
|
Boyle CN, Lutz TA. Amylinergic control of food intake in lean and obese rodents. Physiol Behav 2011; 105:129-37. [DOI: 10.1016/j.physbeh.2011.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
|
17
|
Younk LM, Mikeladze M, Davis SN. Pramlintide and the treatment of diabetes: a review of the data since its introduction. Expert Opin Pharmacother 2011; 12:1439-51. [PMID: 21564002 DOI: 10.1517/14656566.2011.581663] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Postprandial glucose excursions negatively affect glycemic control and markers of cardiovascular health. Pramlintide, an amylinomimetic, is approved for treatment of elevated postprandial glucose levels in type 1 and type 2 diabetes mellitus. AREAS COVERED A literature search of PubMed was conducted to locate articles (up to January 2011) pertaining to original preclinical and clinical research and reviews of amylin and pramlintide. Additional sources were selected from reference lists within articles obtained through the original literature search and from the internet. This article describes the known effects of endogenous amylin and the pharmacodynamics, pharmacokinetics and clinical efficacy of pramlintide. Drug-drug interactions and safety and tolerability are also reviewed. EXPERT OPINION Pramlintide significantly reduces hemoglobin A(1c) and body weight in patients with type 1 and type 2 diabetes mellitus. Newer research is focusing on weight loss effects of pramlintide and pramlintide plus metreleptin in nondiabetic obese individuals. Preliminary results of these studies are discussed.
Collapse
Affiliation(s)
- Lisa M Younk
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201 USA
| | | | | |
Collapse
|
18
|
Sallam HS, Oliveira HM, Liu S, Chen JDZ. Mechanisms of burn-induced impairment in gastric slow waves and emptying in rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R298-305. [PMID: 20427716 DOI: 10.1152/ajpregu.00135.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delayed gastric emptying is common following severe large cutaneous burns; however, the mechanisms of burn-induced delayed gastric emptying remain unknown. The aim of this study was to explore the possible involvement of hyperglycemia and cyclooxygenase-2 receptors in the burn-induced gastric dysrhythmias. Gastric slow waves and gastric emptying were assessed in rats 6 h following sham or burn injury. Animals were randomized to one sham-burn and seven burn groups: untreated; two groups of saline treated (control); insulin treated (5 IU/kg); cyclooxygenase-2 inhibitor treated (10 mg/kg); ghrelin treated (2 nmol/rat); and gastric electrical stimulation treated. It was found that 1) severe burn injury impaired gastric slow waves postprandially and delayed gastric emptying; 2) the impairment in gastric slow waves included a decrease in the slow-wave frequency and in the percentage of normal slow waves, and an increase in the percentage of bradygastria (P = 0.001, 0.01, and 0.01, respectively vs. preburn values). None of the gastric slow-wave parameters was significantly correlated with gastric emptying; 3) cyclooxygenase-2 inhibitor normalized burn-induced delayed gastric emptying (P = 0.3 vs. sham-burn), but not gastric dysrhythmias (P < 0.002 vs. sham), whereas insulin normalized both gastric emptying (P = 0.4 vs. sham-burn) and gastric dysrhythmias (P = 0.3 vs. sham-burn); 4) both gastric electrical stimulation and ghrelin accelerated burn-induced delayed gastric emptying (P = 0.002 and 0.04, respectively, vs. untreated burn). In conclusion, hyperglycemia alters gastric slow-wave activity and delayed gastric emptying, while cyclooxygenase-2 inhibition delays gastric emptying without altering gastric slow-wave activity.
