1
|
Buttar PA, Mazhar MU, Khan JZ, Jamil M, Abid M, Tipu MK. Saccharomyces boulardii (CNCM I-745) ameliorates Ovalbumin-induced atopic dermatitis by modulating the NF-κB signaling in skin and colon. Arch Dermatol Res 2025; 317:500. [PMID: 40009233 DOI: 10.1007/s00403-025-04057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Atopic dermatitis (AD) is a long-lasting allergic disorder characterized by itching, redness, swelling, dry skin, scaling, inflammation, and tissue damage. The exact cause of AD is still unknown. Steroid medications are frequently utilized in treating AD, but their prolonged use can result in complications. Multiple studies suggest probiotics may regulate the immune system, boost immune functionality, or reduce overactive immune responses. The current study investigated the anti-inflammatory, antioxidant, and immunomodulatory role of Saccharomyces boulardii in Ovalbumin (OVA)-induced AD in a murine model. Balb/c mice were sensitized and challenged with OVA to induce AD-like lesions. S. boulardii 1 × 109 CFU/ml/day/mice was orally administrated either as a pretreatment (administered 7 days before OVA induction and continued till day 28) or concurrent treatment (administered from day 1 and continued till day 28). Dexamethasone (5 mg/kg/day) was used as a standard treatment. S. boulardii alleviated the macroscopic and behavioral changes. Blood inflammatory cells were significantly reduced. Serum IgE levels were decreased. Oxidative stress and histopathological changes (epidermal/dermal thickness, inflammatory cells, collagen deposition) in skin tissue were improved. Similarly, the colon's antioxidant capacity and histological architecture were also maintained. Expression of proinflammatory cytokines like TNF-⍺ and IL-1β were significantly reduced in skin and colon tissue. The probiotic S. boulardii under study reduced inflammation by downregulating NF-κB signaling in both skin and colon tissue. This study provides a basis for a possible gut-skin axis, which can be targeted to relieve AD symptoms.
Collapse
Affiliation(s)
- Parveen Akhtar Buttar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maryam Jamil
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Abid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Ertürk Gürkan S, Gürkan M, Yanik EB, Kutlu E, Saritunç V, Güneş B, İbiş EC. Assessing spinel zinc ferrite nanoparticles in aquatic ecosystems: Toxic threat or beneficial detoxifier for aquatic life? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107218. [PMID: 39823828 DOI: 10.1016/j.aquatox.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFe2O4-MNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX). Mussels were exposed to nominal concentrations of ZnFe2O4-MNPs (1, 10, 100 mg/L) both individually and with TMX. Physiological assessments included measuring antioxidant enzyme levels (superoxide dismutase, catalase, glutathione S-transferase) and oxidative stress markers (malondialdehyde). Results showed that ZnFe2O4-MNPs increased antioxidant activity but also caused dose-dependent pathological changes. In contrast, combined exposure with TMX significantly (p < 0.05) reduced antioxidant defenses, indicated by lower superoxide dismutase (SOD) levels and higher malondialdehyde (MDA) concentrations, suggesting oxidative stress and potential cellular damage. These findings highlight the need for comprehensive toxicity assessments of nanoparticles in aquatic environments and advocate for their complete removal from water sources post-treatment. Further research is crucial to define the toxicity profiles of spinel ferrites to ensure their safe application in environmental remediation.
Collapse
Affiliation(s)
- Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Ece Büşra Yanik
- Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey.
| | - Elif Kutlu
- Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey.
| | - Volkan Saritunç
- Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey.
| | - Berkay Güneş
- Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey.
| | - Ezgi Can İbiş
- Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey.
| |
Collapse
|
3
|
Ertürk Gürkan S, Gürkan M, Sarıtunç V, İbiş EC, Güneş B. Evaluation of Possible Toxic Effects of Boric Acid in Palourde Clam (Ruditapes decussatus) Through Histological Changes and Oxidative Responses. Biol Trace Elem Res 2025; 203:1151-1161. [PMID: 38743317 PMCID: PMC11750883 DOI: 10.1007/s12011-024-04230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The extensive utilization of boric acid, particularly in industrial and agricultural sectors, also engenders concerns regarding the toxicity of boron and its derivatives. Particularly, the behavior of boric acid at increasing concentrations in aquatic ecosystems remains poorly understood. In light of these concerns, this study aimed to investigate the toxicity of boric acid in bivalves, which occupy a critical position in the food chain. Specimens of Ruditapes decussatus, which had not been previously exposed to any pollutants and were cultivated under controlled conditions, were subjected to three different concentrations of boric acid (0.05 mg/L, 0.5 mg/L, and 5 mg/L) in vitro for 96 h. Following the exposure period, the specimens were assessed for histological changes (the mantle, gill, and digestive gland) and specific oxidative parameters (the gill and digestive gland), including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase, and lipid peroxidation (LPO). The research findings indicated that boric acid primarily induced oxidative damage at the applied concentrations and increased antioxidant levels (p < 0.05). Moreover, although no significant histopathological abnormalities were observed in the examined histological sections, subtle changes were noted. This study evaluated the potential adverse effects of boric acid on bivalves, which are crucial components of the aquatic food chain, utilizing histological and specific physiological parameters following its introduction into aquatic environments. It is anticipated that the findings of this study will contribute to the development of new insights and perspectives regarding the extensive use of boric acid.
Collapse
Affiliation(s)
- Selin Ertürk Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Mert Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Volkan Sarıtunç
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ezgi Can İbiş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Berkay Güneş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
4
|
Yaman T, Akkoyun HT, Bayramoğlu Akkoyun M, Karagözoğlu F, Melek Ş, Keleş ÖF, Bengü AŞ. Assessment of the effect of sodium tetraborate on oxidative stress, inflammation, and apoptosis in lead-induced nephrotoxicity. Drug Chem Toxicol 2025; 48:150-162. [PMID: 38804252 DOI: 10.1080/01480545.2024.2358067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Exposure to Pb, a toxic heavy metal, is a risk factor for renal damage. Borax, an essential trace element in cellular metabolism, is a naturally occurring compound found in many foods. This study investigated the effects of sodium tetraborate (ST), a source of borax, on renal oxidative stress and inflammation in rats exposed to Pb. Wistar Albino rats (n = 24) were divided into four groups: Control (0.5 mL, i.p. isotonic), Pb (50 mg/kg/day/i.p.), ST (4.0 mg/kg/day/oral), and Pb + ST groups. At the end of the five-day experimental period, kidney tissue samples were obtained and analyzed. Histopathologically, the Pb-induced damage observed in the Pb group improved in the Pb + ST group. Immunohistochemically, Pb administration increased the expression of inducible nitric oxide synthase, cyclooxygenase-2, and caspase-3. When evaluated biochemically, Pb application inhibited catalase and glutathione peroxidase (GSH-Px) enzyme activities and activated superoxide dismutase enzyme activity. An increase in malondialdehyde levels was considered an indicator of damage. ST application increases glutathione peroxidase enzyme activity and decreased malondialdehyde levels. These results indicate that ST might play a protective role against Pb-induced renal damage via the upregulation of renal tissue antioxidants and cyclooxygenase-2, inducible nitric oxide synthase, and caspase-3 immunoexpression.
Collapse
Affiliation(s)
- Turan Yaman
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - H Turan Akkoyun
- Department of Physiology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | | | - Fatma Karagözoğlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Şule Melek
- Department of Surgery, Faculty of Veterinary Medicine, Bingol Universıty, Bingöl, Turkey
| | - Ömer Faruk Keleş
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Aydın Şükrü Bengü
- Vocational School of Health Services, Bingöl University, Bingöl, Turkey
| |
Collapse
|
5
|
Unal I, Erturk Gurkan S, Aydogdu B. Assessment of toxicity and oxidative stress induced by rare earth oxide nanoparticles in brine shrimp (Artemia salina). CHEMOSPHERE 2024; 367:143683. [PMID: 39510266 DOI: 10.1016/j.chemosphere.2024.143683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
This study meticulously explored the oxidative stress effects induced by lanthanum (III) oxide (La2O3), erbium (III) oxide (Er2O3), and yttrium (III) oxide (Y2O3) nanoparticles on Artemia salina, with the objective of evaluating the environmental toxicity of rare earth oxide nanoparticles. The characterization of the nanoparticles was conducted using a suite of advanced techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. Artemia salina, a widely recognized model organism in ecotoxicological research, was exposed to these nanoparticles under meticulously controlled laboratory conditions. The investigation focused on quantifying oxidative stress markers, such as reduced glutathione (GSH), malondialdehyde (MDA), and antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST). The findings revealed significant alterations in these biomarkers, indicating nanoparticle-induced oxidative stress, which varied according to the type of nanoparticle and the duration of exposure.
Collapse
Affiliation(s)
- Ilkay Unal
- Munzur University, Faculty of Fine Arts, Design and Architecture Education, Department of Gastronomy and Culinary Arts, Tunceli, Turkiye
| | - Selin Erturk Gurkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Canakkale, Turkiye.
| | - Burcu Aydogdu
- Munzur University, Faculty of Faculty of Engineering, Department of Mechanical Engineering, Tunceli, Turkiye
| |
Collapse
|
6
|
Ter Ü, Ertürk Gürkan S, Gürkan M, Kunili IE, Aksoy E. Pathological and oxidative stress responses of Mytilus galloprovincialis to Vibrio mediterranei infection: An in vivo challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109889. [PMID: 39250984 DOI: 10.1016/j.fsi.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Since the identification of Vibrio mediterranei as a causative agent in mass mortalities of pen shells across the Mediterranean, elucidating its pathogenicity, virulence, and interactions with other bivalves has gained importance. While the cellular and immune responses of bivalves to various Vibrio species have been extensively studied, the infectious characteristics of this Vibrio species, particularly in the context of pen shell outbreaks, remain unclear for other bivalves. Therefore, to evaluate its pathogenicity, we investigated the histological and oxidative effects on the Mediterranean mussel (Mytilus galloprovincialis), a key species in aquaculture. Two distinct infection setups were established: one involving the inoculation of seawater with the bacterial isolate and another involving direct injection of the bacteria into the mussels. After a 24-h exposure period, histological evaluations were conducted on the mantle, gill, and digestive gland tissues of the mussels. Additionally, measurements of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation levels were performed in the gill and digestive gland tissues. Oxidative responses were significantly elevated in both infection setups compared to the control group, with the directly injected samples exhibiting the highest oxidative responses (p < 0.05). Histological findings indicated that tissue-specific responses to host-pathogen interactions were consistent under both infection conditions. Notable observations included intense hemocytic infiltration in tissues, epithelial hyperplasia, and vacuolization in the gills, as well as focal necrotic areas in the digestive gland. The findings of this study indicate that V. mediterranei, a relatively novel pathogen, can provoke significant acute immune responses and tissue-level reactions in M. galloprovincialis, a species that is both widely distributed and vital to the food chain. These insights into the potential susceptibility of mussels underscore the need for further comprehensive research and inform the development of effective management strategies.
