1
|
Cao Q, Shen M, Li R, Liu Y, Zeng Z, Zhou J, Niu D, Zhang Q, Wang R, Yao J, Zhang G. Elucidating the specific mechanisms of the gut-brain axis: the short-chain fatty acids-microglia pathway. J Neuroinflammation 2025; 22:133. [PMID: 40400035 PMCID: PMC12093714 DOI: 10.1186/s12974-025-03454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
In recent years, the gut microbiota has been increasingly recognized for its influence on various central nervous system diseases mediated by microglia, yet the underlying mechanisms remain unclear. As key metabolites of the gut microbiota, short-chain fatty acids (SCFAs) have emerged as a focal point in understanding microglia-related interactions. In this review, we further refine the connection between the gut microbiota and microglia by introducing the concept of the "SCFAs-microglia" pathway. We summarize current knowledge on this pathway, recent discoveries regarding its role in neurological diseases, and potential pharmacological strategies targeting it. Finally, we outlined the current challenges and limitations in this field of research. We hope this review provides new insights into the role of the gut microbiota in neuroimmune regulation.
Collapse
Affiliation(s)
- Qingyu Cao
- College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Ruoqiu Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Liu
- School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Jidong Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Quancai Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China.
| | - Guimin Zhang
- College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, 276005, China.
| |
Collapse
|
2
|
Chen H(D, Yi B, Ma Z(S. Resilience of human gut microbiomes in autism spectrum disorder: measured using stiffness network analysis. Microbiol Spectr 2025; 13:e0107824. [PMID: 39902951 PMCID: PMC11878074 DOI: 10.1128/spectrum.01078-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/03/2024] [Indexed: 02/06/2025] Open
Abstract
Autism spectrum disorder (ASD) affects an estimated 1%-2% of children worldwide, but its specific etiology remains unclear. In recent years, the gut microbiome's role in ASD pathogenesis has garnered increasing attention. However, the exact relationship between microbiota and ASD-such as which microbial species significantly impact disease onset and progression-remains unresolved, and effective methods to measure microbial interactions are still lacking. In this study, we introduce an innovative stiffness network analysis (SNA) method to quantify changes in microbial network structure and identify disease-specific microbial bacteria theoretically. The SNA method was applied to reanalyze eight ASD gut microbiome data sets, encompassing 898 ASD samples and 467 healthy control (HC) samples from 16S-rRNA sequencing data. Key findings include the following: (i) an "allies" biomarker subgroup consisting of Bacteroides plebeius, Sutterella, Lachnospira, and Prevotella copri was identified; (ii) a profile monitoring score of 0.72 for the biomarker subgroup, indicating significant relationship changes between HC and ASD states, and (iii) a P/N ratio of biomarker subgroup in ASD-associated gut bacteria that was three times higher than that of HC microbiomes. Additionally, we discuss the non-monotonic relationship alterations within microbial sub-communities in the ASD gut microbiome.IMPORTANCEIt is crucial to assess alterations in network structure in different biological states in order to promote health. The stiffness network allows for the exploration of species interactions and the measurement of resilience in complex microbial networks. The objective of this study was to develop a stiffness network analysis (SNA) method for evaluating the contribution of microbial bacteria in differentiating disease samples from healthy control samples by examining changes in network stiffness parameters. Furthermore, the SNA method was employed on both simulated and real autism spectrum disorder gut microbiome data sets to identify potential microbial biomarker subgroups, with a particular focus on the relationship alterations within microbial networks.
Collapse
Affiliation(s)
- Hongju (Daisy) Chen
- School of Mathematics and Statistics, Guilin University of Technology, Guilin, China
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bin Yi
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ghunaim L, Ali Agha ASA, Aburjai T. Integrating Artificial Intelligence and Advanced Genomic Technologies in Unraveling Autism Spectrum Disorder and Gastrointestinal Comorbidities: A Multidisciplinary Approach to Precision Medicine. JORDAN JOURNAL OF PHARMACEUTICAL SCIENCES 2024; 17:567-581. [DOI: 10.35516/jjps.v17i3.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This article explores the potential impact of Artificial Intelligence (AI), Machine Learning (ML), CRISPR-Cas9 gene editing, and single-cell RNA sequencing on improving our understanding and management of Autism Spectrum Disorder (ASD) and its gastrointestinal (GI) comorbidities. It examines how these technologies illuminate the complex interplay between the gut and the brain, identifying specific enzyme deficiencies and microbial imbalances linked to GI symptoms in ASD. By leveraging AI and ML, personalized intervention strategies are developed through the analysis of genomic, proteomic, and environmental data, enhancing our ability to predict and address GI issues in ASD. Additionally, CRISPR-Cas9 gene editing holds promise for correcting genetic abnormalities related to enzyme production, potentially offering precise treatments. Single-cell RNA sequencing provides critical insights into the cellular diversity of the ASD gut, uncovering new therapeutic targets. The article highlights the transformative potential of these technologies while addressing the associated challenges and ethical considerations. It underscores the necessity of a multidisciplinary approach to fully harness their benefits and discusses the significant progress and emerging trends in the field, emphasizing the role of technological advancements in advancing precision medicine for ASD and its GI comorbidities.
Collapse
|
5
|
Cheddadi R, Yeramilli V, Martin C. From Mother to Infant, from Placenta to Gut: Understanding Varied Microbiome Profiles in Neonates. Metabolites 2023; 13:1184. [PMID: 38132866 PMCID: PMC10745069 DOI: 10.3390/metabo13121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The field of human microbiome and gut microbial diversity research has witnessed a profound transformation, driven by advances in omics technologies. These advancements have unveiled essential connections between microbiome alterations and severe conditions, prompting the development of new frameworks through epidemiological studies. Traditionally, it was believed that each individual harbored unique microbial communities acquired early in life, evolving over the course of their lifetime, with little acknowledgment of any prenatal microbial development, but recent research challenges this belief. The neonatal microbiome's onset, influenced by factors like delivery mode and maternal health, remains a subject of intense debate, hinting at potential intrauterine microbial processes. In-depth research reveals associations between microbiome profiles and specific health outcomes, ranging from obesity to neurodevelopmental disorders. Understanding these diverse microbiome profiles is essential for unraveling the intricate relationships between the microbiome and health outcomes.
Collapse
Affiliation(s)
- Riadh Cheddadi
- Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA (C.M.)
| | | | | |
Collapse
|
6
|
Ranieri A, Mennitti C, Falcone N, La Monica I, Di Iorio MR, Tripodi L, Gentile A, Vitale M, Pero R, Pastore L, D’Argenio V, Scudiero O, Lombardo B. Positive effects of physical activity in autism spectrum disorder: how influences behavior, metabolic disorder and gut microbiota. Front Psychiatry 2023; 14:1238797. [PMID: 38025444 PMCID: PMC10681626 DOI: 10.3389/fpsyt.2023.1238797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by social interactions and communication skills impairments that include intellectual disabilities, communication delays and self-injurious behaviors; often are present systemic comorbidities such as gastrointestinal disorders, obesity and cardiovascular disease. Moreover, in recent years has emerged a link between alterations in the intestinal microbiota and neurobehavioral symptoms in children with autism spectrum disorder. Recently, physical activity and exercise interventions are known to be beneficial for improving communication and social interaction and the composition of microbiota. In our review we intend to highlight how different types of sports can help to improve communication and social behaviors in children with autism and also show positive effects on gut microbiota composition.
Collapse
Affiliation(s)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Noemi Falcone
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Vitale
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Raffaella Pero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Asbjornsdottir B, Lauth B, Fasano A, Thorsdottir I, Karlsdottir I, Gudmundsson LS, Gottfredsson M, Smarason O, Sigurdardottir S, Halldorsson TI, Marteinsson VT, Gudmundsdottir V, Birgisdottir BE. Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study): A protocol for an observational longitudinal case-control study. PLoS One 2022; 17:e0273855. [PMID: 36048886 PMCID: PMC9436124 DOI: 10.1371/journal.pone.0273855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Recent studies indicate that the interplay between diet, intestinal microbiota composition, and intestinal permeability can impact mental health. More than 10% of children and adolescents in Iceland suffer from mental disorders, and rates of psychotropics use are very high. The aim of this novel observational longitudinal case-control study, "Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study)" is to contribute to the promotion of treatment options for children and adolescents diagnosed with mental disorders through identification of patterns that may affect the symptoms. All children and adolescents, 5-15 years referred to the outpatient clinic of the Child and Adolescent Psychiatry Department at The National University Hospital in Reykjavik, Iceland, for one year (n≈150) will be invited to participate. There are two control groups, i.e., sex-matched children from the same postal area (n≈150) and same parent siblings (full siblings) in the same household close in age +/- 3 years (n<150). A three-day food diary, rating scales for mental health, and multiple questionnaires will be completed. Biosamples (fecal-, urine-, saliva-, blood samples, and buccal swab) will be collected and used for 16S rRNA gene amplicon sequencing of the oral and gut microbiome, measurements of serum factors, quantification of urine metabolites and host genotype, respectively. For longitudinal follow-up, data collection will be repeated after three years in the same groups. Integrative analysis of diet, gut microbiota, intestinal permeability, serum metabolites, and mental health will be conducted applying bioinformatics and systems biology approaches. Extensive population-based data of this quality has not been collected before, with collection repeated in three years' time, contributing to the high scientific value. The MMM-study follows the "Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) guidelines. Approval has been obtained from the Icelandic National Bioethics Committee, and the study is registered with Clinicaltrials.gov. The study will contribute to an improved understanding of the links between diet, gut microbiota and mental health in children through good quality study design by collecting information on multiple components, and a longitudinal approach. Furthermore, the study creates knowledge on possibilities for targeted and more personalized dietary and lifestyle interventions in subgroups. Trial registration numbers: VSN-19-225 & NCT04330703.