Collapse
Affiliation(s)
- Hanaa S Sallam
- Department of Internal Medicine/Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas 77555-0655, USA
| | | | | | | |
Collapse
|
19
|
Potes CS, Lutz TA. Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 2010; 100:511-8. [PMID: 20226802 DOI: 10.1016/j.physbeh.2010.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/27/2010] [Accepted: 03/04/2010] [Indexed: 11/17/2022]
Abstract
Amylin is secreted by pancreatic beta-cells and is believed to be a physiological signal of satiation. Amylin's effect on eating has been shown to be mediated via a direct action at the area postrema (AP) via amylin receptors that are heterodimers of the calcitonin receptor core protein with a receptor activity modifying protein. Peripheral amylin leads to accumulation of cyclic guanosine monophosphate, phosphorylated extracellular-signal regulated kinase 1/2 and c-Fos protein in AP neurons. The particular amylin-activated AP neurons mediating its anorexigenic action seem to be noradrenergic. The central pathways mediating amylin's effects have been characterized by lesioning and tracing studies, identifying important connections from the AP to the nucleus of the solitary tract and lateral parabrachial nucleus. Amylin was shown to interact, probably at the brainstem, with other signals involved in the short term control of food intake, namely cholecystokinin, glucagon-like peptide 1 and peptide YY. Amylin also interacts with the adiposity signal leptin; this interaction, which is thought to involve the hypothalamus, may have important implications for the development of new and improved hormonal obesity treatments. In conclusion, amylin actions on food intake seem to reside primarily within the brainstem, and the associated mechanisms are starting to be unraveled. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
20
|
Samsom M, Bharucha A, Gerich JE, Herrmann K, Limmer J, Linke R, Maggs D, Schirra J, Vella A, Wörle HJ, Göke B. Diabetes mellitus and gastric emptying: questions and issues in clinical practice. Diabetes Metab Res Rev 2009; 25:502-14. [PMID: 19610128 DOI: 10.1002/dmrr.974] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is long known that both type 1 and type 2 diabetes can be associated with changes in gastric emptying; a number of publications have linked diabetes to delayed gastric emptying of variable severity and often with poor relationship to gastrointestinal symptomatology. In contrast, more recent studies have reported accelerated gastric emptying when adjusted for glucose concentration in patients with diabetes, indicating a reciprocal relationship between gastric emptying and ambient glucose concentrations. This review proposes that gastroparesis or gastroparesis diabeticorum, a severe condition characterized by a significant impairment of gastric emptying accompanied by severe nausea, vomiting, and malnutrition, is often overdiagnosed and not well contrasted with delays in gastric emptying. The article offers a clinically relevant definition of gastroparesis that should help differentiate this rare condition from (often asymptomatic) delays in gastric emptying. The fact that delayed gastric emptying can also be observed in non-diabetic individuals under experimental conditions in which hyperglycaemia is artificially induced suggests that a delay in gastric emptying rate when blood glucose concentrations are high is actually an appropriate physiological response to hyperglycaemia, slowing further increases in blood glucose. The article discusses the strengths and weaknesses of various methodologies for assessing gastric emptying, especially with respect to the diabetes population, and reviews newer diabetes therapies that decelerate the rate of gastric emptying. These therapies may be a beneficial tool in managing postprandial hyperglycaemia because they attenuate rapid surges in glucose concentrations by slowing the delivery of meal-derived glucose.
Collapse
Affiliation(s)
- Melvin Samsom
- University Medical Center St Radboud, Gastroenterology, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Pramlintide, the first member of a new class of drugs for the treatment of insulin-using patients with type 2 or type 1 diabetes mellitus, is an analog of the peptide hormone amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. Reductions in postprandial glucose and bodyweight are important, since postprandial hyperglycemia is associated with an increased risk of microvascular and macrovascular complications, and increased weight is an independent risk factor for cardiovascular disease. Pramlintide is generally well tolerated, with the most frequent treatment-emergent adverse event being mild to moderate nausea, which decreases over time. Pramlintide treatment is also associated with improvements in markers of oxidative stress and cardiovascular risk and improved patient-reported treatment satisfaction. These factors make pramlintide an attractive option for the treatment of postprandial hyperglycemia in patients with diabetes using mealtime insulin.
Collapse
Affiliation(s)
- Steve Edelman
- Division of Diabetes/Metabolism, VA San Diego Healthcare Center, San Diego, California 92161, USA.