Collapse
Affiliation(s)
- Ümmügülsüm Ter
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Ibrahim Ender Kunili
- Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale, Turkey
| | - Emircan Aksoy
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| |
Collapse
|
7
|
Özkan Karasu Y, Maden O, Çanakçı CF. Oxidative damage biomarkers and antioxidant enzymes in saliva of patients with peri-implant diseases. Int J Implant Dent 2024; 10:43. [PMID: 39400614 PMCID: PMC11473456 DOI: 10.1186/s40729-024-00562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES 8-hydroxydeoxyguanosine (8-OHdG) and Malondialdehyde (MDA) are commonly used as markers to evaluate oxidative DNA and Lipid damage in disorders including chronic inflammatory diseases. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) protect tissues against oxidative injury from free oxygen radicals generated by various metabolic processes. The aim of this study was to evaluate 8-OHdG and MDA levels, and SOD and GPx activities in whole saliva of patients with peri-implant diseases. MATERIALS AND METHODS A cross-sectional study was conducted on a sum of 60 age gender balanced; peri-implantitis (n = 20), peri-mucositis (n = 20) and healthy (n = 20) individuals. Unstimulated whole saliva samples were collected and to determine the clinical condition of each subject; the plaque index (PI), gingival index (GI), peri-implant probing pocket depth (PIPD), peri-implant presence of bleeding on probing (BOP) (with/without suppuration) and radiographic signs of crestal bone loss (BL) were measured. The salivary 8-OHdG level was measured using the ELISA method. SOD, GPx activities and MDA levels were determined spectrophotometrically. RESULTS A total of 60 individuals had evaluations of 318 implants. In comparison to the peri-mucositis and peri-implantitis groups, the healthy group had significantly lower PI and GI scores (p < 0.001). The PIPD value differed amongst the groups, with the peri-implantitis group having the highest value (p < 0.001). Compared to the peri-mucositis and control groups, the peri-implantitis group had a significantly higher BL score (p < 0.001 and p < 0.001, respectively). The peri-implantitis group showed a significantly higher 8-OHdG level (p < 0.001; p < 0.001 respectively) than the peri-mucositis and control groups. Compared to the peri-mucositis and control groups, the peri-implantitis group had a significantly higher MDA level (p < 0.001 and p < 0.001, respectively). The peri-implantitis group had a significantly higher SOD level (p < 0.001 and p < 0.001, respectively) in comparison to the peri-mucositis and control groups. There was no significant difference in GPx levels between the peri-mucositis and control groups (p > 0.05), while the peri-implantitis group had significantly lower GPx levels than the peri-mucositis and control groups (p < 0.001 and p < 0.001, respectively). CONCLUSIONS Elevated levels of oxidative stress in saliva may indicate the onset of pathological bone loss surrounding the implant and may be an indication of peri-implantitis. CLINICAL RELEVANCE In peri-implant diseases, changes may occur in the levels of 8-OHdG, MDA, SOD and GPx in saliva, which may lead to a deterioration in the oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Yerda Özkan Karasu
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey.
| | - Oğuzhan Maden
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| | - Cenk Fatih Çanakçı
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Gürkan M, Ertürk Gürkan S, Künili İE, Acar S, Özel OT, Düzgüneş ZD, Türe M. Evaluation of the health of Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) distributed in the Çanakkale strait, Turkey. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106492. [PMID: 38598959 DOI: 10.1016/j.marenvres.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The observation of mortality in Mediterranean mussels (Mytilus galloprovincialis) distributed in the Çanakkale Strait in recent years was influential in developing the research question for this study. In this study, the presence of bacteria (Vibrio spp.) and parasites (Marteilia spp. and Haplosporidium spp.) in mussels collected from Kumkale, Kepez, and Umurbey stations in the Çanakkale Strait was investigated seasonally. Microbiological findings, histopathology, oxidative stress enzymes and their gene expressions, lipid peroxidation, lysosomal membrane stability, and changes in haemolymph were examined. In summer samples, both the defence system and the extent of damage were higher in gill tissue. In winter samples, enzyme activities and lipid peroxidation were found to be predominantly higher in digestive gland tissues. Histological examinations and Hemacolor staining revealed the presence of protozoan cysts, and for bacterial examination, molecular analysis performed after culturing revealed the presence of 7 Vibrio species. While the total numbers of heterotrophic bacteria detected in all samples were at acceptable levels, the predominance of Vibrio spp. numbers among the total heterotrophic bacteria detected in almost all samples were noteworthy. The total hemocyte count was calculated as 5.810(4)±0.58 (cells/mm3) in winter and 7.210(4)±1.03 (cells/mm3) in summer. These factors are considered to be possible causes of mussel mortality.
Collapse
Affiliation(s)
- Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye.
| | - İbrahim Ender Künili
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Fishing and Fish Processing Technology, Çanakkale, Turkiye
| | - Seçil Acar
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Marine Sciences and Limnology, Çanakkale, Turkiye
| | - Osman Tolga Özel
- Central Fisheries Research Institute, Department of Aquaculture, Trabzon, Turkiye
| | - Zehra Duygu Düzgüneş
- Central Fisheries Research Institute, Department of Breeding and Genetics, Trabzon, Turkiye
| | - Mustafa Türe
- Central Fisheries Research Institute, Department of Fisheries Health, Trabzon, Turkiye
| |
Collapse
|
9
|
Walravens M, Koeken I, Vanden Berghe T. Therapeutic exploitation of ferroptosis. Biochem Soc Trans 2024; 52:693-706. [PMID: 38629629 DOI: 10.1042/bst20230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.
Collapse
Affiliation(s)
- Magali Walravens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ine Koeken
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Diab R, Choufani A, Dagher J, Chahine N. The Influence of Circadian Rhythm on the Antioxidant Capacity of Saliva in Periodontal Diseases. Cureus 2024; 16:e56174. [PMID: 38618333 PMCID: PMC11015908 DOI: 10.7759/cureus.56174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Background Saliva has a powerful antioxidant activity proposing that it might have a protective role in the oral cavity. It is yet unclear, how circadian rhythm might affect this activity. Objective The main goal of this study was to compare the antioxidant status of saliva in patients with periodontal diseases (PD) to that of healthy people on a diurnal basis. Material and methods A total of 18 periodontal healthy individuals and 18 patients with chronic periodontitis were chosen. Samples of saliva were collected in the morning between 6:00 and 8:00 and in the evening between 6:00 and 8:00 (both stimulated and non-stimulated). The amount of glutathione (GSH), malondialdehyde (MDA), and total antioxidant status (TAS) in the salivary samples were analyzed, and its flow was also assessed. In addition, the scavenging capacity of saliva was tested in three systems generating oxygen free radicals. Results Results showed that GSH and TAS concentrations in the evening saliva of healthy subjects were significantly higher than those in the morning saliva, while MDA levels decreased (p<0.05). Conversely, there was no significant increase in GSH and TAS levels in the evening saliva of subjects with PD, and lipid peroxidation remained constant. On the other hand, the evening saliva of healthy subjects but not of subjects with PD was significantly more potent in scavenging free radicals in vitro than the morning saliva, especially for the superoxide (O2.-) radical (p<0.05). Moreover, scavenging activity was higher in stimulated than non-stimulated saliva. This activity was higher in evening saliva compared to the morning one and greater in healthy subjects compared to patients with PD (p<0.05). Conclusion A balance exists between oxidative stress and antioxidant mechanisms to maintain homeostasis in the oral cavity. This balance is deregulated in patients with PD as their saliva is unable to properly scavenge free radicals that might potentially increase over the day. Antioxidant supplements may be used in accordance with the circadian rhythm to minimize oxidative damage.
Collapse
Affiliation(s)
- Randa Diab
- Faculty of Dentistry, Lebanese University, Beirut, LBN
| | | | - Jihad Dagher
- Faculty of Dentistry, Lebanese University, Beirut, LBN
| | | |
Collapse
|
11
|
Lee JE, Jeon HJ, Lee OJ, Lim HG. Diagnosis of diabetes mellitus using high frequency ultrasound and convolutional neural network. ULTRASONICS 2024; 136:107167. [PMID: 37757513 DOI: 10.1016/j.ultras.2023.107167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The incidence of diabetes mellitus has been increasing, prompting the search for non-invasive diagnostic methods. Although current methods exist, these have certain limitations, such as low reliability and accuracy, difficulty in individual patient adjustment, and discomfort during use. This paper presents a novel approach for diagnosing diabetes using high-frequency ultrasound (HFU) and a convolutional neural network (CNN). This method is based on the observation that glucose in red blood cells (RBCs) forms glycated hemoglobin (HbA1c) and accumulates on its surface. The study incubated RBCs with different glucose concentrations, collected acoustic reflection signals from them using a custom-designed 90-MHz transducer, and analyzed the signals using a CNN. The CNN was applied to the frequency spectra and spectrograms of the signal to identify correlations between changes in RBC properties owing to glucose concentration and signal features. The results confirmed the efficacy of the CNN-based approach with a classification accuracy of 0.98. This non-invasive diagnostic technology using HFU and CNN holds promise for in vivo diagnosis without the need for blood collection.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyeon-Ju Jeon
- Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems, Seoul 07071, Republic of Korea
| | - O-Joun Lee
- Department of Artificial Intelligence, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Jain SK, Justin Margret J, Lally M. Positive association of acetylcholinesterase (AChE) with the neutrophil-to-lymphocyte ratio and HbA1c, and a negative association with hydrogen sulfide (H 2S) levels among healthy African Americans, and H 2S-inhibition and high-glucose-upregulation of AChE in cultured THP-1 human monocytes. Free Radic Biol Med 2023; 209:185-190. [PMID: 37866755 DOI: 10.1016/j.freeradbiomed.2023.10.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The incidence of Alzheimer's disease (AD) is higher in people over the age of 65 and in African Americans (AA). Elevated acetylcholinesterase (AChE) activity has been considered a major player in the onset of AD symptoms. As a result, many FDA-approved AD drugs target AChE inhibition to treat AD patients. Hydrogen sulfide (H2S) is a signaling molecule known to downregulate oxidative stress and inflammation. The neutrophil-to-lymphocyte ratio (NLR) in the blood is widely used as a biomarker to monitor inflammation and immunity. This study examined the hypothesis that plasma AChE levels have a negative association with H2S levels and that a positive association exists between levels of NLR, HbA1c, and ROS with the AChE in the peripheral blood. The fasting blood sample was taken from 114 African Americans who had provided written informed consent approved by the IRB. The effect of H2S and high-glucose treatment on AChE activity levels was also investigated in THP-1 human monocytes. There was a significant negative relationship between AChE and the levels of H2S (r = -0.41, p = 0.001); a positive association between the levels of AChE with age (r = 0.26, p = 0.03), NLR (r = 0.23, p = 0.04), ROS (r = 0.23, p = 0.04) and HbA1c levels (r = 0.24, p = 0.04), in AA subjects. No correlation was seen between blood levels of AChE and acetylcholine (ACh). Blood creatinine had a negative correlation (r = -0.23, p = 0.04) with ACh levels. There was a significant effect of H2S on AChE inhibition and of high glucose in upregulating AChE activity in cultured monocytes. This study suggests hyperglycemia and lower H2S status can contribute to an increase in the AChE activity levels. Future clinical studies are needed to examine the potential benefits of supplementation with hydrogen sulfide pro-drugs/compounds in reducing the AChE and the cognitive dysfunctions associated with AD.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Marissa Lally
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| |
Collapse
|
13
|
Gök F, Ekin S, Karaman E, Erten R, Yıldız D, Bakır A. Total Sialic Acid, Antioxidant Enzyme Activities, Trace Elements, and Vitamin Status Before and After Surgery in Women with Uterine Myoma and Endometrial Cancer. Reprod Sci 2023; 30:2743-2757. [PMID: 37069473 DOI: 10.1007/s43032-023-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
The objective of present study was to examine endometrial tissue Be, As, Cr, Mo, Sr, Ti, Tl, Cu, Co, Se, Zn, Mn, Fe, Cd, Pb, Mg, P, erythrocytes CAT, SOD, GSH-Px, GSH, MDA, serum retinol, cholecalciferol, phylloquinone, TSA, LSA, TOS, and TAS status and to evaluate the relationships between the variables. The study had 110 participants; of these, 50 were women with uterine myoma (UM), 10 were women with endometrial cancer (EC), and 50 were healthy female subjects. In the study, vitamin analyses by HPLC and element analyses were determined using ICP-OES method. It was observed that EC group was significantly lower than healthy group in terms of levels of cholecalciferol (p < 0.05), phylloquinone (p < 0.01), GSH (p < 0.05), Fe (p < 0.05), and had a significant rise in Mg/Fe (p < 0.01) and Zn/Fe (p < 0.05) in preoperative period. UM group had significantly lower retinol (p < 0.05), phylloquinone (p < 0.001), GSH-Px (p < 0.01), GSH (p < 0.01), Cr (p < 0.01), Cu (p < 0.05), Mg (p < 0.01), and Zn (p < 0.01) levels than control group in preoperative period and significantly higher levels of MDA (p < 0.01), TSA (p < 0.01), and LSA (p < 0.01) than control group. It was found that significant associations were observed between Cu-CA 15-3 (r = 0.558, p = 0.016), Mn-CA 15-3 (r = 0.511, p = 0.030), P-CA 15-3(r = - 0.502, p = 0.034) and with UM, also between GSH-CA-125 (r = - 0.825, p = 0.022) and with EC group. The results of correlation analysis observed that concentrations of Cu, Mn, P, and GSH together with CA 15-3 and CA-125 levels might be important for monitoring patients with UM and EC before surgery.