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Mucosal Immunology and Biology Research Center, Massachusetts Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bertrand Lauth
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry (BUGL), Landspitali University Hospital, Reykjavik, Iceland
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Inga Thorsdottir
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Ingibjorg Karlsdottir
- Department of Child and Adolescent Psychiatry (BUGL), Landspitali University Hospital, Reykjavik, Iceland
| | - Larus S. Gudmundsson
- Faculty of Pharmaceutical Sciences and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Magnus Gottfredsson
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, Reykjavik, Iceland
| | - Orri Smarason
- Faculty of Psychology and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sigurveig Sigurdardottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorhallur I. Halldorsson
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Viggo Thor Marteinsson
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Matís ohf., Microbiology Group, Reykjavík, Iceland
| | - Valborg Gudmundsdottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Bryndis Eva Birgisdottir
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
8
|
Taniya MA, Chung HJ, Al Mamun A, Alam S, Aziz MA, Emon NU, Islam MM, Hong STS, Podder BR, Ara Mimi A, Aktar Suchi S, Xiao J. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:915701. [PMID: 35937689 PMCID: PMC9355470 DOI: 10.3389/fcimb.2022.915701] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that affects normal brain development. The recent finding of the microbiota-gut-brain axis indicates the bidirectional connection between our gut and brain, demonstrating that gut microbiota can influence many neurological disorders such as autism. Most autistic patients suffer from gastrointestinal (GI) symptoms. Many studies have shown that early colonization, mode of delivery, and antibiotic usage significantly affect the gut microbiome and the onset of autism. Microbial fermentation of plant-based fiber can produce different types of short-chain fatty acid (SCFA) that may have a beneficial or detrimental effect on the gut and neurological development of autistic patients. Several comprehensive studies of the gut microbiome and microbiota-gut-brain axis help to understand the mechanism that leads to the onset of neurological disorders and find possible treatments for autism. This review integrates the findings of recent years on the gut microbiota and ASD association, mainly focusing on the characterization of specific microbiota that leads to ASD and addressing potential therapeutic interventions to restore a healthy balance of gut microbiome composition that can treat autism-associated symptoms.
Collapse
Affiliation(s)
- Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Science, Independent University, Dhaka, Bangladesh
| | - Hea-Jong Chung
- Gwanju Center, Korea Basic Science Institute, Gwanju, South Korea
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Safaet Alam
- Drugs and Toxins Research Division, BCSIR Laboratories, Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram, Bangladesh
| | - Md. Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Seong-T shool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Bristy Rani Podder
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anjuman Ara Mimi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Lu C, Rong J, Fu C, Wang W, Xu J, Ju XD. Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention. Front Psychol 2022; 13:862719. [PMID: 35712154 PMCID: PMC9196865 DOI: 10.3389/fpsyg.2022.862719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with unclear etiology, and due to the lack of effective treatment, ASD patients bring enormous economic and psychological burden to families and society. In recent years, many studies have found that children with ASD are associated with gastrointestinal diseases, and the composition of intestinal microbiota (GM) is different from that of typical developing children. Thus, many researchers believe that the gut-brain axis may play an important role in the occurrence and development of ASD. Indeed, some clinical trials and animal studies have reported changes in neurological function, behavior, and comorbid symptoms of autistic children after rebalancing the composition of the GM through the use of antibiotics, prebiotics, and probiotics or microbiota transfer therapy (MMT). In view of the emergence of new therapies based on the modulation of GM, characterizing the individual gut bacterial profile evaluating the effectiveness of intervention therapies could help provide a better quality of life for subjects with ASD. This article reviews current studies on interventions to rebalance the GM in children with ASD. The results showed that Lactobacillus plantarum may be an effective strain for the probiotic treatment of ASD. However, the greater effectiveness of MMT treatment suggests that it may be more important to pay attention to the overall balance of the patient's GM. Based on these findings, a more thorough assessment of the GM is expected to contribute to personalized microbial intervention, which can be used as a supplementary treatment for ASD.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jiaqi Rong
- School of Psychology, Northeast Normal University, Changchun, China
| | - Changxing Fu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Wenshi Wang
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jing Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun, China
| |
Collapse
|
10
|
Popow C, Ohmann S, Plener P. Practitioner's review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2021; 35:113-134. [PMID: 34160787 PMCID: PMC8429404 DOI: 10.1007/s40211-021-00395-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/15/2021] [Indexed: 11/14/2022]
Abstract
Alleviating the multiple problems of children with autism spectrum disorder (ASD) and its comorbid conditions presents major challenges for the affected children, parents, and therapists. Because of a complex psychopathology, structured therapy and parent training are not always sufficient, especially for those patients with intellectual disability (ID) and multiple comorbidities. Moreover, structured therapy is not available for a large number of patients, and pharmacological support is often needed, especially in those children with additional attention deficit/hyperactivity and oppositional defiant, conduct, and sleep disorders.
Collapse
Affiliation(s)
- Christian Popow
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Susanne Ohmann
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Paul Plener
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| |
Collapse
|
11
|
Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, Jalalifar S, Karimitabar Z, Teimoori A, Keyvani H, Zamani F, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139:111661. [PMID: 34243604 DOI: 10.1016/j.biopha.2021.111661] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
During the past decade, accumulating evidence from the research highlights the suggested effects of bacterial communities of the human gut microbiota and their metabolites on health and disease. In this regard, microbiota-derived metabolites and their receptors, beyond the immune system, maintain metabolism homeostasis, which is essential to maintain the host's health by balancing the utilization and intake of nutrients. It has been shown that gut bacterial dysbiosis can cause pathology and altered bacterial metabolites' formation, resulting in dysregulation of the immune system and metabolism. The short-chain fatty acids (SCFAs), such as butyrate, acetate, and succinate, are produced due to the fermentation process of bacteria in the gut. It has been noted remodeling in the gut microbiota metabolites associated with the pathophysiology of several neurological disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, stress, anxiety, depression, autism, vascular dementia, schizophrenia, stroke, and neuromyelitis optica spectrum disorders, among others. This review will discuss the current evidence from the most significant studies dealing with some SCFAs from gut microbial metabolism with selected neurological disorders.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mazaheri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimitabar
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Leyrolle Q, Decoeur F, Briere G, Amadieu C, Quadros ARAA, Voytyuk I, Lacabanne C, Benmamar-Badel A, Bourel J, Aubert A, Sere A, Chain F, Schwendimann L, Matrot B, Bourgeois T, Grégoire S, Leblanc JG, De Moreno De Leblanc A, Langella P, Fernandes GR, Bretillon L, Joffre C, Uricaru R, Thebault P, Gressens P, Chatel JM, Layé S, Nadjar A. Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology 2021; 46:579-602. [PMID: 32781459 PMCID: PMC8026603 DOI: 10.1038/s41386-020-00793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.