| | | | | |
Collapse
|
22
|
Michel S, Becskei C, Erguven E, Lutz TA, Riediger T. Diet-derived nutrients modulate the effects of amylin on c-Fos expression in the area postrema and on food intake. Neuroendocrinology 2007; 86:124-35. [PMID: 17703089 DOI: 10.1159/000107579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 07/13/2007] [Indexed: 11/19/2022]
Abstract
The pancreatic hormone amylin decreases food intake via activation of area postrema (AP) neurons. We investigated whether amylin's potency to reduce food intake and to induce c-Fos expression in the AP/nucleus of the solitary tract region is affected by the feeding conditions and specifically by the macronutrient composition of the diet. Whereas a low dose of amylin (5 microg/kg s.c.) induced very little c-Fos expression in ad libitum chow fed rats, it caused a strong c-Fos expression in 24-hour food-deprived rats and in rats that received a nutrient-deficient non-caloric mash (NCM; vanilla-flavoured cellulose) 24 h before injection. To reveal the contribution of single nutrients to the low c-Fos expression after chow feeding, amylin-induced c-Fos was analyzed after feeding NCM that was selectively supplemented with glucose, fat (lard), or protein (casein), matching the intake of these nutrients of chow-fed rats. While the rats fed NCM supplemented with glucose or fat displayed an equally strong amylin-induced activation as fasted rats or rats fed plain NCM, a significantly lower c-Fos expression was observed in rats fed a protein-supplemented NCM or a NCM containing all three nutrients. In line with this lower activation, the same dose of amylin failed to reduce food intake in NCM/protein-fed rats, while amylin caused a reduction in feeding when animals received NCM, NCM/glucose, or NCM/fat. Interestingly, amylin effectively reduced food intake in ad libitum chow fed rats despite the low level of amylin-induced c-Fos expression in the AP under these conditions. We conclude that the anorectic potential of amylin may be attenuated by diet-derived proteins, whereas this effect appears to be overridden when the amount of carbohydrates/fat is high relative to the protein content, such as, e.g., in standard chow.
Collapse
Affiliation(s)
- Signe Michel
- Institute of Veterinary Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Jeha GS, Heptulla RA. Newer therapeutic options for children with diabetes mellitus: theoretical and practical considerations. Pediatr Diabetes 2006; 7:122-38. [PMID: 16629719 DOI: 10.1111/j.1399-543x.2006.00159.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies in adult patients with type 1 diabetes mellitus (T1DM) and T2DM have examined the potential utility, benefits, and side effects of agents that augment insulin secretion after oral ingestion of nutrients in comparison with intravenous nutrient delivery, the so-called incretins. Two families of incretin-like substances are now approved for use in adults. Glucagon-like peptide-1 (GLP-1) or agents that bind to its receptor (exenatide, Byetta) or agents that inhibit its destruction [dipeptidyl peptidase-IV (DPP-IV) inhibitors, Vildagliptin] improve insulin secretion, delay gastric emptying, and suppress glucagon secretion while decreasing food intake without increasing hypoglycemia. Pramlintide, a synthetic amylin analog, also decreases glucagon secretion and delays gastric emptying, improves hemoglobin A1c (HbA1C), and facilitates weight reduction without causing hypoglycemia. We review the historical discovery of these agents, their physiology [corrected] and their current applications. Remarkably, only one or two studies have been reported in children. Pediatricians caring for children with T1DM and T2DM should become familiar with these agents and investigate their applicability, as they seem likely to enhance our therapeutic armamentarium to treat children with diabetes mellitus.
Collapse
Affiliation(s)
- George S Jeha
- Department of Pediatrics, Division of Pediatric Endocrinology [corrected] and Metabolism, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
25
|
Vella A, Lee JS, Camilleri M, Szarka LA, Burton DD, Zinsmeister AR, Rizza RA, Klein PD. Effects of pramlintide, an amylin analogue, on gastric emptying in type 1 and 2 diabetes mellitus. Neurogastroenterol Motil 2002; 14:123-31. [PMID: 11975712 DOI: 10.1046/j.1365-2982.2002.00311.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pramlintide delays gastric emptying, possibly by a centrally mediated mechanism. Our aim was to determine whether the effects of pramlintide on gastric emptying differ in people with type 1 or type 2 diabetes who had no history of complications. Using a randomized, three-period, two-dose, crossover design, we studied the effects of 0, 30, or 60 microg t.i.d. pramlintide subcutaneously for 5 days each in six type 1 and six type 2 diabetic subjects. Gastric emptying of solids was measured by 13C-Spirulina breath test. Plasma pancreatic polypeptide (HPP) response to the test meal was also measured. Relative to placebo [t 50% 91 +/- 6 min (means +/- SEM)], pramlintide equally delayed gastric emptying following 30 or 60 microg t.i.d. (268 +/- 37 min, 329 +/- 49 min, respectively; P < 0.01]. Postprandial HPP levels were lower in response to 30 and 60 microg pramlintide compared to placebo. There were no significant differences in the effects on gastric emptying or HPP levels between type 1 and type 2 diabetic subjects. Pramlintide delays gastric emptying in diabetes unassociated with clinically detected complications. Further studies are needed in diabetic patients with impaired gastric motor function.