Collapse
Affiliation(s)
- Fazilet Gök
- Department of Chemistry, Division of Biochemistry, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Suat Ekin
- Department of Chemistry, Division of Biochemistry, Science Faculty, Van Yuzuncu Yil University, Van, Turkey.
| | - Erbil Karaman
- Department of Gynecology and Obstetrics, Division of Gynecological Oncology, Van Yuzuncu Yil University, Van, Turkey
| | - Remzi Erten
- Department of Medical Pathology, Van Yuzuncu Yil University, Van, Turkey
| | - Damla Yıldız
- Department of Chemistry, Division of Biochemistry, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Ahmet Bakır
- Department of Chemistry, Division of Biochemistry, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
14
|
Apostolova N, Vezza T, Muntane J, Rocha M, Víctor VM. Mitochondrial Dysfunction and Mitophagy in Type 2 Diabetes: Pathophysiology and Therapeutic Targets. Antioxid Redox Signal 2023; 39:278-320. [PMID: 36641637 DOI: 10.1089/ars.2022.0016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Significance: Type 2 diabetes mellitus, which is related to oxidative stress and mitochondrial dysfunction, is one of the most prevalent diseases in the world. In the past decade, alterations in autophagy have been shown to play a fundamental role in the development and control of type 2 diabetes. Further, mitophagy has been recognized as a key player in eliminating dysfunctional mitochondria in this disease. Recent Advances: Recently, much progress has been made in understanding the molecular events associated with oxidative stress, mitochondrial dysfunction, and alterations in autophagy and mitophagy in type 2 diabetes. Critical Issues: Despite increasing evidence of a relationship between mitochondrial dysfunction, oxidative stress, and alterations of autophagy and mitophagy and their role in the pathophysiolology of type 2 diabetes, effective therapeutic strategies to combat the disease through targeting mitochondria, autophagy, and mitophagy are yet to be implemented. Future Directions: This review provides a wide perspective of the existing literature concerning the complicated interplay between autophagy, mitophagy, and mitochondrial dysfunction in type 2 diabetes. Further, potential therapeutic targets based on these molecular mechanisms are explored. Antioxid. Redox Signal. 39, 278-320.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Department of Pharmacology, University of Valencia, Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Teresa Vezza
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Jordi Muntane
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Institute of Biomedicine of Seville (IBiS), Department of General Surgery, Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Milagros Rocha
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Víctor M Víctor
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, FISABIO, Valencia, Spain
- Department of Physiology, University of Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
15
|
Chemlal H, Bournine L, Mimoune S, Boufeniche S, Beddou L, Bensalem S, Iguer-Ouada M. Close relationship between high HbA 1c levels and methemoglobin generation in human erythrocytes: The enhancement of oxidative stress in the process. J Diabetes Complications 2023; 37:108543. [PMID: 37331270 DOI: 10.1016/j.jdiacomp.2023.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of diabetic plasma on human red blood cells (RBCs) in order to highlight the amplification mechanisms of oxidative stress (OS) in relation to methemoglobin (metHb) production, a potential bio-indicator that could be related to diabetes disease. RESEARCH DESIGN AND METHODS Normal RBCs were co-incubated with the diabetic plasma of 24 patients at different HbA1c levels, for 0, 24, and 48 h in order to assess cell turbidity and hemoglobin (Hb) stability. Hb and metHb production were quantified inside and outside RBCs. Malonaldehyde (MDA) level and cell morphology were concomitantly evaluated. RESULTS The cell turbidity was significantly decreased in the group co-incubated with diabetic plasma at high HbA1c levels (0.074 ± 0.010 AU) compared to the control group (0.446 ± 0.019 AU). A significant decrease in intracellular Hb (0.390 ± 0.075 AU) and its stability (0.600 ± 0.001 AU) were revealed. Also, we found an important increase of metHb levels inside RBCs (0.186 ± 0.017 AU) and in its supernatant (0.086 ± 0.020 AU) after 48 h. Consequently, MDA absorbance increased significantly (0.320 ± 0.040 AU) in RBCs exposed to diabetic plasma with high HbA1c. CONCLUSION These findings suggest that poor glycemic control in diabetes leads to metHb generation which is the main factor of the OS amplification.
Collapse
Affiliation(s)
- Hanane Chemlal
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria.
| | - Lamine Bournine
- Laboratoire de Biotechnologie Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria.
| | - Sihem Mimoune
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Saadia Boufeniche
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Lamia Beddou
- Faculté de Médecine, Université de Bejaia, 06000 Bejaia, Algeria
| | - Sihem Bensalem
- Laboratoire de Biotechnologie Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mokrane Iguer-Ouada
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
16
|
Mohideen K, Chandrasekar K, Ramsridhar S, Rajkumar C, Ghosh S, Dhungel S. Assessment of Oxidative Stress by the Estimation of Lipid Peroxidation Marker Malondialdehyde (MDA) in Patients with Chronic Periodontitis: A Systematic Review and Meta-Analysis. Int J Dent 2023; 2023:6014706. [PMID: 37288387 PMCID: PMC10243953 DOI: 10.1155/2023/6014706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVE The present systematic review and meta-analysis aimed to assess the oxidative stress-mediated lipid peroxidation end product malondialdehyde (MDA) in periodontitis using the available literature. MATERIALS AND METHODS An electronic literature search was performed for the published articles from 2000 to 2022 in PubMed (MeSH), Science Direct, Wiley Online library, and cross-reference using specific keywords. RESULTS The literature search identified 1,166 articles. After analyzing the abstracts of the obtained articles, the articles were excluded for the following reasons: duplicate studies (n = 395) and not relevant to the research question (n = 726). The remaining 45 articles were chosen for full-text evaluation. Finally, the present qualitative synthesis selected 34 articles that met the inclusion criteria for evaluation and removed the articles which did not meet the required criteria (n = 11). Out of these, 16 articles had coherent data for quantitative synthesis. The meta-analysis used the standardized mean differences method at a 95% confidence interval by random-effects model. The periodontitis group displayed significantly higher MDA levels (P < 0.001) in gingival crevicular fluid, saliva, and serum samples of the studies analyzed than the healthy control. CONCLUSION The analyzed studies showed significantly higher MDA levels in various biological samples of patients with periodontitis, supporting the role of elevated oxidative stress and consequent lipid peroxidation in periodontitis.
Collapse
Affiliation(s)
- Khadijah Mohideen
- Department of Oral Pathology and Microbiology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Krithika Chandrasekar
- Meenakshi Academy of Higher Education and Research, West K. K. Nagar, Chennai 600078, India
| | - Saranya Ramsridhar
- Department of Oral Pathology and Microbiology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Chandini Rajkumar
- Department of Oral Pathology and Microbiology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Snehashish Ghosh
- Department of Oral Pathology, College of Medical Sciences, Bharatpur 44200, Nepal
| | - Safal Dhungel
- Department of Oral and Maxillofacial Surgery, College of Medical Sciences, Bharatpur 44200, Nepal
| |
Collapse
|
17
|
Bati B, Celik I, Turan A, Eray N, Alkan EE, Zirek AK. Effect of isgin ( Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet. Arch Physiol Biochem 2023; 129:298-306. [PMID: 32924615 DOI: 10.1080/13813455.2020.1819338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Rheum ribes L. plant root extracts on DNA damage, biochemical and antioxidant parameters in rats with experimental obesity induced with a high-calorie diet. The study groups were divided as "normal control(NC)", "obese control(OC)", "obese + Rheum ribes(OR1)(200 mg/kg)" and "obese + Rheum ribes (OR2)(400 mg/kg)". At the end of the application, rats were sacrificed and blood and tissue samples were obtained. According to the results obtained, the marker of DNA damage in tissues of 8-OHdG was determined to be significantly reduced in brain tissue of the OR1 and OR2 groups compared to the NC group. However, fluctuations were identified in the MDA activity, antioxidant defense system elements and serum biomarkers in tissues. In conclusion, Rheum ribes plant root extract ensured improvements in DNA damage in brain tissues and MDA levels and showed positive effects on antioxidant parameter activities in different tissues.