Collapse
Affiliation(s)
- Q. Leyrolle
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - F. Decoeur
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - G. Briere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - C. Amadieu
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. R. A. A. Quadros
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - I. Voytyuk
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - C. Lacabanne
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Benmamar-Badel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - J. Bourel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Aubert
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Sere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - F. Chain
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - L. Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - B. Matrot
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - T. Bourgeois
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - S. Grégoire
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - J. G. Leblanc
- CERELA-CONICET, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | | | - P. Langella
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - G. R. Fernandes
- Rene Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, MG Brazil
| | - L. Bretillon
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - C. Joffre
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - R. Uricaru
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Thebault
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.13097.3c0000 0001 2322 6764Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH UK
| | - J. M. Chatel
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - S. Layé
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Nadjar
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| |
Collapse
|
13
|
Yang LL, Stiernborg M, Skott E, Söderström Å, Giacobini M, Lavebratt C. Proinflammatory mediators and their associations with medication and comorbid traits in children and adults with ADHD. Eur Neuropsychopharmacol 2020; 41:118-131. [PMID: 33160793 DOI: 10.1016/j.euroneuro.2020.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022]
Abstract
Peripheral immune activation can influence neurodevelopment and is increased in autism, but is less explored in attention deficit hyperactivity disorder (ADHD). Patients with ADHD often display comorbid autism traits and gastrointestinal (GI) symptoms. Plasma protein levels of two acute phase reactants, C-reactive protein (CRP) and serum amyloid A (SAA), and two endothelial adhesion molecules, soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion molecule 1 (sVCAM-1), which share important roles in inflammation, were analyzed in 154 patients with ADHD and 61 healthy controls. Their associations with ADHD diagnosis, severity, medication and comorbid autistic symptoms, emotion dysregulation and GI symptoms were explored. The ADHD patients had increased levels of sICAM-1 and sVCAM-1 compared to healthy controls (p = 8.6e-05, p = 6.9e-07, respectively). In children with ADHD, the sICAM-1 and sVCAM-1 levels were higher among those with ADHD medication than among children (p = 0.0037, p = 0.0053, respectively) and adults (p = 3.5e-09, p = 1.9e-09, respectively) without ADHD medication. Among the adult ADHD patients, higher sICAM-1 levels were associated with increased comorbid autistic symptoms in the domains attention to detail and imagination (p = 0.0081, p = 0.00028, respectively), and higher CRP levels were associated with more GI symptoms (p = 0.014). sICAM-1 and sVCAM-1 levels were highly correlated with each other, and so were CRP and SAA levels. To conclude, vascular inflammatory activity may be overrepresented in ADHD, with elevated sICAM-1 and sVCAM-1 levels and this may in children be a consequence of current ADHD medication, and in adults relate to increased comorbid autistic symptoms. Replication is warranted.
Collapse
Affiliation(s)
- Liu L Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elin Skott
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden; PRIMA Child and Adult Psychiatry, Stockholm, Sweden
| | | | - MaiBritt Giacobini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; PRIMA Child and Adult Psychiatry, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
14
|
Rea K, Dinan TG, Cryan JF. Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology 2020; 79:50-62. [PMID: 31726457 DOI: 10.1159/000504495] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2019] [Indexed: 11/19/2022]
Abstract
There is mounting evidence that the trillions of microbes that inhabit our gut are a substantial contributing factor to mental health and, equally, to the progression of neuropsychiatric disorders. The extraordinary complexity of the gut ecosystem, and how it interacts with the intestinal epithelium to manifest physiological changes in the brain to influence mood and behaviour, has been the subject of intense scientific scrutiny over the last 2 decades. To further complicate matters, we each harbour a unique microbiota community that is subject to change by a number of factors including diet, exercise, stress, health status, genetics, medication, and age, amongst others. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the gastrointestinal (GI) microbiota, immune cells, gut tissue, glands, the autonomic nervous system (ANS), and the brain that communicate in a complex multidirectional manner through a number of anatomically and physiologically distinct systems. Long-term perturbations to this homeostatic environment may contribute to the progression of a number of disorders by altering physiological processes including hypothalamic-pituitary-adrenal axis activation, neurotransmitter systems, immune function, and the inflammatory response. While an appropriate, co-ordinated physiological response, such as an immune or stress response, is necessary for survival, a dysfunctional response can be detrimental to the host, contributing to the development of a number of central nervous system disorders.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland, .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,
| |
Collapse
|
15
|
Bjørklund G, Pivina L, Dadar M, Meguid NA, Semenova Y, Anwar M, Chirumbolo S. Gastrointestinal alterations in autism spectrum disorder: What do we know? Neurosci Biobehav Rev 2020; 118:111-120. [DOI: 10.1016/j.neubiorev.2020.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
|
16
|
Zonulin-Dependent Intestinal Permeability in Children Diagnosed with Mental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12071982. [PMID: 32635367 PMCID: PMC7399941 DOI: 10.3390/nu12071982] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Worldwide, up to 20% of children and adolescents experience mental disorders, which are the leading cause of disability in young people. Research shows that serum zonulin levels are associated with increased intestinal permeability (IP), affecting neural, hormonal, and immunological pathways. This systematic review and meta-analysis aimed to summarize evidence from observational studies on IP in children diagnosed with mental disorders. The review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search of the Cochrane Library, PsycINFO, PubMed, and the Web of Science identified 833 records. Only non-intervention (i.e., observational) studies in children (<18 years) diagnosed with mental disorders, including a relevant marker of intestinal permeability, were included. Five studies were selected, with the risk of bias assessed according to the Newcastle–Ottawa scale (NOS). Four articles were identified as strong and one as moderate, representing altogether 402 participants providing evidence on IP in children diagnosed with attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive–compulsive disorder (OCD). In ADHD, elevated serum zonulin levels were associated with impaired social functioning compared to controls. Children with ASD may be predisposed to impair intestinal barrier function, which may contribute to their symptoms and clinical outcome compared to controls. Children with ASD, who experience gastro-intestinal (GI) symptoms, seem to have an imbalance in their immune response. However, in children with OCD, serum zonulin levels were not significantly different compared to controls, but serum claudin-5, a transmembrane tight-junction protein, was significantly higher. A meta-analysis of mean zonulin plasma levels of patients and control groups revealed a significant difference between groups (p = 0.001), including the four studies evaluating the full spectrum of the zonulin peptide family. Therefore, further studies are required to better understand the complex role of barrier function, i.e., intestinal and blood–brain barrier, and of inflammation, to the pathophysiology in mental and neurodevelopmental disorders. This review was PROSPERO preregistered, (162208).
Collapse
|
17
|
Javier Díaz-García F, Flores-Medina S, Mercedes Soriano-Becerril D. Interplay between Human Intestinal Microbiota and Gut-to-Brain Axis: Relationship with Autism Spectrum Disorders. Microorganisms 2020. [DOI: 10.5772/intechopen.89998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Wang JP, Xu YC, Hou JQ, Li JY, Xing J, Yang BX, Zhang ZH, Zhang BL, Li HH, Li P. Effects of Dietary Fat Profile on Gut Microbiota in Valproate Animal Model of Autism. Front Med (Lausanne) 2020; 7:151. [PMID: 32478081 PMCID: PMC7235405 DOI: 10.3389/fmed.2020.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disability which may cause significant social, communication, and behavioral challenges. Besides certain essential symptoms, a lot of ASD individuals also suffer the comorbidity of gut microbiota dysbiosis, which possibly causes a variety of gastrointestinal (GI) difficulties. Interestingly, evidence has indicated that behavioral output may be modulated through the communication between the central nervous system and gut microbiota via the gut-brain axis. Polyunsaturated fatty acids (PUFAs) and n-3 fatty acids (n-3 PUFA) are structurally and functionally crucial components for the brain, and the state of n-3 PUFAs also affects the gut microbiota. However, how varying intake ratios of n-3/n6 PUFAs affect the gut microbiota composition in ASDs is not well-understood. Pregnant female Wistar rats with intraperitoneal administration of valproate acid (VPA) at embryonic day (E) 12.5 and their male offspring were grouped and fed three diets: a control chow (VPA group), omega-3 deficient (A group), and n-3/n6 (1:5) diet (B group). The diet of pregnant female Wistar rats with intraperitoneal administration of saline and their male offspring was a control chow (normal group). Microbial composition and species abundance were investigated accordingly by the 16S rRNA gene-based metagenomics analysis on the fecal samples. Results showed that fecal microbial abundance was decreased because of VPA administration in the period of pregnancy, and the changing pattern of gut microbiota was similar to that reported in ASD patients. Furthermore, the n-3/n6 (1:5) diet increased the fecal microbial abundance and decreased the elevated Firmicutes. In conclusion, n-3/n6 PUFAs (1:5) diet supplementation may alter gut microbiota composition in VPA-exposed rats. This study put forward a new strategy for the intervention and treatment of autism by n-3/n-6 PUFAs ratio supplementation intakes.