Collapse
Affiliation(s)
- A Vella
- Enteric Neuroscience Program, Gastroenterology Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Horowitz M, O'Donovan D, Jones KL, Feinle C, Rayner CK, Samsom M. Gastric emptying in diabetes: clinical significance and treatment. Diabet Med 2002; 19:177-194. [PMID: 11918620 DOI: 10.1046/j.1464-5491.2002.00658.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The outcome of recent studies has led to redefinition of concepts relating to the prevalence, pathogenesis and clinical significance of disordered gastric emptying in patients with diabetes mellitus. The use of scintigraphic techniques has established that gastric emptying is abnormally slow in approx. 30-50% of outpatients with long-standing Type 1 or Type 2 diabetes, although the magnitude of this delay is modest in many cases. Upper gastrointestinal symptoms occur frequently and affect quality of life adversely in patients with diabetes, although the relationship between symptoms and the rate of gastric emptying is weak. Acute changes in blood glucose concentration affect both gastric motor function and upper gastrointestinal symptoms. Gastric emptying is slower during hyperglycaemia when compared with euglycaemia and accelerated during hypoglycaemia. The blood glucose concentration may influence the response to prokinetic drugs. Conversely, the rate of gastric emptying is a major determinant of post-prandial glycaemic excursions in healthy subjects, as well as in Type 1 and Type 2 patients. A number of therapies currently in development are designed to improve post-prandial glycaemic control by modulating the rate of delivery of nutrients to the small intestine.
Collapse
Affiliation(s)
- M Horowitz
- Department of Medicine, University of Adelaide, Adelaide, South Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Nyholm B, Brock B, Ørskov L, Schmitz O. Amylin receptor agonists: a novel pharmacological approach in the management of insulin-treated diabetes mellitus. Expert Opin Investig Drugs 2001; 10:1641-52. [PMID: 11772274 DOI: 10.1517/13543784.10.9.1641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amylin is a peptide hormone which is co-secreted with insulin from the pancreatic beta-cell. Type 1 diabetic individuals and some Type 2 diabetic individuals are characterised by amylin deficiency. Animal experiments have revealed several actions of amylin on intermediary metabolism, of these some have been demonstrated to be of potential physiological relevance in humans. In particular amylin appears to have important actions in controlling prandial glucose homeostasis. The peptide hormone inhibits postprandial glucagon secretion and delays gastric emptying thereby modifying postprandial hyperglycaemia in diabetic individuals which presumably adds to overall glycaemic control without a concomitant increase in the number of severe hypoglycaemic episodes. Moreover, amylin acts as a satiety agent. Amylin replacement may therefore improve glycaemic control in diabetes mellitus. However, human amylin exhibits physicochemical properties predisposing the peptide hormone to aggregate and form amyloid fibres, which makes it unsuitable for pharmacological use. A stable analogue, pramlintide, with actions and pharmacokinetic and pharmacodynamic properties similar to the native peptide has therefore been developed. The efficacy and safety of pramlintide administration to diabetic individuals have been tested in a large number of clinical trials. It is the aim of this review to describe possible (patho)physiological actions of amylin as demonstrated in animal and human models, to discuss the background for potential amylin (analogue) replacement in diabetes mellitus and to review results from clinical trials with the amylin receptor analogue pramlintide.
Collapse
Affiliation(s)
- B Nyholm
- Department of Medicine (Endocrinology and Diabetes), Aarhus Kommunehospital, University Hospital of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
28
|
Ye JM, Lim-Fraser M, Cooney GJ, Cooper GJ, Iglesias MA, Watson DG, Choong B, Kraegen EW. Evidence that amylin stimulates lipolysis in vivo: a possible mediator of induced insulin resistance. Am J Physiol Endocrinol Metab 2001; 280:E562-9. [PMID: 11254462 DOI: 10.1152/ajpendo.2001.280.4.e562] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the role of amylin in lipid metabolism and its possible implications for insulin resistance. In 5- to 7-h-fasted conscious rats, infusion of rat amylin (5 nmol/h for 4 h) elevated plasma glucose, lactate, and insulin (P <0.05 vs. control, repeated-measures ANOVA) with peak values occurring within 60 min. Despite the insulin rise, plasma nonesterified fatty acids (NEFA) and glycerol were also elevated (P < 0.001 vs. control), and these elevations (80% above basal) were sustained over the 4-h infusion period. Although unaltered in plasma, triglyceride content in liver was increased by 28% (P < 0.001) with a similar tendency in muscle (18%, P = 0.1). Infusion of the rat amylin antagonist amylin-(8-37) (125 nmol/h) induced opposite basal plasma changes to amylin, i.e., lowered plasma NEFA, glycerol, glucose, and insulin levels (all P < 0.05 vs. control); additionally, amylin-(8-37) blocked amylin-induced elevations of these parameters (P < 0.01). Treatment with acipimox (10 mg/kg), an anti-lipolytic agent, before or after amylin infusion blocked amylin's effects on plasma NEFA, glycerol, and insulin but not on glucose and lactate. We conclude that amylin could exert a lipolytic-like action in vivo that is blocked by and is opposite to effects of its antagonist amylin-(8-37). Further studies are warranted to examine the physiological implications of lipid mobilization for amylin-induced insulin resistance.