Collapse
Affiliation(s)
- Bedia Bati
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Turan
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Nese Eray
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Elif Ebru Alkan
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ali Kemal Zirek
- Institute of Sciences, Medical Services and Techniques, Hakkari University, Hakkari, Turkey
| |
Collapse
|
18
|
Akkoyun HT, Uyar A, Bayramoglu Akkoyun M, Bengü AŞ, Melek Ş, Karagözoğlu F, Aydın S, Ekin S, Erdem SA. The protective effect of arbutin against potassium bromate-induced oxidative damage in the rat brain. J Biochem Mol Toxicol 2023; 37:e23248. [PMID: 36284482 DOI: 10.1002/jbt.23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the protective effects of arbutin (ARB) against brain injury induced in rats with potassium bromate (KBrO3 ). The rats were divided into four groups as Group 1: Control (0.9% NaCl ml/kg/day p.), Group 2: KBrO3 (100 mg/kg (gavage), Group 3: ARB (50 mg/kg/day p.), and Group 4: KBrO3 + ARB (100 mg/kg (gavage) + 50 mg/kg/day p.). At the end of the fifth day of the study, the rats in all groups were killed, and their brain tissues were collected. In the collected brain tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were measured, and routine histopathological examinations were made. The MDA levels in the group that was exposed to KBrO3 were significantly higher than those in the control group (p ˂ 0.001). In comparison to the KBrO3 group, the MDA levels in the KBrO3 + ARB group were significantly lower (p ˂ 0.001). It was observed that SOD and CAT enzyme activity levels were significantly lower in the KBrO3 group compared to the control group (p ˂ 0.001), while these levels were significantly higher in the KBrO3 + ARB group than in the KBrO3 group (p ˂ 0.001). Additionally, the group that was subjected to KBrO3 toxicity, as well as ARB administration, had much lower levels of histopathologic signs than the group that was subjected to KBrO3 toxicity only. Consequently, it was found that KBrO3 exposure led to injury in the brain tissues of the rats, and using ARB was effective in preventing this injury.
Collapse
Affiliation(s)
- H Turan Akkoyun
- Department of Physiology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | | | - Aydın Şükrü Bengü
- Department of Medical Services and Technics, Vocational School of Health, Bingöl University, Bingöl, Turkey
| | - Şule Melek
- Department of Surgery, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Turkey
| | - Fatma Karagözoğlu
- Department of Zootechnique and Animal Nutrition, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Turkey
| | - Sevinç Aydın
- Çemişgezek Vocational School, Munzur University, Tunceli, Turkey
| | - Suat Ekin
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Sinem Aslan Erdem
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Qasim N, Arif A, Mahmood R. Hyperglycemia enhances the generation of ROS and RNS that impair antioxidant power and cause oxidative damage in human erythrocytes. Biochem Cell Biol 2023; 101:64-76. [PMID: 36379031 DOI: 10.1139/bcb-2022-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia is a state in which excess glucose circulates in blood. Erythrocytes are in direct contact with this high glucose concentration and are greatly affected by it. We have examined the effect of hyperglycemic condition on isolated human erythrocytes under in vitro conditions. Erythrocytes were incubated with different concentrations of glucose (5, 15, 30, 45 mmol/L) for 24 h, and several biochemical parameters were determined. Treatment with high glucose concentrations increased heme degradation and methemoglobin level, while methemoglobin reductase activity was decreased. A significant increase in protein oxidation and lipid hydroperoxides with a decrease in total sulfhydryl content was seen. This suggested the generation of oxidative stress, which was confirmed by an enhanced production of reactive oxygen and nitrogen species. Hyperglycemia led to a significant decline in the antioxidant power of erythrocytes, lowering their ability to quench free radicals and reduce metal ions to lower oxidation states. The plasma membrane redox system was upregulated, while ascorbate free radical reductase activity was lowered. Glucose exposure inhibited the enzymes of glycolysis and hexose monophosphate shunt. Electron microscopy showed morphological changes resulting in the formation of echinocytes. Thus, the hyperglycemic condition generates reactive species that oxidize proteins, hemoglobin, and lipids; impair the total antioxidant capacity; and alter morphology in human erythrocytes.
Collapse
Affiliation(s)
- Neha Qasim
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
20
|
Yildirim C, Cangi S, Orkmez M, Yilmaz SG, Bozdayı MA, Yamaner H, Cevik S. Sinapic Acid Attenuated Cisplatin-Induced Cardiotoxicity by Inhibiting Oxidative Stress and İnflammation with GPX4-Mediated NF-kB Modulation. Cardiovasc Toxicol 2023; 23:10-22. [PMID: 36520368 DOI: 10.1007/s12012-022-09773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The use of cisplatin is severely limited by the risk of developing cardiovascular complications. Sinapic acid may reduce cisplatin's side effects. The anti oxidant, anti-inflammatory, and peroxynitrite-scavenging properties of sinapic acid could provide protection against the cardiotoxicity caused by cisplatin. To induce toxicity in rats, cisplatin was administered for a period of 5 weeks. Animal electrocardiograms were obtained after cisplatin toxicity had taken effect. Blood samples and heart tissues were then harvested from the anesthetized animals. The ELISA technique was used to evaluate the level of proinflammatory cytokines and oxidative and nitrosative stress indicators in the heart tissue and serum. A real-time PCR was used to analyze GPX4 and NF-κB expression in the heart tissue. Hematoxylin-eosin and Masson's trichrome were also utilized. Electrocardiograms data showed an increase in QRS and QT intervals. Biochemically, cisplatin increased oxidative, nitrosative, and proinflammatory cytokine levels. Animals exposed to cisplatin had histopathological findings in the heart tissue, according to the results of histological assessment. Sinapic acid reduced TNF-alpha, interleukin-6, malondialdehyde, and ischemia-modified albumin. Sinapic acid also reduced oxidative and nitrosative stress. Furthermore, Sinapic acid restored lengthy QT and QRS. Cisplatin-treated rats had higher NF-κB activation than controls. This effect was successfully inhibited by sinapic acid. Histopathologically, tissues treated with sinapic acid were less damaged than tissues treated with cisplatin. In conclusion, our results suggest that sinapic acid exhibited a protective effect against the cardiotoxicity induced by cisplatin. These effects may be caused by the overexpression of GPX4 and the downregulation of NF-KB, as well as antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Sibel Cangi
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Senay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Akif Bozdayı
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Hatice Yamaner
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Sena Cevik
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| |
Collapse
|
21
|
Oğul Y, Gür F, Gür B, Cengiz M, Sarı RA, Kızıltunç A. Decreased Na +/K + pump activity in the erythrocyte membrane due to malondialdehyde in rheumatoid arthritis: an in vivo and in silico study. Can J Physiol Pharmacol 2022; 100:968-982. [PMID: 36148907 DOI: 10.1139/cjpp-2022-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apart from demonstrating the interaction behavior of malondialdehyde (MDA) with Na+/K+-ATPase using in silico, the current study aims to investigate the effect of rheumatoid arthritis-related oxidative stress on Na+/K+-ATPase activity that is present in the erythrocyte cell membrane, which is rich in proteins vulnerable to damage from MDA and other free radicals. The target population of this study consists of 28 rheumatoid arthritis patients and 20 healthy volunteers whose MDA levels and Na+/K+-ATPase activity were determined. It was shown that MDA levels of rheumatoid arthritis patients increased (p < 0.001) and their Na+/K+-ATPase activity noticeably decreased when compared to those of healthy individuals. Also, according to this in silico modeling, MDA decreased Na+/K+-ATPase activity in line with the correlation analyses. Consequently, while elevated levels of MDA in the rheumatoid arthritis group were suggestive of oxidative stress, a decreased Na+/K+-ATPase-activity led us to speculate that the cellular membrane had sustained injury. Therefore, our results could be useful in explaining how MDA affects Na+/K+-ATPase activity in the interior of a specific molecular pathway.
Collapse
Affiliation(s)
- Yasemin Oğul
- Department of Medicinal Biochemistry, Regional Training and Research Hospital, Health Sciences University, Erzurum, 25240, Turkey
| | - Fatma Gür
- Department of Medical Services and Techniques, Health Services Vocational School, Ataturk University, Erzurum, 25240, Turkey
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, 76000, Turkey
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, 56100 Siirt, Turkey
| | - Refik Ali Sarı
- Department of Internal Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Ahmet Kızıltunç
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, 25240, Turkey
| |
Collapse
|
22
|
Agirman E, Celik I, Dogan A. Consumption of the Syrian mesquite plant ( Prosopis farcta) fruit and seed lyophilized extracts may have both protective and toxic effects in STZ-induced diabetic rats. Arch Physiol Biochem 2022; 128:887-896. [PMID: 32157917 DOI: 10.1080/13813455.2020.1734844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of study was to investigate the antidiabetic and antioxidant properties of extracts obtained from dried Prosopis farcta fruit and seeds against streptozotocin-induced diabetes in rats. According to the results, glucose, haemoglobin A1c, α-glycosidase activity, liver and kidney damage biomarkers, and malondialdehyde contents of all of the diabetic groups were found to have increased significantly according to the control group. Furthermore, the insulin and C-peptide secretions increased, and liver malondialdehyde level decreased, which were determined as the result of fluctuations in the antioxidant enzyme activities with a dose of 400 mg/kg fruit extract, while seed extract dosages of 100 and 400 mg/kg caused an increase in hepatic demage biomarkers. It was concluded that fruit extract may have insulin secretion stimulating and lipid peroxidation inhibitory effects, whereas seed extract might have caused hepatocyte damage changes to the transport functions and membrane permeability of these cells, thus causing enzymes to leak.
Collapse
Affiliation(s)
- Esvet Agirman
- Department of Molecular Biology and Genetic, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Faculty of Science, Department of Molecular Biology and Genetic, Van Yuzuncu Yil University, Van, Turkey
| | - Abdulahad Dogan
- Faculty of Pharmacy, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
23
|
Gürkan SE. Impact of Nickel Oxide Nanoparticles (NiO) on Oxidative Stress Biomarkers and Hemocyte Counts of Mytilus galloprovincialis. Biol Trace Elem Res 2022; 200:3429-3441. [PMID: 35279797 DOI: 10.1007/s12011-022-03189-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
In this study, the toxic effects of nickel oxide nanoparticles (NiO-NPs) on the model organism Mediterranean mussel (Mytilus galloprovincialis) gill, digestive gland, and hemolymph tissues for 96 h were investigated. Lipid peroxidation (MDA) determination was performed to reveal the oxidative stress generation potential of nanoparticles, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) enzyme levels were measured to determine antioxidant responses. Lysosomal membrane stability and total hemocyte counts were performed to determine cytotoxic effects. All parameters were altered in different concentrations of NiO-NPs (2, 20, and 200 mg L-1). The SOD levels increased depending on the concentration (p < 0.05), and the increases in CAT, GPx, and GST levels were lower at 20 mg L-1 concentration (p < 0.05). There was a slight difference between the exposure and the control groups in terms of GR enzyme. The MDA level increased in parallel with the concentration (p < 0.05), the stability of the cell membrane (p < 0.05), and the number of hemocyte cells decreased as a result of exposure (p < 0.05). The results emphasize that NiO-NPs may have negative effects on the aquatic environment.