Collapse
Affiliation(s)
- Jin-Peng Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Yang-Chun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Qiu Hou
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Yu Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jie Xing
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Bao-Xia Yang
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Ze-Hui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bei-Lin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082647. [PMID: 32290635 PMCID: PMC7215504 DOI: 10.3390/ijerph17082647] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by the impairment of the cognitive function of a child. Studies suggested that the intestinal microbiota has a critical role in the function and regulation of the central nervous system, neuroimmune system and neuroendocrine system. Any adverse changes in the gut–brain axis may cause serious disease. Food preferences and dietary patterns are considered as key in influencing the factors of ASD development. Several recent reviews narrated the importance of dietary composition on controlling or reducing the ASD symptoms. It has been known that the consumption of probiotics confers several health benefits by positive amendment of gut microbiota. The influence of probiotic intervention in children with ASD has also been reported and it has been considered as an alternative and complementary therapeutic supplement for ASD. The present manuscript discusses the role of microbiota and diet in the development of ASD. It also summarizes the recent updates on the influence of dietary supplements and the beneficial effect of probiotics on ASD symptoms. An in-depth literature survey suggested that the maternal diet and lifestyle are greatly associated with the development of ASD and other neurodevelopmental disorders. Mounting evidences have confirmed the alteration in the gut microbial composition in children suffering from ASD. However, the unique profile of microbiome has not yet been fully characterized due to the heterogeneity of patients. The supplementation of probiotics amended the symptoms associated with ASD but the results are inconclusive. The current study recommends further detailed research considering the role of microbiome, diet and probiotics in the development and control of ASD.
Collapse
|
20
|
Arteaga-Henríquez G, Rosales-Ortiz SK, Arias-Vásquez A, Bitter I, Ginsberg Y, Ibañez-Jimenez P, Kilencz T, Lavebratt C, Matura S, Reif A, Rethelyi J, Richarte V, Rommelse N, Siegl A, Ramos-Quiroga JA. Treating impulsivity with probiotics in adults (PROBIA): study protocol of a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2020; 21:161. [PMID: 32046750 PMCID: PMC7014653 DOI: 10.1186/s13063-019-4040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Impulsivity and compulsivity are related to emotional and social maladjustment and often underlie psychiatric disorders. Recently, alterations in microbiota composition have been shown to have implications for brain development and social behavior via the microbiota-gut-brain axis. However, the exact mechanisms are not fully identified. Recent evidence suggests the modulatory effect of synbiotics on gut microbiota and the contribution of these agents in ameliorating symptoms of many psychiatric diseases. To date, no randomized controlled trial has been performed to establish the feasibility and efficacy of this intervention targeting the reduction of impulsivity and compulsivity. We hypothesize that supplementation with synbiotics may be an effective treatment in adults with high levels of impulsivity and/or compulsivity. METHODS/DESIGN This is a prospective, multicenter, double-blind, randomized controlled trial with two arms: treatment with a synbiotic formula versus placebo treatment. The primary outcome is the response rate at the end of the placebo-controlled phase (response defined as a Clinical Global Impression-Improvement Scale score of 1 or 2 = very much improved or much improved, plus a reduction in the Affective Reactivity Index total score of at least 30% compared with baseline). A total of 180 participants with highly impulsive behavior and a diagnosis of attention deficit/hyperactivity disorder (ADHD) and/or borderline personality disorder, aged 18-65 years old, will be screened at three study centers. Secondary outcome measures, including changes in general psychopathology, ADHD symptoms, neurocognitive function, somatic parameters, physical activity, nutritional intake, and health-related quality of life, will be explored at assessments before, during, and at the end of the intervention. The effect of the intervention on genetics, microbiota, and several blood biomarkers will also be assessed. Gastrointestinal symptoms and somatic complaints will additionally be explored at 1-week follow-up. DISCUSSION This is the first randomized controlled trial to determine the effects of supplementation with synbiotics on reducing impulsive and compulsive behavior. This clinical trial can contribute to explaining the mechanisms involved in the crosstalk between the intestinal microbiome and the brain. If effects can be established by reducing impulsive and compulsive behavior, new cost-effective treatments might become available to these patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT03495375. Registered on 26 February 2018.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | | | - Alejandro Arias-Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Istvan Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Ylva Ginsberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute, Stockholm, Sweden
| | - Pol Ibañez-Jimenez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Tünde Kilencz
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Janos Rethelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.,Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Nanda Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Anne Siegl
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain. .,Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain. .,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain. .,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2667] [Impact Index Per Article: 444.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Effect of propionic acid on the morphology of the amygdala in adolescent male rats and their behavior. Micron 2019; 125:102732. [PMID: 31437571 DOI: 10.1016/j.micron.2019.102732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder is a group of life-long developmental syndromes, characterized by stereotypic behavior, restricted, communication deficits, cognitive and social impairments. Autism spectrum disorder is heritable state, provided by the mutations of well-conserved genes; however, it has been increasingly accepted, that most of such states are the result of complex interaction between individual's genetic profile and the environment that he/she is exposed to. Gut microbiota plays one of the central roles in the etiology of autism. Propionic acid is one of the most abundant short-chain fatty acids, made by enteric bacteria. Propionic acid has many positive functions and acts as the main mediator between nutrition, gut microbiota and brain physiology. However, increased level of propionic acid is associated with various neurological pathologies, including autism. It is proposed that some types of autism might be partially related with alterations in propionic acid metabolism. The amygdala, the main component of social brain, via its large interconnections with fronto-limbic neural system, plays one of the key roles in social communications, emotional memory and emotional processing. Social behavior is a hot topic in autism research. As to anxiety, it is not the main characteristics of ASD, but represents one of the most common its co morbidities. Several theoretical reasons compatible with amygdala dysfunction have been suggested to account for socio-emotional disturbances in autism. In the present study, using adolescent male Wistar rats, the effect of acute administration of low dose of propionic acid on social behavior, anxiety-like behavior and the structure/ultrastructure of central nucleus of amygdale was described. In addition to qualitative analysis, on electron microscopic level the quantitative analysis of some parameters of synapses was performed. Behavior was assessed 2, 24 and 48 hours after treatment. The results revealed that even single and relatively low dose of propionic acid is sufficient to produce fast and relatively long lasting (48 h after treatment) decrease of social motivation, whereas asocial motivation and emotional sphere remain unaffected. Morphological analyses of propionic acid-treated brain revealed the reduced neuron number and the increase of the number of glial cells. Electron microscopically, in some neurons the signs of apoptosis and chromatolysis were detected. Glial alterations were more common. Particularly, the activation of astrocytes and microglia were often observed. Pericapillary glia was the most changed. Neuronal, glial and presynaptic mitochondria showed substantial structural diversities, mainly in terms of size and form. Total number of the area of presynaptic profile was significantly decreased. Some axons were moderately demyelinated. In general, the data indicate that even low dose of propionic acid produces in adolescent rodents immediate changes in social behavior, and structural/ultrastructural alterations in amygdala. Ultrastructural alterations may reflect moderate modifications in functional networks of social brain.