Collapse
Affiliation(s)
- J M Ye
- Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Reidelberger RD, Arnelo U, Granqvist L, Permert J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 2001; 280:R605-11. [PMID: 11171636 DOI: 10.1152/ajpregu.2001.280.3.r605] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK is a physiological inhibitor of gastric emptying and food intake. The pancreatic peptide amylin exerts similar actions, yet its physiological importance is uncertain. Objectives were to compare the dose-dependent effects of intravenous infusion of amylin and CCK-8 on gastric emptying and food intake in rats, and to assess whether physiological doses of amylin are effective. Amylin and CCK-8 inhibited gastric emptying with mean effective doses (ED(50)s) of 3 and 35 pmol x kg(-1) x min(-1) and maximal inhibitions of 60 and 65%, respectively. Amylin and CCK-8 inhibited food intake with ED(50)s of 8 and 14 pmol x kg(-1) x min(-1) and maximal inhibitions of 78 and 69%, respectively. The minimal effective amylin dose for each effect was 1 pmol x kg(-1) x min(-1). Our previous work suggests that this dose increases plasma amylin by an amount comparable to that produced by a meal. These results support the hypothesis that amylin acts as a hormonal signal to the brain to inhibit gastric emptying and food intake and that amylin produces satiety in part through inhibition of gastric emptying.
Collapse
|
30
|
Parkes D, Jodka C, Smith P, Nayak S, Rinehart L, Gingerich R, Chen K, Young A. Pharmacokinetic actions of exendin-4 in the rat: Comparison with glucagon-like peptide-1. Drug Dev Res 2001. [DOI: 10.1002/ddr.1195] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Huang Y, Lu SJ, Dong JX, Li F. New proof of neuro-endocrine-immune network expression of islet amyloid polypeptide in plasma cells in gastric mucosa of peptic ulcer patients. World J Gastroenterol 2000; 6:417-418. [PMID: 11819614 PMCID: PMC4688768 DOI: 10.3748/wjg.v6.i3.417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Abstract
Obesity is a well-known risk factor for the development of Type 2 diabetes mellitus. The management of the obese diabetic patient remains a challenge for the clinician but, in any case, weight reduction should be considered as a key objective. In this respect, several antiobesity drugs have demonstrated potential. However, while fenfluramine and dexfenfluramine have been shown to promote weight loss and to directly improve insulin sensitivity, being two mechanisms contributing to better blood glucose control in obese Type 2 diabetic patients, they were recently withdrawn due to safety problems. Sibutramine, a new selective norepinephrine and serotonin reuptake inhibitor, promotes weight loss by decreasing food intake, an effect which leads to a mild improvement (significant in patients losing > or =5% of initial body weight) of blood glucose control in obese diabetic patients. Similarly, orlistat, a selective gastrointestinal lipase inhibitor which increases faecal fat losses, enhances diet-induced weight reduction and improves both blood glucose control and vascular risk profile, especially dyslipidaemia, in obese Type 2 diabetic patients. Further studies are required to better identify good responders to pharmacotherapy and specify the role of antiobesity agents in the overall long-term management of obese subjects with Type 2 diabetes. Other novel pharmacological approaches deserve further consideration, for instance beta-3 agonists aiming to increase energy expenditure, drugs interfering with tumor necrosis factor-alpha (TNF-alpha) or free fatty acid release by the adipose tissue or agents that slow gastric emptying. However, until now, results regarding efficacy and/or safety have been disappointing or preliminary in humans.
Collapse
Affiliation(s)
- A J Scheen
- Division of Diabetes, Nutrition and Metabolic Diseases, Department of Medicine, University of Liège, CHU Sart Tilman, B-4000 Liège 1, Belgium.
| | | |
Collapse
|