Collapse
Affiliation(s)
- Selin Ertürk Gürkan
- Department of Biology, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, 17100, Canakkale, Turkey.
| |
Collapse
|
24
|
Soliman TN, Mohammed DM, El-Messery TM, Elaaser M, Zaky AA, Eun JB, Shim JH, El-Said MM. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl 3-Induced Neuroinflammation in Rats. Front Nutr 2022; 9:929977. [PMID: 35845781 PMCID: PMC9278961 DOI: 10.3389/fnut.2022.929977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Plant-derived phenolic compounds have numerous biological effects, including antioxidant, anti-inflammatory, and neuroprotective effects. However, their application is limited because they are degraded under environmental conditions. The aim of this study was to microencapsulate plant phenolic extracts using a complex coacervation method to mitigate this problem. Red beet (RB), broccoli (BR), and spinach leaf (SL) phenolic extracts were encapsulated by complex coacervation. The characteristics of complex coacervates [zeta potential, encapsulation efficiency (EE), FTIR, and morphology] were evaluated. The RB, BR, and SL complex coacervates were incorporated into an ultrafiltered (UF) cheese system. The chemical properties, pH, texture profile, microstructure, and sensory properties of UF cheese with coacervates were determined. In total, 54 male Sprague-Dawley rats were used, among which 48 rats were administered an oral dose of AlCl3 (100 mg/kg body weight/d). Nutritional and biochemical parameters, including malondialdehyde, superoxide dismutase, catalase, reduced glutathione, nitric oxide, acetylcholinesterase, butyrylcholinesterase, dopamine, 5-hydroxytryptamine, brain-derived neurotrophic factor, and glial fibrillary acidic protein, were assessed. The RB, BR, and SL phenolic extracts were successfully encapsulated. The RB, BR, and SL complex coacervates had no impact on the chemical composition of UF cheese. The structure of the RB, BR, and SL complex coacervates in UF cheese was the most stable. The hardness of UF cheese was progressively enhanced by using the RB, BR, and SL complex coacervates. The sensory characteristics of the UF cheese samples achieved good scores and were viable for inclusion in food systems. Additionally, these microcapsules improved metabolic strategies and neurobehavioral systems and enhanced the protein biosynthesis of rat brains. Both forms failed to induce any severe side effects in any experimental group. It can be concluded that the microencapsulation of plant phenolic extracts using a complex coacervation technique protected rats against AlCl3-induced neuroinflammation. This finding might be of interest to food producers and researchers aiming to deliver natural bioactive compounds in the most acceptable manner (i.e., food).
Collapse
Affiliation(s)
- Tarek N. Soliman
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Mostafa Mohammed
- Department of Nutrition and Food Sciences, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Tamer M. El-Messery
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Elaaser
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed A. Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - Marwa M. El-Said
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
25
|
Zhang M, Tang L, Cui X, Yu T, Li Z, Li X, Li G. Shear wave elastography in evaluation of carotid elasticity in the type 2 diabetes mellitus patients with nonalcoholic fatty liver disease. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Ibrahim MM, Mersal GAM, Abdou SN, Mohamed MA, Soliman MM, Al-Juaid SS, Abou Taleb MF, Amin MA. Synthesis, spectral, and X-ray structural characterization of mixed tren-barbitone nickel(II) complex grafted g-C 3N 4 for oxidative stress and antioxidant activities. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2089027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Safaa N. Abdou
- Chemistry Department, Khourma University College, University of Taif, Taif, Saudi Arabia
| | - Mahmoud A. Mohamed
- Faculty of Agriculture, Department of Biochemistry, Cairo University, Cairo, Egypt
| | - Mohamed M. Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Salih S. Al-Juaid
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal F. Abou Taleb
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt Nasr City, Cairo
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
27
|
Papadopoulos C. Erythrocyte Glucotoxicity Results in Vascular Inflammation. Endocr Metab Immune Disord Drug Targets 2022; 22:901-903. [PMID: 35507805 DOI: 10.2174/1871530322666220430013334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Charalampos Papadopoulos
- Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
28
|
Demir A, Celik I. Investigation of healing effects of lemon ( Citrus limonum) seeds lyophilized extracts on experimental diabetic rats. Arch Physiol Biochem 2022; 128:539-546. [PMID: 31829746 DOI: 10.1080/13813455.2019.1702061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the effects of lemon seed lyophilised extract (LSLE) were investigated on the diabetic rats. Groups were conducted as normal control (NC), diabetic control (DC), diabetic + 20 mg acarbose/kg bw (DAC)), diabetic + 100 mg LSLE/kg bw (DLSLE1), diabetic + 200 LSLE mg/kg bw (DLSLE2) and diabetic + 400 LSLE mg/kg bw (DLSLE4). The protective and antioxsidant effects of LSLE on experimental diabetes complications were evaluated by measuring hepatic and renal damage biomarkers (HRDBs), antioxidant defence system constituents (ADSCs), diabetes biomarkers and MDA content in tissues of diabetic rats. Glucose, HRDBs, HbA1c, lipid profile (LP) levels increased in DC compared to NC whereas these parameters of the supplementation groups showed a significant decreas compared to DC. Also, it was determined an increase MDA content and fluctuate ADSCs in the DC tissues whereas the LSLE restored the parameters towards to the NC. It can be said that LSLE is may have healings effects against diabetic complications.
Collapse
Affiliation(s)
- Abdulbaki Demir
- Department of Molecular Biology and Genetics, Science Faculty, Van Yüzüncü Yıl University, Van, Turkey
| | - Ismail Celik
- Department of Molecular Biology and Genetics, Science Faculty, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
29
|
Yildirim C, Cevik S, Yamaner H, Orkmez M, Eronat O, Bozdayı MA, Erdem M. Boric acid improves the behavioral, electrophysiological and histological parameters of cisplatin-induced peripheral neuropathy in rats. J Trace Elem Med Biol 2022; 70:126917. [PMID: 34963081 DOI: 10.1016/j.jtemb.2021.126917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Boric acid (BA) has been used in many diseases because it increases the amount of reduced glutathione in the body and reduces oxidative damage. This study aims to investigate the effects of boric acid in cisplatin-induced neuropathy, in which oxidative stress is also effective in its pathophysiology. In this study, 8-10 weeks old, 170-190 g Wistar Albino rats were used. Each group contained seven rats (n = 35). Experimental groups consist of control, sham, neuropathy, treatment, and boric acid groups. For the neuropathy model, a single dose of cisplatin (3 mg/kg, i.p) was administered once a week for five weeks, and for the treatment group, boric acid was administered daily (100 mg/kg, intragastric) for five weeks. After drug administration, the rotarod test to evaluate motor performance, the tail-flick and hot/cold plate tests to evaluate sensory conduction states, the von Frey filament test to evaluate the mechanical allodynia, and the adhesive removal test to assess sensorimotor function were performed. The sciatic nerve's motoric conduction velocity was also assessed electrophysiologically. Oxidative stress parameters were also assessed biochemically in sciatic nerve tissue and serum. Hematoxylin and eosin staining was used to evaluate the sciatic nerve tissue histopathologically. The motor conduction velocity of the sciatic nerve, impaired by cisplatin, was increased considerably by boric acid (p < 0.05). It also reduced the latency time of the compound muscle action potential (CMAP), which was increased by cisplatin. (p < 0.05). The von Frey filament test results demonstrated increased pain sensitivity of the cisplatin group increased, and mechanical allodynia was observed. Boric acid significantly alleviated this condition (p < 0.05). In the cold plate, adhesive removal, and rotarod tests, boric acid attenuated the adverse effects of cisplatin (p < 0.05). Biochemically, BA reduced the level of MDA, which was raised by cisplatin, and significantly increased the level of SOD, which was lowered by cisplatin (p < 0.05). Histopathologically; BA reduced neuronal degeneration and vacuolization caused by cisplatin. As a consequence, it has been determined that boric acid alleviates the adverse effects of cisplatin. BA reduced the destructive effect of cisplatin by reducing oxidative stress, and this effect was verified electrophysiologically, behaviorally, and histopathologically.
Collapse
Affiliation(s)
- Caner Yildirim
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Sena Cevik
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Hatice Yamaner
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Mustafa Orkmez
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey.
| | - Omer Eronat
- Gaziantep University, Faculty of Medicine, Department of Pathology, Gaziantep, Turkey.
| | - Mehmet Akif Bozdayı
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey.
| | - Mehmet Erdem
- Gaziantep University, Vocational School of Health Services, Gaziantep, Turkey.
| |
Collapse
|
30
|
Arif B, Arif Z, Ahmad J, Perveen K, Bukhari NA, Ashraf JM, Moinuddin, Alam K. Attenuation of hyperglycemia and amadori products by aminoguanidine in alloxan-diabetic rabbits occurs via enhancement in antioxidant defenses and control of stress. PLoS One 2022; 17:e0262233. [PMID: 34986201 PMCID: PMC8730428 DOI: 10.1371/journal.pone.0262233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The micro- and macro-complications in diabetes mellitus (DM) mainly arise from the damage induced by Amadori and advanced glycation end products, as well as the released free radicals. The primary goal of DM treatment is to reduce the risk of micro- and macro-complications. In this study, we looked at the efficacy of aminoguanidine (AG) to prevent the production of early glycation products in alloxan-diabetic rabbits. Type1 DM was induced in rabbits by a single intravenous injection of alloxan (90 mg/kg body weight). Another group of rabbits was pre-treated with AG (100 mg/kg body weight) prior to alloxan injection; this was followed by weekly treatment with 100 mg/kg of AG for eight weeks. Glucose, insulin, and early glycation products (HbA1C and fructosamine) were measured in control, diabetic and AG treated diabetic rabbits. The effects of hyperglycemia on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx), reduced glutathione (rGSH), nitric oxide, lipid peroxides, and protein carbonyl were investigated. Alloxan-diabetic rabbits had lower levels of SOD, CAT, Gpx, and rGSH than control rabbits. Nitric oxide levels were considerably greater. AG administration restored the activities of SOD, CAT, Gpx enzymes up to 70-80% and ameliorated the nitric oxide production. HbA1c and fructosamine levels were considerably lower in AG-treated diabetic rabbits. The observed control of hyperglycemia and amadori adducts in alloxan-diabetic rabbits by AG may be attributed to decrease of stress and restoration of antioxidant defenses.