Collapse
|
23
|
Codagnone MG, Stanton C, O'Mahony SM, Dinan TG, Cryan JF. Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. ANNALS OF NUTRITION AND METABOLISM 2019; 74 Suppl 2:16-27. [PMID: 31234188 DOI: 10.1159/000499144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pregnancy and early life are characterized by marked changes in body microbial composition. Intriguingly, these changes take place simultaneously with neurodevelopmental plasticity, suggesting a complex dialogue between the microbes that inhabit the gastrointestinal tract and the brain. The purpose of this chapter is to describe the natural trajectory of microbiota during pregnancy and early life, as well as review the literature available on its interaction with neurodevelopment. Several lines of evidence show that the gut microbiota interacts with diet, drugs and stress both prenatally and postnatally. Clinical and preclinical studies are illuminating how these disruptions result in different developmental outcomes. Understanding the role of the microbiota in neurodevelopment may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Martin G Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland, .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,
| |
Collapse
|
24
|
Ma B, Liang J, Dai M, Wang J, Luo J, Zhang Z, Jing J. Altered Gut Microbiota in Chinese Children With Autism Spectrum Disorders. Front Cell Infect Microbiol 2019; 9:40. [PMID: 30895172 PMCID: PMC6414714 DOI: 10.3389/fcimb.2019.00040] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
The link between gut microbes and autism spectrum disorders (ASD) has been already observed in some studies, but some bacterial families/species were found to be inconsistently up or down regulated. This issue has been rarely explored in the Chinese population. In this study, we assessed whether or not gut microbiota dysbiosis was associated with children with ASD in China. We enrolled 45 children with ASD (6-9 years of age; 39 boys and 6 girls) and 45 sex- and age-matched neurotypical children. Dietary and other socio-demographic information was obtained via questionnaires. We characterized the composition of the fecal microbiota using bacterial 16S ribosomal RNA (16S rRNA) gene sequencing. The ASD group showed less diversity and richness of gut microbiota than the neurotypical group, as estimated by the abundance-based coverage estimator index and the phylogenetic diversity index. The analysis of beta diversity showed an altered microbial community structure in the ASD group. After adjustment for confounders and multiple testing corrections, no significant group difference was found in the relative abundance of microbiota on the level of the phylum. At the family level, children with ASD had a lower relative abundance of Acidaminococcaceae than the healthy controls. Moreover, a decrease in the relative abundance of genera Lachnoclostridium, Tyzzerella subgroup 4, Flavonifractor, and unidentified Lachnospiraceae was observed in ASD group. This study provides further evidence of intestinal microbial dysbiosis in ASD and sheds light on the characteristics of the gut microbiome of autistic children in China.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meixia Dai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jue Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingyin Luo
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zheqing Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder. Dev Psychobiol 2018; 61:752-771. [PMID: 30523646 DOI: 10.1002/dev.21803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the etiological origins of Autism Spectrum Disorder (ASD) remain elusive. Recently, the mechanisms of ASD have encompassed emerging theories involving the gastrointestinal, immune, and nervous systems. While each of these perspectives presents its own set of supporting evidence, the field requires an integration of these modular concepts and an overarching view of how these subsystems intersect. In this systematic review, we have synthesized relevant evidences from the existing literature, evaluating them in an interdependent manner and in doing so, outlining their possible connections. Specifically, we first discussed gastrointestinal and immuno-inflammation pathways in-depth, exploring the relationships between microbial composition, bacterial metabolites, gut mucosa, and immune system constituents. Accounting for temporal differences in the mechanisms involved in neurodevelopment, prenatal and postnatal phases were further elucidated, where the former focused on maternal immune activation (MIA) and fetal development, while the latter addressed the role of immune dysregulation in contributing to atypical neurodevelopment. As autism remains, foremost, a neurodevelopmental disorder, this review presents an integration of disparate modules into a "Gut-Immune-Brain" paradigm. Existing gaps in the literature have been highlighted, and possible avenues for future research with an integrated physiological perspective underlying ASD have also been suggested.
Collapse
Affiliation(s)
- Atiqah Azhari
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Farouq Azizan
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| |
Collapse
|
26
|
Frye RE. Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs 2018; 32:713-734. [PMID: 30105528 PMCID: PMC6105175 DOI: 10.1007/s40263-018-0556-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is defined by two core symptoms: a deficit in social communication and the presence of repetitive behaviors and/or restricted interests. Currently, there is no US Food and Drug Administration-approved drug for these core symptoms. This article reviews the biological origins of the social function deficit associated with autism spectrum disorder and the drug therapies with the potential to treat this deficit. A review of the history of autism demonstrates that a deficit in social interaction has been the defining feature of the concept of autism from its conception. Abnormalities identified in early social skill development and an overview of the pathophysiology abnormalities associated with autism spectrum disorder are discussed as are the abnormalities in brain circuits associated with the social function deficit. Previous and ongoing clinical trials examining agents that have the potential to improve social deficits associated with autism spectrum disorder are discussed in detail. This discussion reveals that agents such as oxytocin and propranolol are particularly promising and undergoing active investigation, while other agents such as vasopressin agonists and antagonists are being activity investigated but have limited published evidence at this time. In addition, agents such as bumetanide and manipulation of the enteric microbiome using microbiota transfer therapy appear to have promising effects on core autism spectrum disorder symptoms including social function. Other pertinent issues associated with developing treatments in autism spectrum disorder, such as disease heterogeneity, high placebo response rates, trial design, and the most appropriate way of assessing effects on social skills (outcome measures), are also discussed.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
27
|
Rose DR, Yang H, Serena G, Sturgeon C, Ma B, Careaga M, Hughes HK, Angkustsiri K, Rose M, Hertz-Picciotto I, Van de Water J, Hansen RL, Ravel J, Fasano A, Ashwood P. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun 2018; 70:354-368. [PMID: 29571898 PMCID: PMC5953830 DOI: 10.1016/j.bbi.2018.03.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Many studies have reported the increased presence of gastrointestinal (GI) symptoms in children with autism spectrum disorders (ASD). Altered microbiome profiles, pro-inflammatory responses and impaired intestinal permeability have been observed in children with ASD and co-morbid GI symptoms, yet few studies have compared these findings to ASD children without GI issues or similarly aged typical developing children. The aim of this study was to determine whether there are biological signatures in terms of immune dysfunction and microbiota composition in children with ASD with GI symptoms. METHODS Children were enrolled in one of four groups: ASD and GI symptoms of irregular bowel habits (ASDGI), children with ASD but without current or previous GI symptoms (ASDNoGI), typically developing children with GI symptoms (TDGI) and typically developing children without current or previous GI symptoms (TDNoGI). Peripheral blood mononuclear cells (PBMC) were isolated from the blood, stimulated and assessed for cytokine production, while stool samples were analyzed for microbial composition. RESULTS Following Toll-Like receptor (TLR)-4 stimulation, the ASDGI group produced increased levels of mucosa-relevant cytokines including IL-5, IL-15 and IL-17 compared to ASDNoGI. The production of the regulatory cytokine TGFβ1 was decreased in the ASDGI group compared with both the ASDNoGI and TDNoGI groups. Analysis of the microbiome at the family level revealed differences in microbiome composition between ASD and TD children with GI symptoms; furthermore, a predictive metagenome functional content analysis revealed that pathways were differentially represented between ASD and TD subjects, independently of the presence of GI symptoms. The ASDGI also showed an over-representation of the gene encoding zonulin, a molecule regulating gut permeability, compared to the other groups. CONCLUSIONS Overall our findings suggest that children with ASD who experience GI symptoms have an imbalance in their immune response, possibly influenced by or influencing metagenomic changes, and may have a propensity to impaired gut barrier function which may contribute to their symptoms and clinical outcome.
Collapse
Affiliation(s)
- Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Houa Yang
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, MassGeneral Hospital for Children, Boston, MA, USA; Graduate Program in Life Sciences University of Maryland School of Medicine, Baltimore, MD, USA
| | - Craig Sturgeon
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, MassGeneral Hospital for Children, Boston, MA, USA; Graduate Program in Life Sciences University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute of Genomic Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Heather K Hughes
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Kathy Angkustsiri
- MIND Institute, University of California Davis, USA; Department of Pediatrics, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA
| | - Melissa Rose
- Children's Center for Environmental Health, University of California Davis, CA, USA; Public Health Sciences, University of California Davis, CA, USA
| | - Irva Hertz-Picciotto
- MIND Institute, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA; Public Health Sciences, University of California Davis, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA; Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, CA, USA
| | - Robin L Hansen
- MIND Institute, University of California Davis, USA; Department of Pediatrics, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA
| | - Jacques Ravel
- Institute of Genomic Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, MassGeneral Hospital for Children, Boston, MA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA.
| |
Collapse
|
28
|
Ji Y, Guo Q, Yin Y, Blachier F, Kong X. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs. J Anim Sci Biotechnol 2018; 9:18. [PMID: 29423216 PMCID: PMC5789534 DOI: 10.1186/s40104-018-0233-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Pregnancy is associated with important changes in gut microbiota composition. Dietary factors may affect the diversity, composition, and metabolic activity of the intestinal microbiota. Among amino acids, proline is known to play important roles in protein metabolism and structure, cell differentiation, conceptus growth and development, and gut microbiota re-equilibration in case of dysbiosis. Results Dietary supplementation with 1% proline decreased (P < 0.05) the amounts of Klebsiella pneumoniae, Peptostreptococcus productus, Pseudomonas, and Veillonella spp. in distal colonic contents than that in the control group. The colonic contents of Butyrivibrio fibrisolvens, Bifidobacterium sp., Clostridium coccoides, Clostridium coccoides-Eubacterium rectale, Clostridium leptum subgroup, Escherichia coli, Faecalibacterium prausnitzii, Fusobacterium prausnitzii, and Prevotella increased (P < 0.05) on d 70 of pregnancy as compared with those on d 45 of pregnancy. The colonic concentrations of acetate, total straight-chain fatty acid, and total short-chain fatty acids (SCFA) in the proline-supplemented group were lower (P < 0.05), and butyrate level (P = 0.06) decreased as compared with the control group. Almost all of the SCFA displayed higher (P < 0.05) concentrations in proximal colonic contents on d 70 of pregnancy than those on d 45 of pregnancy. The concentrations of 1,7-heptyl diamine (P = 0.09) and phenylethylamine (P < 0.05) in proximal colonic contents were higher, while those of spermidine (P = 0.05) and total bioamine (P = 0.06) tended to be lower in the proline-supplemented group than those in the control group. The concentrations of spermidine, spermine, and total bioamine in colonic contents were higher (P < 0.05) on d 70 of pregnancy than those measured on d 45 of pregnancy. In contrast, the concentration of phenylethylamine was lower (P < 0.05) on d 70 than on d 45 of pregnancy. Conclusion These findings indicate that L-proline supplementation modifies both the colonic microbiota composition and the luminal concentrations of several bacterial metabolites. Furthermore, our data show that both the microbiota composition and the concentrations of bacterial metabolites are evolving in the course of pregnancy. These results are discussed in terms of possible implication in terms of luminal environment and consequences for gut physiology and health.