Collapse
Affiliation(s)
- Binish Arif
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, India
| | - Zarina Arif
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Jamal Ahmad
- Formerly at Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jalaluddin M. Ashraf
- Department of Clinical Biochemistry, Faculty of Applied Medical Sciences, Jazan University, Kingdom of Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Khursheed Alam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
31
|
Ekin S, Yildirim S, Akkoyun MB, Gok HN, Arihan O, Oto G, Akkoyun T, Basbugan Y, Aslan S. Theophylline attenuates bleomycin-induced oxidative stress in rats: The role of IL-6, NF-κB, and antioxidant enzymes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
32
|
Hossain Z, Hossain MS, Ema NS, Omri A. Heavy metal toxicity in Buriganga river alters the immunology of Nile tilapia ( Oreochromis niloticus L). Heliyon 2021; 7:e08285. [PMID: 34765796 PMCID: PMC8571707 DOI: 10.1016/j.heliyon.2021.e08285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
The objective of the current study was to evaluate the biochemical and immunological responses of tilapia, Oreochromis niloticus due to heavy metals pollution. Histomorphological alterations in the liver and kidney suggested tissue damages due to this polluted water exposure. The brain acetylcholinesterase (AChE) as an indicator of neurotoxicity was significantly (P < 0.01) decreased after 10 days exposure of fish to heavy metal contained river water, while plasma glutamate oxalacetate transaminase and plasma glutamate pyruvate transaminase were significantly increased (P < 0.01). Moreover, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase enzyme activities, as well as reduced glutathione and malondialdehyde levels were significantly increased in heavy metals contained river water treated fish compared to the control. Additionally, glucose level and blood serum Ca2+ concentrations were significantly (P < 0.01) decreased in fish exposed to heavy metal contained river water compared to the control. Hematological indices such as Hemoglobin, RBC, WBC, MCV etc. of polluted river water treated fish were significantly (P < 0.01) different in comparison to that of control fish. The cytokines i.e. IL-1β, IL-6, and TNF-α level were significantly (P < 0.01) increased in the fish exposed to heavy metals contained river water in comparison to that of control fish. The present findings explored the detrimental effects of heavy metal contained river water on fish at biochemical and immunological levels.
Collapse
Affiliation(s)
- Zakir Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Saddam Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Noore Safa Ema
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, P3E 2C6, Ontario, Canada
| |
Collapse
|
33
|
Basu A, Izuora K, Betts NM, Ebersole JL, Scofield RH. Dietary Strawberries Improve Biomarkers of Antioxidant Status and Endothelial Function in Adults with Cardiometabolic Risks in a Randomized Controlled Crossover Trial. Antioxidants (Basel) 2021; 10:1730. [PMID: 34829601 PMCID: PMC8614674 DOI: 10.3390/antiox10111730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Strawberries, a popularly consumed berry fruit, are rich in bioactive compounds with antioxidant effects. In this study, we examined the effects of two dietary achievable doses of strawberries on the antioxidant status and biomarkers of endothelial function in adults with features of metabolic syndrome and a confirmed low baseline of fruit and vegetable intake. In a 14-week randomized controlled crossover study, participants were assigned to one of three groups for four weeks separated by a one-week washout period: control powder, one serving (low dose: 13 g strawberry powder/day), or 2.5 servings (high dose: 32 g strawberry powder/day). Blood samples and health data were collected at baseline and at the end of each four-week phase of intervention. Thirty-three participants completed all three phases of the trial. Significant increases were observed in serum antioxidant capacity and superoxide dismutase activity as well as decreases in lipid peroxidation after both low and high dose strawberry phases when compared with the control phase. Significant decreases were also observed in soluble vascular cell adhesion molecule-1 and tumor necrosis factor-α with the high dose strawberry phase. These data confirm that consuming strawberries for four weeks significantly improves antioxidant status, endothelial function, and inflammation in adults with cardiometabolic risks.
Collapse
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA
| | - Kenneth Izuora
- Section of Endocrinology, University of Nevada School of Medicine at Las Vegas, Las Vegas, NV 89154, USA;
| | - Nancy M. Betts
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jeffrey L. Ebersole
- School of Dental Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Robert Hal Scofield
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
Lo Verso L, Dumont K, Lessard M, Lauzon K, Provost C, Gagnon CA, Chorfi Y, Guay F. The administration of diets contaminated with low to intermediate doses of deoxynivalenol and supplemented with antioxidants and binding agents slightly affects the growth, antioxidant status, and vaccine response in weanling pigs. J Anim Sci 2021; 99:skab238. [PMID: 34406414 PMCID: PMC8420677 DOI: 10.1093/jas/skab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to evaluate the impact of grading levels of deoxynivalenol (DON) in the diet of weaned pigs, as well as the effects of a supplementation with antioxidants (AOX), hydrated sodium calcium aluminosilicates (HSCAS), and their combination on the growth, AOX status, and immune and vaccine responses against the porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). At weaning, 336 piglets were allocated to six dietary treatments according to a randomized complete block design. Treatments were as follows: basal diet (CTRL); basal diet containing DON at 1.2 mg/kg (DON1.2); basal diet containing DON at 2.4 mg/kg (DON2.4); DON2.4 diet + a mix of AOX which included vitamins A and E at 20,000 IU and 200 IU/kg feed respectively, selenized yeast at 0.3 mg/kg, and a grape seed extracts at 100 mg/kg feed (DON2.4 + AOX); DON2.4 diet + the mix of AOX and the modified HSCAS mentioned above (DON2.4 + AOX + HSCAS); DON2.4 + AOX + HSCAS. Pigs were vaccinated against PRRSV and PCV2 at 7 d; on 0, 14, and 35 d, growth performance was recorded, and blood samples were collected in order to evaluate the oxidative status, inflammatory blood markers, lymphocyte blastogenic response, and vaccine antibody response. Increasing intake of DON resulted in a quadratic effect at 35 d in the lymphocyte proliferative response to concanavalin A and PCV2 as well as in the anti-PRRSV antibody response, whereas the catalase activity decreased in DON2.4 pigs compared with the CTRL and DON1.2 groups (P ≤ 0.05). Compared with the DON2.4 diet, the AOX supplementation slightly reduced gain to feed ratio (P = 0.026) and increased the ferric reducing ability of plasma as well as α-tocopherol concentration (P < 0.05), whereas the association of AOX + HSCAS increased the anti-PRRSV IgG (P < 0.05). Furthermore, the HSCAS supplement reduced haptoglobin levels in serum at 14 d compared with the DON2.4 group; however, its concentration decreased in all the experimental treatments from 14 to 35 d and particularly in the DON2.4 + AOX pigs, whereas a different trend was evidenced in the DON2.4 + HSCAS group, where over the same period haptoglobin concentration increased (P < 0.05). Overall, our results show that the addition of AOX and HSCAS in the diet may alleviate the negative effects due to DON contamination on the AOX status and immune response of vaccinated weanling pigs.
Collapse
Affiliation(s)
- Luca Lo Verso
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
| | - Kristina Dumont
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
| | - Martin Lessard
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada
| | - Karoline Lauzon
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada
| | - Chantale Provost
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Younes Chorfi
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Frédéric Guay
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
35
|
Mohideen K, Sudhakar U, Balakrishnan T, Almasri MA, Al-Ahmari MM, Al Dira HS, Suhluli M, Dubey A, Mujoo S, Khurshid Z, Raj AT, Patil S. Malondialdehyde, an Oxidative Stress Marker in Oral Squamous Cell Carcinoma-A Systematic Review and Meta-Analysis. Curr Issues Mol Biol 2021; 43:1019-1035. [PMID: 34563041 PMCID: PMC8929159 DOI: 10.3390/cimb43020072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: To qualitative and quantitatively review published literature assessing the oxidative stress marker malondialdehyde (MDA) in oral squamous cell carcinoma (OSCC). Methodology: Pubmed (MeSH), Science Direct, Scopus, Web of Science, Willey Online Library, Cochrane, and Cross Reference were searched for studies assessing MDA levels in OSCC samples. Results: From the 1008 articles identified, 849 were excluded based on title and abstract screening due to duplication and irrelevance to the topic of interest. Full-text assessment of the remaining 159 articles led to the inclusion of only 46 articles that satisfied the selection criteria. Of these, only 26 studies had data compatible for quantitative analysis. The MDA levels in OSCC groups are significantly increased (p < 0.00001) in plasma, serum, and saliva samples in the majority of the studies evaluated. In contrast, MDA levels in OSCC tissue samples are significantly attenuated (p < 0.00001) compared to healthy controls, supported by fewer studies. Conclusions: The augmented MDA levels in plasma, serum, and saliva samples of the OSCC reflect the heightened oxidative stress level accurately. Further studies are required to understand the attenuated MDA levels in the tissue samples of OSCC. Correlation analysis between MDA levels with established clinicopathological prognostic markers could aid in formulating oxidative stress-based prognostication and treatment planning.
Collapse
Affiliation(s)
- Khadijah Mohideen
- Department of Oral Pathology and Microbiology, Sathyabama Institute of Science and Technology, Sathyabama Dental College and Hospital, Chennai 600119, India; (K.M.); (T.B.)
| | - Uma Sudhakar
- Department of Periodontics and Implantology, Dr. M.G.R. Educational and Research Institute, Thai Moogambigai Dental College and Hospital, Chennai 600095, India;
| | - Thayumanavan Balakrishnan
- Department of Oral Pathology and Microbiology, Sathyabama Institute of Science and Technology, Sathyabama Dental College and Hospital, Chennai 600119, India; (K.M.); (T.B.)
| | - Mazen A. Almasri
- Department of Oral Maxillofacial Surgery, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Manea Musa Al-Ahmari
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | | | - Malath Suhluli
- Dental School, Jazan University, Jazan 45142, Saudi Arabia;
| | - Alok Dubey
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sheetal Mujoo
- Division of Oral Medicine & Radiology College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence:
| |
Collapse
|
36
|
Basu A, Crew J, Ebersole JL, Kinney JW, Salazar AM, Planinic P, Alexander JM. Dietary Blueberry and Soluble Fiber Improve Serum Antioxidant and Adipokine Biomarkers and Lipid Peroxidation in Pregnant Women with Obesity and at Risk for Gestational Diabetes. Antioxidants (Basel) 2021; 10:1318. [PMID: 34439566 PMCID: PMC8389321 DOI: 10.3390/antiox10081318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Pregnancies affected by obesity are at high risk for developing metabolic complications with oxidative stress and adipocyte dysfunction contributing to the underlying pathologies. Few studies have examined the role of dietary interventions, especially those involving antioxidants including polyphenolic flavonoids found in fruits and vegetables on these pathologies in high-risk pregnant women. We conducted an 18 gestation-week randomized controlled trial to examine the effects of a dietary intervention comprising of whole blueberries and soluble fiber vs. control (standard prenatal care) on biomarkers of oxidative stress/antioxidant status and adipocyte and hormonal functions in pregnant women with obesity (n = 34). Serum samples were collected at baseline (<20 gestation weeks) and at the end of the study period (32-26 gestation weeks). Study findings showed maternal serum glutathione and antioxidant capacity to be significantly increased, and malondialdehyde to be decreased in the dietary intervention vs. control group (all p < 0.05). Among the adipokine biomarkers, serum plasminogen activator inhibitor-1 and visfatin, as biomarkers of adipocyte dysfunction and insulin resistance, were also decreased following dietary intervention (all p < 0.05). These findings support the need for supplementing maternal diets with berries and fiber to improve oxidative stress and risks of metabolic complications during pregnancy.
Collapse
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Jeannette Crew
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA;
| | - Jeffrey L. Ebersole
- School of Dental Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89106, USA;
| | - Jefferson W. Kinney
- Department of Brain Health, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (J.W.K.); (A.M.S.)
| | - Arnold M. Salazar
- Department of Brain Health, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (J.W.K.); (A.M.S.)
| | - Petar Planinic
- Department of Obstetrics & Gynecology, Kirk Kerkorian School of Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89102, USA; (P.P.); (J.M.A.)
- Valley Health System, Las Vegas, NV 89119, USA
| | - James M. Alexander
- Department of Obstetrics & Gynecology, Kirk Kerkorian School of Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89102, USA; (P.P.); (J.M.A.)
| |
Collapse
|
37
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
38
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Kiran I, Ekin S, Vural Ö. Low vitamin B 12 level in relation to trace element, total sialic acid and antioxidant enzymes in children with vitamin B 12 deficiency anemia. INT J VITAM NUTR RES 2021; 93:132-141. [PMID: 34100302 DOI: 10.1024/0300-9831/a000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, children with vitamin B12 deficiency anemia (V-B12DA) and control subjects were evaluated for erythrocyte glutathione peroxidase, catalase and superoxide dismutase enzyme activities, glutathione, malondialdehyde, serum total sialic acid, total antioxidant status, cobalt, chromium, copper, selenium, vanadium, zinc, iron, lead, magnesium, calcium, sodium, potassium, chloride, phosphorus levels, and the associations of these variables were assessed. The study included 50 children with V-B12DA and 50 control subjects. It was found that the V-B12DA group was significantly lower than the control group, with regard to the mean±the standard error of the mean levels of cobalt (0.089±0.009; 0.058±0.0063 μmol/L, p<0.01), selenium (2.19±0.087; 1.88±0.057 μmol/L, p<0.01), vanadium (1.31±0.053; 1.18±0.035 μmol/L, p<0.05), magnesium (3.02±0.15; 2.73±0.068 μmol/L, p<0.05), zinc (50.76±1.96; 42.23± 1.53 μmol/L, p<0.001), and vitamin B12 (427.20±21.45; 157.08±3.96 pg/mL, p<0.001). Moreover, a significant elevation in total sialic acid (1.44±0.050; 1.61±0.043 mmol/L, p<0.01), and mean corpuscular volume (MCV) (75.37±0.95; 79.91±1.14 fL, p<0.01). It was observed that in the V-B12DA, significantly linear correlations were observed between cobalt - vitamin B12 (r=0.334; p=0.025), vanadium - MCV (r=0.315; p=0.017), vitamin B12 - MCV (r=-0.297; p=0.026). The findings of the study indicated that the levels of cobalt, vanadium significantly associated with traditional vitamin B12-deficiency parameters. Vitamin B12 and MCV should be measured together with cobalt, vanadium for monitoring the vitamin B12 deficiency anemia.
Collapse
Affiliation(s)
- Isa Kiran
- Division of Blood and Transfusion, University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | - Suat Ekin
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Vural
- Division of Pediatric Hematology and Oncology, Faculty of Medicine, Gazi University Ankara, Turkey
| |
Collapse
|
40
|
Amini MR, Sheikhhossein F, Djafari F, Jafari A, Djafarian K, Shab-Bidar S. Effects of chromium supplementation on oxidative Stress biomarkers. INT J VITAM NUTR RES 2021:1-11. [PMID: 34013788 DOI: 10.1024/0300-9831/a000706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aim: This systematic review and meta-analysis aimed to evaluate the effects of chromium supplementation on oxidative stress biomarkers such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPX), malondialdehyde (MDA), total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), catalase (CAT), nitric oxide (NO), total antioxidant capacity (TAC) and protein carbonyl. Methods: Relevant studies, published from inception until July 2019, were searched through PubMed/Medline, Scopus, ISI Web of Science, Embase, and Google Scholar. All randomized clinical trials investigating the effect of chromium supplementation on oxidative stress were included. Results: Out of 252 citations, 10 trials that enrolled 595 subjects were included. Chromium supplementation resulted in a significant increase in GSH (WMD: 64.79 mg/dl, 95% CI: 22.43 to 107.15; P=0.003) but no significant change in MDA, TAS, TBARS levels, SOD, CAT levels and GPX. Chromium picolinate supplementation resulted in a significant increase in TAC while failing to have a significant effect on NO. Moreover, both chromium picolinate and chromium dinicocysteinate supplementation reduced protein carbonyl levels. Conclusion: Overall, this meta-analysis demonstrated that chromium supplementation increased GSH without any significant changes in the mean of GPX, MDA, TAS, TBARS, CAT and SOD.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Jafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
41
|
You Y, Zhu F, Li Z, Zhang L, Xie Y, Chinnathambi A, Alahmadi TA, Lu B. Phyllanthin prevents diethylnitrosamine (DEN) induced liver carcinogenesis in rats and induces apoptotic cell death in HepG2 cells. Biomed Pharmacother 2021; 137:111335. [PMID: 33581648 DOI: 10.1016/j.biopha.2021.111335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is a critical clinical condition with augmented malignancy, rapid progression, and poor prognosis. Liver cancer often initiates as fibrosis, develops as cirrhosis, and results in cancer. For centuries, medicinal plants have been incorporated in various liver-associated complications, and recently, research has recognized that many bioactive compounds from medicinal plants may interact with targets related to liver disorders. Phyllanthin from the Phyllanthus species is one such compound extensively used by folklore practitioners for various health benefits. However, most practices continue to be unrecognized scientifically. Hence, in this work, we investigated the protective role of phyllanthin on diethylnitrosamine (DEN) induced liver carcinoma in Wistar Albino rats and the anti-tumor potential on human hepatocellular carcinoma (HCC) HepG2 cells. The DEN-challenged liver cancer in experimental rats caused increased liver weight, 8-OHD, hepatic tissue injury marker, lipid peroxidation, and tumor markers levels. Remarkably, phyllanthin counteracted the DEN effect by ameliorating all the liver function enzymes, oxidative DNA damage, and tumor-specific markers by enhanced anti-oxidant capacity and induced caspase-dependent apoptosis through the mTOR/ PI3K signaling pathway. MTT assay demonstrated that phyllanthin inhibited the HepG2 cell growth in a dose-dependent manner. Fascinatingly, phyllanthin did not demonstrate any substantial effect on the normal cell line, HL7702. In addition, HepG2 cells were found in the late apoptotic stage upon treatment with phyllanthin as depicted by acridine orange/ethidium bromide staining. Overall, this work offers scientific justification that phyllanthin can be claimed to be a safe candidate with potential chemotherapeutic activity against HCC.
Collapse
Affiliation(s)
- Yulai You
- Department of Liver and Gallbladder Surgery, Jiangjin District Central Hospital of Chongqing, Chongqing, 402260, China
| | - Fengfeng Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China
| | - Zhenhuan Li
- Department of General Surgery, Xi'an NO.5 Hospital, Xi'an City, Shaanxi Province, 710082, China
| | - LingFeng Zhang
- Department of Hepatobiliary Surgery, The First People's Hospital of Huaihua City, Huaihua, Hunan, 418000, China
| | - Yu Xie
- Department of Liver and Gallbladder Surgery, the PLA Rocket Force General Hospital, Beijing, 100088, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Bei Lu
- Department of Hepato-pancreato-biliary Surgery, Affiliated Hangzhou First People's Hospital,Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
42
|
Oğul Y, Gür F, Cengiz M, Gür B, Sarı RA, Kızıltunç A. Evaluation of oxidant and intracellular anti-oxidant activity in rheumatoid arthritis patients: In vivo and in silico studies. Int Immunopharmacol 2021; 97:107654. [PMID: 33895477 DOI: 10.1016/j.intimp.2021.107654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
Rheumatoid Arthritis (RA) is the most prevalent cause of the systematic inflammatory arthritis that destroys the joints. While the pathogenesis of RA remains to be clarified, the imbalance in the oxidant and anti-oxidant defense system plays a crucial role. This study aims to evaluate oxidant and anti-oxidant levels of RA patients and their impacts on the activity of the disease via in silico studies. 28 patients who had not previously received any treatment for RA and 20 healthy controls were included. Their oxidative stress markers, antioxidant markers, and inflammatory factors were investigated via in silico studies. Compared to the Control Group, serum CRP levels, MDA levels, and XO activities were higher in RA Group. Cu/ZnSOD and GPx activities decreased while CAT activities remained unchanged. Besides, there was a positive correlation between MDA-serum CRP levels but a negative correlation between MDA levels-Cu/ZnSOD activities. Furthermore, we observed a negative correlation between CRP levels and Cu/ZnSOD activities. Based on these results, it was concluded that oxidative stress had increased, the defense system had weakened, and ROS production had increased. Finally, our study results with SOD and CAT activity were confirmed by molecular docking studies.
Collapse
Affiliation(s)
- Yasemin Oğul
- Department of Medicinal Biochemistry, Regional Training and Research Hospital, Health Sciences University, 25240 Erzurum, Turkey.
| | - Fatma Gür
- Department of Medical Services and Techniques, Health Services Vocational School, Ataturk University, 25240 Erzurum, Turkey
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, 56100 Siirt, Turkey
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, 76000 Iğdır, Turkey
| | - Refik Ali Sarı
- Department of Internal Diseases, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Kızıltunç
- Department of Biochemistry, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
43
|
Aykut H, Kaptaner B. In vitro effects of bisphenol F on antioxidant system indicators in the isolated hepatocytes of rainbow trout (Oncorhyncus mykiss). Mol Biol Rep 2021; 48:2591-2599. [PMID: 33791906 DOI: 10.1007/s11033-021-06310-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022]
Abstract
Bisphenol F (BPF) has been used frequently in the plastics industry and the production of daily consumer products as an alternative to bisphenol A (BPA). It was aimed herein to determine the cytotoxic effects of BPF on hepatocytes isolated from the liver of rainbow trout (Oncorhyncus mykiss) using lactate dehydrogenase (LDH) assay and antioxidant defence system indicators. The cultured hepatocytes were exposed to seven concentrations (0, 15.63, 31.25, 62.50, 125, 250, and 500 µM) of BPF for 24 h. According to the LDH assay, the percentage of cytotoxicity was increased dose dependently in the cells. The malondialdehyde content, which is indicative of lipid peroxidation, was increased significantly at BPF concentrations between 15.63 and 250 µM, whereas it remained unchanged with a concentration of 500 µM. The activities of superoxide dismutase were increased, while those of catalase were decreased with all of the BPF concentrations. Elevated levels of reduced glutathione content were determined with BPF concentrations between 15.63 and 250 µM, but decreased significantly with a concentration of 500 µM. Significant increases in the activities of the glutathione peroxidase were found in hepatocytes treated with BPF at concentrations of 31.25 to 500 µM. GST activity was only significantly increased with a BPF concentration of 250 µM. The results showed that the toxic mechanism of BPF was mainly based on cell membrane damage and oxidative stress, which have an influence on antioxidant defences. Therefore, BPF should be reconsidered as a safe alternative instead of BPA in the manufacturing of industrial or daily products.