Collapse
Affiliation(s)
- Yujiao Ji
- 1National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Qiuping Guo
- 1National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Yulong Yin
- 1National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China.,Research Center of Mini-pig, Huanjiang Observation and Research Station for Karst Ecosysterms, Huanjiang, Guangxi 547100 China
| | - Francois Blachier
- UMR 914 INRA/AgroParisTech/Universite Paris-Sacaly, Nutrition Physiology and Ingestive Behavior, 75005 Paris, France
| | - Xiangfeng Kong
- 1National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China.,Research Center of Mini-pig, Huanjiang Observation and Research Station for Karst Ecosysterms, Huanjiang, Guangxi 547100 China
| |
Collapse
|
29
|
Qiao Y, Wu M, Feng Y, Zhou Z, Chen L, Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep 2018; 8:1597. [PMID: 29371629 PMCID: PMC5785483 DOI: 10.1038/s41598-018-19982-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Altered gut microbiota is associated with autism spectrum disorders (ASD), a group of complex, fast growing but difficult-to-diagnose neurodevelopmental disorders worldwide. However, the role of the oral microbiota in ASD remains unexplored. Via high-throughput sequencing of 111 oral samples in 32 children with ASD and 27 healthy controls, we demonstrated that the salivary and dental microbiota of ASD patients were highly distinct from those of healthy individuals. Lower bacterial diversity was observed in ASD children compared to controls, especially in dental samples. Also, principal coordinate analysis revealed divergences between ASD patients and controls. Moreover, pathogens such as Haemophilus in saliva and Streptococcus in plaques showed significantly higher abundance in ASD patients, whereas commensals such as Prevotella, Selenomonas, Actinomyces, Porphyromonas, and Fusobacterium were reduced. Specifically, an overt depletion of Prevotellaceae co-occurrence network in ASD patients was obtained in dental plaques. The distinguishable bacteria were also correlated with clinical indices, reflecting disease severity and the oral health status (i.e. dental caries). Finally, diagnostic models based on key microbes were constructed, with 96.3% accuracy in saliva. Taken together, this study characterized the habitat-specific profile of the oral microbiota in ASD patients, which might help develop novel strategies for the diagnosis of ASD.
Collapse
Affiliation(s)
- Yanan Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Mingtao Wu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Department of Periodontics School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zhichong Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Fengshan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
30
|
Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol 2017; 7:396. [PMID: 28936425 PMCID: PMC5596107 DOI: 10.3389/fcimb.2017.00396] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of MissouriColumbia, MO, United States.,Biomedical Sciences, University of MissouriColumbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of MissouriColumbia, MO, United States.,Genetics Area Program, University of MissouriColumbia, MO, United States
| |
Collapse
|
31
|
Navarro F, Liu Y, Rhoads JM. Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol 2016; 22:10093-10102. [PMID: 28028357 PMCID: PMC5155168 DOI: 10.3748/wjg.v22.i46.10093] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/05/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023] Open
Abstract
Children with autism are commonly affected by gastrointestinal problems such as abdominal pain, constipation and diarrhea. In recent years, there has been a growing interest in the use of probiotics in this population, as it hypothetically may help to improve bowel habits and the behavioral and social functioning of these individuals. The gut microbiome plays an important role in the pathophysiology of organic as well as functional gastrointestinal disorders. Microbial modification with the use of antibiotics, probiotics, and fecal transplantation have been effective in the treatment of conditions such as recurrent Clostridium difficile infection, pouchitis, and irritable bowel syndrome. The present review presents a number of reported clinical, immunological and microbiome-related changes seen in children with autism compared to normally developed children. It also discusses gut inflammation, permeability concerns, and absorption abnormalities that may contribute to these problems. Most importantly, it discusses evidence, from human and animal studies, of a potential role of probiotics in the treatment of gastrointestinal symptoms in children with autism.
Collapse
|
32
|
Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs 2016; 30:1019-1041. [PMID: 27417321 PMCID: PMC5078156 DOI: 10.1007/s40263-016-0370-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of the gut microbiota in health and disease is becoming increasingly recognized. The microbiota-gut-brain axis is a bi-directional pathway between the brain and the gastrointestinal system. The bacterial commensals in our gut can signal to the brain through a variety of mechanisms, which are slowly being resolved. These include the vagus nerve, immune mediators and microbial metabolites, which influence central processes such as neurotransmission and behaviour. Dysregulation in the composition of the gut microbiota has been identified in several neuropsychiatric disorders, such as autism, schizophrenia and depression. Moreover, preclinical studies suggest that they may be the driving force behind the behavioural abnormalities observed in these conditions. Understanding how bacterial commensals are involved in regulating brain function may lead to novel strategies for development of microbiota-based therapies for these neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
33
|
Slattery J, MacFabe DF, Frye RE. The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood. Clin Med Insights Pediatr 2016; 10:91-107. [PMID: 27774001 PMCID: PMC5063840 DOI: 10.4137/cmped.s38338] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies have highlighted the fact that the enteric microbiome, the trillions of microbes that inhabit the human digestive tract, has a significant effect on health and disease. Methods for manipulating the enteric microbiome, particularly through probiotics and microbial ecosystem transplantation, have undergone some study in clinical trials. We review some of the evidence for microbiome alteration in relation to childhood disease and discuss the clinical trials that have examined the manipulation of the microbiome in an effort to prevent or treat childhood disease with a primary focus on probiotics, prebiotics, and/or synbiotics (ie, probiotics + prebiotics). Studies show that alterations in the microbiome may be a consequence of events occurring during infancy and/or childhood such as prematurity, C-sections, and nosocomial infections. In addition, certain childhood diseases have been associated with microbiome alterations, namely necrotizing enterocolitis, infantile colic, asthma, atopic disease, gastrointestinal disease, diabetes, malnutrition, mood/anxiety disorders, and autism spectrum disorders. Treatment studies suggest that probiotics are potentially protective against the development of some of these diseases. Timing and duration of treatment, the optimal probiotic strain(s), and factors that may alter the composition and function of the microbiome are still in need of further research. Other treatments such as prebiotics, fecal microbial transplantation, and antibiotics have limited evidence. Future translational work, in vitro models, long-term and follow-up studies, and guidelines for the composition and viability of probiotic and microbial therapies need to be developed. Overall, there is promising evidence that manipulating the microbiome with probiotics early in life can help prevent or reduce the severity of some childhood diseases, but further research is needed to elucidate biological mechanisms and determine optimal treatments.
Collapse
Affiliation(s)
- John Slattery
- Arkansas Children’s Research Institute, Little Rock, AR, USA
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F. MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, University of Western Ontario, London, ON, Canada
| | - Richard E. Frye
- Arkansas Children’s Research Institute, Little Rock, AR, USA
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
34
|
Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism 2016; 7:37. [PMID: 27594980 PMCID: PMC5009541 DOI: 10.1186/s13229-016-0099-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 08/10/2016] [Indexed: 02/08/2023] Open
Abstract
Background Gastrointestinal dysfunction and gut microbial composition disturbances have been widely reported in autism spectrum disorder (ASD). This study examines whether gut microbiome disturbances are present in the BTBRT + tf/j (BTBR) mouse model of ASD and if the ketogenic diet, a diet previously shown to elicit therapeutic benefit in this mouse model, is capable of altering the profile. Findings Juvenile male C57BL/6 (B6) and BTBR mice were fed a standard chow (CH, 13 % kcal fat) or ketogenic diet (KD, 75 % kcal fat) for 10–14 days. Following diets, fecal and cecal samples were collected for analysis. Main findings are as follows: (1) gut microbiota compositions of cecal and fecal samples were altered in BTBR compared to control mice, indicating that this model may be of utility in understanding gut-brain interactions in ASD; (2) KD consumption caused an anti-microbial-like effect by significantly decreasing total host bacterial abundance in cecal and fecal matter; (3) specific to BTBR animals, the KD counteracted the common ASD phenotype of a low Firmicutes to Bacteroidetes ratio in both sample types; and (4) the KD reversed elevated Akkermansia muciniphila content in the cecal and fecal matter of BTBR animals. Conclusions Results indicate that consumption of a KD likely triggers reductions in total gut microbial counts and compositional remodeling in the BTBR mouse. These findings may explain, in part, the ability of a KD to mitigate some of the neurological symptoms associated with ASD in an animal model. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Newell
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW., Calgary, Alberta T2N 4N1 Canada
| | - Marc R Bomhof
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| | - Raylene A Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW., Calgary, Alberta T2N 4N1 Canada ; Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| | - Dustin S Hittel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW., Calgary, Alberta T2N 4N1 Canada
| | - Jong M Rho
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada ; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada ; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW., Calgary, Alberta T2N 4N1 Canada ; Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| |
Collapse
|
35
|
Gómez-Gallego C, Pohl S, Salminen S, De Vos W, Kneifel W. Akkermansia muciniphila: a novel functional microbe with probiotic properties. Benef Microbes 2016; 7:571-84. [DOI: 10.3920/bm2016.0009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Akkermansia muciniphila is an intestinal anaerobe which has been proposed as a new functional microbe with probiotic properties. However, the species is not included in the European Union qualified presumption of safety (QPS) list and has not yet been assessed. Moreover, products containing A. muciniphila are not on the market and are thus controlled by the Novel Foods Regulation, which requires extensive safety assessment. This review addresses the safety aspects of the use of A. muciniphila based on published information on its functions in humans and predictions based on its activity in model animals. Further, comprehensive studies related to A. muciniphila and its safety properties have gradually appeared and are summarised here. Many of the criteria required for novel food safety assessment in Europe can thus be fulfilled. However, studies focusing on the toxicological properties of A. muciniphila, including long-term and reproduction studies, have not so far been reported and are discussed in the light of the observation that most, if not all, healthy subjects are known to carry this intestinal anaerobe. As this also applies to other beneficial bacteria found in the human intestinal tract, the A. muciniphila case can be seen as a model for the comprehensive safety evaluations required by the European authorities.
Collapse
Affiliation(s)
- C. Gómez-Gallego
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - S. Pohl
- Department of Food Sciences and Technology, University of Natural Resources and Life Science Vienna, 1190 Vienna, Austria
| | - S. Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - W.M. De Vos
- Laboratory of Microbiology, Wageningen University, 6703 CT, Wageningen, the Netherlands
- RPU Immunobiology, University of Helsinki, 00140 Helsinki, Finland
| | - W. Kneifel
- Department of Food Sciences and Technology, University of Natural Resources and Life Science Vienna, 1190 Vienna, Austria
| |
Collapse
|
36
|
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2016; 54:4432-4451. [PMID: 27349436 DOI: 10.1007/s12035-016-0004-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Andre Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (Imas12), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia. .,Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
| |
Collapse
|
37
|
Frye RE, Rossignol DA. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2016; 10:43-56. [PMID: 27330338 PMCID: PMC4910649 DOI: 10.4137/cmped.s38337] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA.; Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
38
|
Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9485412. [PMID: 27123458 PMCID: PMC4829699 DOI: 10.1155/2016/9485412] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/15/2016] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of mental illnesses highly correlated with gut microbiota. Recent studies have shown that some abnormal aromatic metabolites in autism patients are presumably derived from overgrown Clostridium species in gut, which may be used for diagnostic purposes. In this paper, a GC/MS based metabolomic approach was utilized to seek similar biomarkers by analyzing the urinary information in 62 ASDs patients compared with 62 non-ASDs controls in China, aged 1.5–7. Three compounds identified as 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), 3-hydroxyphenylacetic acid (3HPA), and 3-hydroxyhippuric acid (3HHA) were found in higher concentrations in autistic children than in the controls (p < 0.001). After oral vancomycin treatment, urinary excretion of HPHPA (p < 0.001), 3HPA (p < 0.005), and 3HHA (p < 0.001) decreased markedly, which indicated that these compounds may also be from gut Clostridium species. The sensitivity and specificity of HPHPA, 3HPA, and 3HHA were evaluated by receiver-operating characteristic (ROC) analysis. The specificity of each compound for ASDs was very high (>96%). After two-regression analysis, the optimal area under the curve (AUC, 0.962), sensitivity (90.3%), and specificity (98.4%) were obtained by ROC curve of Prediction probability based on the three metabolites. These findings demonstrate that the measurements of the three compounds are strong predictors of ASDs and support the potential clinical utility for identifying a subgroup of ASDs subjects.
Collapse
|
39
|
Beebe K, Kennedy AD. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic Individuality. Comput Struct Biotechnol J 2016; 14:97-105. [PMID: 26929792 PMCID: PMC4744241 DOI: 10.1016/j.csbj.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/24/2022] Open
Abstract
Precision medicine is an active component of medical practice today, but aspirations are to both broaden its reach to a greater diversity of individuals and improve its “precision” by enhancing the ability to define even more disease states in combination with associated treatments. Given complexity of human phenotypes, much work is required. In this review, we deconstruct this challenge at a high level to define what is needed to move closer toward these aspirations. In the context of the variables that influence the diverse array of phenotypes across human health and disease – genetics, epigenetics, environmental influences, and the microbiome – we detail the factors behind why an individual's biochemical (metabolite) composition is increasingly regarded as a key element to precisely defining phenotypes. Although an individual's biochemical (metabolite) composition is generally regarded, and frequently shown, to be a surrogate to the phenotypic state, we review how metabolites (and therefore an individual's metabolic profile) are also functionally related to the myriad of phenotypic influencers like genetics and the microbiota. We describe how using the technology to comprehensively measure an individual's biochemical profile – metabolomics – is integrative to defining individual phenotypes and how it is currently being deployed in efforts to continue to elaborate on human health and disease in large population studies. Finally, we summarize instances where metabolomics is being used to assess individual health in instances where signatures (i.e. biomarkers) have been defined.
Untargeted biochemical profiling has the potential to phenotype individuals where genetic associations do not seem to show penetrance Metabolomics can be leveraged with other ‘omics data to discern phenotype information that is driven by environmental, microbiota, or epigenetic factors. Tracking the biochemical profile of individuals may help discern effectiveness or response to treatment or disease progression.
Collapse
|
40
|
Kraneveld A, Szklany K, de Theije C, Garssen J. Gut-to-Brain Axis in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:263-287. [DOI: 10.1016/bs.irn.2016.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, Bocca C, Andres CR, Nadal-Desbarats L, Emond P. Metabolomics Study of Urine in Autism Spectrum Disorders Using a Multiplatform Analytical Methodology. J Proteome Res 2015; 14:5273-82. [PMID: 26538324 DOI: 10.1021/acs.jproteome.5b00699] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with no clinical biomarker. The aims of this study were to characterize a metabolic signature of ASD and to evaluate multiplatform analytical methodologies in order to develop predictive tools for diagnosis and disease follow-up. Urine samples were analyzed using (1)H and (1)H-(13)C NMR-based approaches and LC-HRMS-based approaches (ESI+ and ESI- on HILIC and C18 chromatography columns). Data tables obtained from the six analytical modalities on a training set of 46 urine samples (22 autistic children and 24 controls) were processed by multivariate analysis (orthogonal partial least-squares discriminant analysis, OPLS-DA). The predictions from each of these OPLS-DA models were then evaluated using a prediction set of 16 samples (8 autistic children and 8 controls) and receiver operating characteristic curves. Thereafter, a data fusion block-scaling OPLS-DA model was generated from the 6 best models obtained for each modality. This fused OPLS-DA model showed an enhanced performance (R(2)Y(cum) = 0.88, Q(2)(cum) = 0.75) compared to each analytical modality model, as well as a better predictive capacity (AUC = 0.91, p-value = 0.006). Metabolites that are most significantly different between autistic and control children (p < 0.05) are indoxyl sulfate, N-α-acetyl-l-arginine, methyl guanidine, and phenylacetylglutamine. This multimodality approach has the potential to contribute to find robust biomarkers and characterize a metabolic phenotype of the ASD population.