Collapse
Affiliation(s)
- Handan Aykut
- Department of Biology, Institute of Natural and Applied Sciences, University of Van Yuzuncu Yil, Tuşba, Van, Turkey
| | - Burak Kaptaner
- Department of Biology, Faculty of Science, University of Van Yuzuncu Yil, Tuşba, 65080, Van, Turkey.
| |
Collapse
|
44
|
Ni Z, Lin X, Wen Q, Kintoko, Zhang S, Huang J, Xu X, Huang R. WITHDRAWN: Effect of 2-dodecyl-6-methoxycyclohexa-2, 5-diene-1, 4-dione, isolated from Averrhoa carambola L. (Oxalidaceae) roots, on advanced glycation end-product-mediated renal injury in type 2 diabetic KKAy mice. Toxicol Lett 2021; 339:88-96. [PMID: 33423876 DOI: 10.1016/j.toxlet.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in [Toxicology Letters, 339C (2021) 88–96], https://doi.org/10.1016/j.toxlet.2020.11.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Zheng Ni
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Xing Lin
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Qingwei Wen
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Kintoko
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Shijun Zhang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Jianchun Huang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Xiaohui Xu
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China
| | - Renbin Huang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
45
|
Xu T, Wang B, Wang X, Yang S, Cao L, Qiu W, Cheng M, Liu W, Yu L, Zhou M, Wang D, Ma J, Chen W. Associations of urinary carbon disulfide metabolite with oxidative stress, plasma glucose and risk of diabetes among urban adults in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115959. [PMID: 33250290 DOI: 10.1016/j.envpol.2020.115959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Carbon disulfide (CS2) has been reported to induce disorder of glucose metabolism. However, the associations of CS2 exposure with plasma glucose levels and risk of diabetes have not been explored in general population, and the underlying mechanisms remain unclear. We aim to examine the relationships between CS2 exposure and fasting plasma glucose (FPG) levels, as well as diabetes, and assess the potential role of oxidative stress among the abovementioned relationships in Chinese general adults. The concentrations of urinary biomarkers of CS2 exposure (2-thiothiazolidin-4-carboxylic acid, TTCA), and biomarkers for lipid peroxidation (8-isoprostane, 8-iso-PGF2α) and DNA oxidative damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) were measured among 3338 urban adults from the Wuhan-Zhuhai cohort. Additionally, FPG levels were tested promptly. Generalized linear models and logistic regression models were used to quantify the associations among urinary TTCA, oxidative damage markers, FPG levels and diabetes risk. Mediation analysis was employed to estimate the role of oxidative damage markers in the association between urinary TTCA and FPG levels. We discovered a significant relationship between urinary TTCA and FPG levels with regression coefficient of 0.080 (95% CI: 0.002,0.157). Besides, the risk of diabetes was positively related to urinary TTCA (OR:1.282, 95% CI: 1.055,1.558), particularly among those who did not exercise regularly. Each 1% increase of urinary TTCA concentration was associated with a 0.096% and 0.037% increase in urinary 8-iso-PGF2α and 8-OHdG, respectively. Moreover, we found an upward trend of FPG level as urinary 8-iso-PGF2α gradually increased (Ptrend<0.05), and urinary 8-iso-PGF2α mediated 21.12% of the urinary TTCA-associated FPG increment. Our findings indicated that urinary CS2 metabolite was associated with increased FPG levels and diabetes risk in general population. Lipid peroxidation partly mediated the association of urinary CS2 metabolite with FPG levels.
Collapse
Affiliation(s)
- Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
46
|
Jain SK, Micinski D, Parsanathan R. l-Cysteine Stimulates the Effect of Vitamin D on Inhibition of Oxidative Stress, IL-8, and MCP-1 Secretion in High Glucose Treated Monocytes. J Am Coll Nutr 2021; 40:327-332. [PMID: 33596158 DOI: 10.1080/07315724.2020.1850371] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Vitamin D deficiency is common in the general population and diabetic patients, and supplementation with vitamin D is widely used to help lower oxidative stress and inflammation. The cytokine storm in SARS-CoV2 infection has been linked with both diabetes and Vitamin D deficiency. This study examined the hypothesis that supplementation with vitamin D, in combination with l-cysteine (LC), is better at reducing oxidative stress and thereby, more effective, at inhibiting the secretion of the pro-inflammatory cytokines, Interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in U937 monocytes exposed to high glucose concentrations. Methods: U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (VD, 10 nM) or LC (250 µM) or VD + LC for 24 h and then exposed to control or high glucose (HG, 25 mM) for another 24 h. Results: There were significantly greater reactive oxygen species (ROS) levels in monocytes treated with HG than those in controls. Combined supplementation with VD and LC showed a more significant reduction in ROS (46%) in comparison with treatment with LC (19%) or VD (26%) alone in monocytes exposed to HG. Similarly, VD supplementation, together with LC, caused a more significant inhibition in the secretion of IL-8 (36% versus 16%) and MCP-1 (46% versus 26%) in comparison with that of VD (10 nM) alone in high-glucose treated monocytes. Conclusions: These results suggest that combined supplementation with vitamin D and LC has the potential to be more effective than either VD or LC alone in lowering the risk of oxidative stress and inflammation associated with type 2 diabetes or COVID-19 infection. Further, this combined vitamin D with LC/N-acetylcysteine may be a potent alternative therapy for SARS-CoV2 infected subjects. This approach can prevent cellular damage due to cytokine storm in comorbid systemic inflammatory conditions, such as diabetes, obesity, and hypertension.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - David Micinski
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
47
|
Shunan D, Yu M, Guan H, Zhou Y. Neuroprotective effect of Betalain against AlCl 3-induced Alzheimer's disease in Sprague Dawley Rats via putative modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway. Biomed Pharmacother 2021; 137:111369. [PMID: 33582452 DOI: 10.1016/j.biopha.2021.111369] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease, which severely impairs cognitive function. Oxidative stress is identified to contribute to the mechanisms responsible for the pathogenesis of such neurodegenerative diseases. Aluminum is a potent neurotoxin for inducing oxidative stress associated with neurodegenerative diseases. The treatment for AD is limited; hence more treatment options are the need of the day. Betalain is known for its multitude of medicinal assets, including anti-inflammatory activity. Hence, this study was intended to investigate the possible protective effect of betalain against aluminum chloride (AlCl3) induced AD on Sprague Dawley (SD) rats. AlCl3 (100 mg/kg) was administrated orally to induce the AD in SD rats. The rats were supplemented with low and high betalain doses (10 mg/kg and 20 mg/kg) for four weeks. At the end of the experiment, the rats were subjected to behavioral examination and sacrificed to study the biochemical and histological parameters. The results showed attenuation of memory and learning capacity, suppression of lipid oxidation (MDA) through regulation of antioxidant content (SOD, CAT, and GSH) and inhibition of lactate dehydrogenase (LDH), nitric oxide (NO), acetylcholinesterase (AChE), and transmembrane protein (Na+K+ATPase) activity. In addition, the NF-ƙB associated mRNA expression (TNF-α IL-6, Il-1β, iNOS, COX-2) was decreased, as evidenced in histopathological results. The present investigation established that the betalain treatment ameliorated the AlCl3 induced AD by modulating NF-κB pathway activation.
Collapse
Affiliation(s)
- Di Shunan
- Basic Theory of Traditional Chinese Medicine, School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Miao Yu
- Basic Theory of Traditional Chinese Medicine, School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Huibo Guan
- Chinese medicine diagnostics, School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150010, China
| | - Yanyan Zhou
- Basic Theory of Traditional Chinese Medicine, School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
48
|
Uyar A, Doğan A, Yaman T, Keleş ÖF, Yener Z, Çelik İ, Alkan EE. The Protective Role of Urtica dioica Seed Extract Against Azoxymethane-Induced Colon Carcinogenesis in Rats. Nutr Cancer 2021; 74:306-319. [PMID: 33560145 DOI: 10.1080/01635581.2021.1881568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the protective role of Urtica dioica seed (UDS) extract against azoxymethane (AOM)-induced colon carcinogenesis in rats. Thirty-two male Wistar albino rats were divided into four groups: Control, AOM, AOM + UDS, and UDS. The AOM and AOM + UDS groups were induced by AOM (15 mg/kg body weight) subcutaneously once a week for 10 weeks. AOM + UDS and UDS groups additionally received fed with pellets included 30 ml/kg UDS extract. At the end of the trial, blood and colon tissue samples were taken from the rats following necropsy. The gross and histopathological findings revealed that the administration of UDS extract significantly decreased lesions including aberrant cript foci, adenoma, and adenocarcinoma formation both numerically and dimensionally. Immunohistochemically, slight CEA and COX-2, strong Caspase-3 immune-expressions were detected in the group AOM + UDS compared to AOM group. Biochemical examinations indicated that a markedly increase in the malondialdehyde and fluctuated antioxidant defense system constituents levels such as reduced glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase were restored in AOM + UDS group. These results reveal that the UDS may act as a chemopreventive dietary agent, inducing apoptosis, resulting in a significant reduction of colon carcinogenesis.
Collapse
Affiliation(s)
- Ahmet Uyar
- Faculty of Veterinary Medicine, Department of Pathology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Abdulahad Doğan
- Faculty of Pharmacy, Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Turan Yaman
- Faculty of Veterinary Medicine, Department of Pathology, Van Yuzuncu Yil University, Van, Turkey
| | - Ömer Faruk Keleş
- Faculty of Veterinary Medicine, Department of Pathology, Van Yuzuncu Yil University, Van, Turkey
| | - Zabit Yener
- Faculty of Veterinary Medicine, Department of Pathology, Van Yuzuncu Yil University, Van, Turkey
| | - İsmail Çelik
- Faculty of Science, Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, Van, Turkey
| | - Elif Ebru Alkan
- Faculty of Science, Department of Molecular Biology and Genetics, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
49
|
Wang H, Sun J, Zhu J, Wang X. Management of early lung tumorigenesis by corilagin via modulation of proliferating cell nuclear antigen and apoptotic pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_483_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Ağgül AG, Gür F, Gülaboğlu M. Streptozotocin‐Induced Oxidative Stress in Rats: The Protective Role of Olive Leaf Extract. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmet Gökhan Ağgül
- Department of Biochemistry, Faculty of Pharmacy Ataturk University Erzurum 25240 Turkey
- Department of Biochemistry, Faculty of Pharmacy Ağrı Ibrahim Çeçen University, 04100 Ağrı Turkey
| | - Fatma Gür
- Department of Medical Services and Techniques, Health Services Vocational School Atatürk University Erzurum 25240 Turkey
| | - Mine Gülaboğlu
- Department of Biochemistry, Faculty of Pharmacy Ataturk University Erzurum 25240 Turkey
| |
Collapse
|