Collapse
Affiliation(s)
- Binta Diémé
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France
| | - Sylvie Mavel
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France
| | - Hélène Blasco
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France.,Service de Biochimie Et Biologie Moléculaire, Centre Hospitalier Régional Universitaire (CHRU) de Tours , 37044 Tours, France
| | - Gabriele Tripi
- Service de Pédopsychiatrie, CHRU de Tours , 37044 Tours, France
| | - Frédérique Bonnet-Brilhault
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France.,Service de Pédopsychiatrie, CHRU de Tours , 37044 Tours, France
| | - Joëlle Malvy
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France.,Service de Pédopsychiatrie, CHRU de Tours , 37044 Tours, France
| | - Cinzia Bocca
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France
| | - Christian R Andres
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France.,Service de Biochimie Et Biologie Moléculaire, Centre Hospitalier Régional Universitaire (CHRU) de Tours , 37044 Tours, France
| | - Lydie Nadal-Desbarats
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France
| | - Patrick Emond
- INSERM U930, Imagerie et Cerveau, Université François-Rabelais , 37000 Tours, France.,Service de Biochimie Et Biologie Moléculaire, Centre Hospitalier Régional Universitaire (CHRU) de Tours , 37044 Tours, France.,Service de Médecine Nucléaire In Vitro, CHRU de Tours , 37044 Tours, France
| |
Collapse
|
42
|
Rosenfeld CS. Microbiome Disturbances and Autism Spectrum Disorders. Drug Metab Dispos 2015; 43:1557-71. [PMID: 25852213 DOI: 10.1124/dmd.115.063826] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders (ASDs) are considered a heterogenous set of neurobehavioral diseases, with the rates of diagnosis dramatically increasing in the past few decades. As genetics alone does not explain the underlying cause in many cases, attention has turned to environmental factors as potential etiological agents. Gastrointestinal disorders are a common comorbidity in ASD patients. It was thus hypothesized that a gut-brain link may account for some autistic cases. With the characterization of the human microbiome, this concept has been expanded to include the microbiota-gut-brain axis. There are mounting reports in animal models and human epidemiologic studies linking disruptive alterations in the gut microbiota or dysbiosis and ASD symptomology. In this review, we will explore the current evidence that gut dysbiosis in animal models and ASD patients correlates with disease risk and severity. The studies to date have surveyed how gut microbiome changes may affect these neurobehavioral disorders. However, we harbor other microbiomes in the body that might impact brain function. We will consider microbial colonies residing in the oral cavity, vagina, and the most recently discovered one in the placenta. Based on the premise that gut microbiota alterations may be causative agents in ASD, several therapeutic options have been tested, such as diet modulations, prebiotics, probiotics, synbiotics, postbiotics, antibiotics, fecal transplantation, and activated charcoal. The potential benefits of these therapies will be considered. Finally, the possible mechanisms by which changes in the gut bacterial communities may result in ASD and related neurobehavioral disorders will be examined.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, Thompson Center for Autism and Neurobehavioral Disorders, Genetics Area Program, and Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
43
|
Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis - a review. Clin Exp Gastroenterol 2015; 8:237-55. [PMID: 26316791 PMCID: PMC4542552 DOI: 10.2147/ceg.s85574] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler’s diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations. More studies are needed to explore the full potential of this versatile probiotic yeast.
Collapse
Affiliation(s)
| | - Alexander Swidsinski
- Laboratory for Molecular Genetics, Polymicrobial Infections and Bacterial Biofilms, Department of Medicine, Gastroenterology, Charité Hospital, CCM, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, Adams JB, Krajmalnik-Brown R, Bolte E, Kahler S, Jennings J, James J, Cerniglia CE, Midtvedt T. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26878. [PMID: 25956237 PMCID: PMC4425814 DOI: 10.3402/mehd.v26.26878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms. One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA;
| | - John Slattery
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F MacFabe
- Department of Psychology and Psychiatry, Western University, London, ON, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - John Rodakis
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ellen Bolte
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - Stephen Kahler
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Jill James
- Department of Developmental Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
45
|
Dietert RR, Dietert JM. The Microbiome and Sustainable Healthcare. Healthcare (Basel) 2015; 3:100-29. [PMID: 27417751 PMCID: PMC4934527 DOI: 10.3390/healthcare3010100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Increasing prevalences, morbidity, premature mortality and medical needs associated with non-communicable diseases and conditions (NCDs) have reached epidemic proportions and placed a major drain on healthcare systems and global economies. Added to this are the challenges presented by overuse of antibiotics and increased antibiotic resistance. Solutions are needed that can address the challenges of NCDs and increasing antibiotic resistance, maximize preventative measures, and balance healthcare needs with available services and economic realities. Microbiome management including microbiota seeding, feeding, and rebiosis appears likely to be a core component of a path toward sustainable healthcare. Recent findings indicate that: (1) humans are mostly microbial (in terms of numbers of cells and genes); (2) immune dysfunction and misregulated inflammation are pivotal in the majority of NCDs; (3) microbiome status affects early immune education and risk of NCDs, and (4) microbiome status affects the risk of certain infections. Management of the microbiome to reduce later-life health risk and/or to treat emerging NCDs, to spare antibiotic use and to reduce the risk of recurrent infections may provide a more effective healthcare strategy across the life course particularly when a personalized medicine approach is considered. This review will examine the potential for microbiome management to contribute to sustainable healthcare.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
46
|
Shultz SR, Aziz NAB, Yang L, Sun M, MacFabe DF, O'Brien TJ. Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure-prone (FAST) and seizure-resistant (SLOW) rats. Behav Brain Res 2015; 278:542-548. [PMID: 25446754 DOI: 10.1016/j.bbr.2014.10.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Autism is a complex neurodevelopmental disorder that is characterized by social abnormalities. Genetic, dietary and gut-related factors are implicated in autism, however the causal properties of these factors and how they may interact are unclear. Propionic acid (PPA) is a product of gut microbiota and a food preservative. PPA has been linked to autism, and PPA administration to rats is an animal model of the condition. Seizure-prone (FAST) and seizure-resistant (SLOW) rats were initially developed to investigate differential vulnerability to developing epilepsy. However, FAST rats also display autistic-like features, and have been proposed as a genetic model of autism. Here we examined the effects of PPA on social behavior in FAST and SLOW rats. A single intracerebroventricular injection of PPA, or phosphate-buffered saline (PBS), was administered to young-adult male FAST and SLOW rats. Immediately after treatment, rats were placed in same-treatment and same-strain pairs, and underwent social behavior testing. PPA induced social abnormalities in both FAST and SLOW rat strains. While there was no evidence of social impairment in FAST rats that were not treated with PPA, these rats were hyperactive relative to SLOW rats. Post-mortem immunofluorescence analysis of brain tissue indicated that PPA treatment resulted in increased astrogliosis in the corpus callosum and cortex compared to PBS treatment. FAST rats had increased astrogliosis in the cortex compared to SLOW rats. Together these findings support the use of PPA as a rat model of autism, but indicate there are no interactive effects between the PPA and FAST models.
Collapse
Affiliation(s)
- Sandy R Shultz
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Noor A B Aziz
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Li Yang
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Mujun Sun
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Derrick F MacFabe
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology and Psychiatry, University of Western Ontario, London, ON, Canada
| | - Terence J O'Brien
- Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr 2015; 174:151-67. [PMID: 25563215 DOI: 10.1007/s00431-014-2476-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED The intestinal microbiota (previously referred to as "intestinal flora") has entered the focus of research interest not only in microbiology but also in medicine. Huge progress has been made with respect to the analysis of composition and functions of the human microbiota. An "imbalance" of the microbiota, frequently also called a "dysbiosis," has been associated with different diseases in recent years. Crohn's disease and ulcerative colitis as two major forms of inflammatory bowel disease, irritable bowel syndrome (IBS) and some infectious intestinal diseases such as Clostridium difficile colitis feature a dysbiosis of the intestinal flora. Whereas this is somehow expected or less surprising, an imbalance of the microbiota or an enrichment of specific bacterial strains in the flora has been associated with an increasing number of other diseases such as diabetes, metabolic syndrome, non-alcoholic fatty liver disease or steatohepatitis and even psychiatric disorders such as depression or multiple sclerosis. It is important to understand the different aspects of potential contributions of the microbiota to pathophysiology of the mentioned diseases. CONCLUSION With the present manuscript, we aim to summarize the current knowledge and provide an overview of the different concepts on how bacteria contribute to health and disease in animal models and-more importantly-humans. In addition, it has to be borne in mind that we are only at the very beginning to understand the complex mechanisms of host-microbial interactions.
Collapse
Affiliation(s)
- Luc Biedermann
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland,
| | | |
Collapse
|
48
|
Ferretti CJ, Hollander E. The Role of Inflammation in Autism Spectrum Disorder. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-13602-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Affiliation(s)
- Hannah Wilson
- Future Medicine Ltd., Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
50
|
Martens EC, Sonnenburg JL, Relman DA. Editorial Overview: Insights into Molecular Mechanisms of Microbiota. J Mol Biol 2014; 426:3827-9. [DOI: 10.1016/j.jmb.2014.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|