1
|
Zhang Q, Xiao W, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Ameliorative effects of
Lactobacillus fermentum isolated from individuals following vegan, omnivorous and high-meat diets on ulcerative colitis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3181-3192. [DOI: 10.26599/fshw.2023.9250005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zhou L, Song W, Liu T, Yan T, He Z, He W, Lv J, Zhang S, Dai X, Yuan L, Shi L. Multi-omics insights into anti-colitis benefits of the synbiotic and postbiotic derived from wheat bran arabinoxylan and Limosilactobacillus reuteri. Int J Biol Macromol 2024; 278:134860. [PMID: 39163956 DOI: 10.1016/j.ijbiomac.2024.134860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Exploring nutritional therapies that manipulate tryptophan metabolism to activate AhR signaling represents a promising approach for mitigating chronic colitis. Arabinoxylan is a bioactive constituent abundant in wheat bran. Here, we comprehensively investigated anti-colitis potentials of wheat bran arabinoxylan (WBAX), its synbiotic and postbiotic derived from WBAX and Limosilactobacillus reuteri WX-94 (i.e., a probiotic strain exhibiting tryptophan metabolic activity). WBAX fueled L. reuteri and promoted microbial conversion of tryptophan to AhR ligands during in vitro fermentation in the culture medium and in the fecal microbiota from type 2 diabetes. The WBAX postbiotic outperformed WBAX and its synbiotic in augmenting efficacy of tryptophan in restoring DSS-disturbed serum immune markers, colonic tight junction proteins and gene profiles involved in amino acid metabolism and FoxO signaling. The WBAX postbiotic remodeled gut microbiota and superiorly enhanced AhR ligands (i.e., indole metabolites and bile acids), alongside with elevation in colonic AhR and IL-22. Associations between genera and metabolites modified by the postbiotic and colitis in human were verified and strong binding capacities between metabolites and colitis-related targets were demonstrated by molecular docking. Our study advances the novel perspective of WBAX in manipulating tryptophan metabolism and anti-colitis potentials of WBAX postbiotic via promoting gut microbiota-dependent AhR signaling.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Yan
- School of Food Science and Engineering, South China University of Technology, Guangdong 510641, China
| | - Ziyan He
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Weitai He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyi Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoshuang Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen, China
| | - Li Yuan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
3
|
Yuan M, Chang L, Gao P, Li J, Lu X, Hua M, Li X, Liu X, Lan Y. Synbiotics containing sea buckthorn polysaccharides ameliorate DSS-induced colitis in mice via regulating Th17/Treg homeostasis through intestinal microbiota and their production of BA metabolites and SCFAs. Int J Biol Macromol 2024; 276:133794. [PMID: 38992530 DOI: 10.1016/j.ijbiomac.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1β, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-β) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.
Collapse
Affiliation(s)
- Mingyou Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Pan Gao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyuan Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingfang Hua
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Oraby MA, Abdel Mageed SS, Amr Raouf A, Abdelshafy DA, Ahmed EF, Khalil RT, Mangoura SA, Fadaly DS. Remdesivir ameliorates ulcerative colitis-propelled cell inflammation and pyroptosis in acetic acid rats by restoring SIRT6/FoxC1 pathway. Int Immunopharmacol 2024; 137:112465. [PMID: 38878489 DOI: 10.1016/j.intimp.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a primary culprit of inflammatory bowel disease that entails prompt and effective clinical intervention. Remdesivir (RDV), a broad-spectrum antiviral nucleotide, has been found to exert anti-inflammatory effects in experimental animals. AIM This study investigates the prospective anti-inflammatory merit of RDV on an experimental model of UC. The role of SIRT6/FoxC1 in regulating colonic cell inflammation and pyroptosis is delineated. METHOD Rats were challenged with a single intrarectal dose of acetic acid (AA) solution (2 ml; 4 % v/v) to induce colitis. RDV (20 mg/kg, ip) and sulfasalazine (100 mg/kg, po) were administered to rats 14 days before the injection of AA. RESULTS Administration of RDV ameliorated colonic cell injury and loss as manifested by improvement of severe colon histopathological mutilation and macroscopic damage and disease activity index scores together with restoration of normal colon weight/length ratio. In addition, RDV alleviated colonic inflammatory reactions, thereby curtailing NF-κB activation and the inflammatory cytokines, TNF-α, IL-18, and IL-1β. Mitigation of colonic oxidative stress and apoptotic reactions were also evident in the setting of RDV treatment. Mechanistically, RDV enhanced the anti-inflammatory cascade, SIRT6/FoxC1, together with curbing the pyroptotic signal, NLRP3/cleaved caspase-1/Gasdermin D-elicited colonic inflammatory cell death. CONCLUSION This study reveals, for the first time, the anti-inflammatory effect of RDV against experimental UC. Augmenting SIRT6/FoxC1-mediated repression of colonic inflammation and pyroptosis might advocate the colo-protective potential of RDV.
Collapse
Affiliation(s)
- Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Dareen A Abdelshafy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Eman F Ahmed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rowida T Khalil
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Safwat A Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Doaa S Fadaly
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
5
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
6
|
Wang M, Zhang L, Piao H, Jin Y, Cui C, Jin X, Cui L, Yan C. Synbiotic of Pediococcus acidilactici and Inulin Ameliorates Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis in Mice. J Microbiol Biotechnol 2024; 34:689-699. [PMID: 38346819 PMCID: PMC11016757 DOI: 10.4014/jmb.2308.08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 04/17/2024]
Abstract
Colitis is a major gastrointestinal disease that threatens human health. In this study, a synbiotic composed of inulin and Pediococcus acidilactici (P. acidilactici) was investigated for its ability to alleviate dextran sulfate sodium (DSS)-induced colitis. The results revealed that the synbiotic, composed of inulin and P. acidilactici, attenuated the body weight loss and disease activity index (DAI) score in mice with DSS-mediated colitis. Determination of biochemical indicators found that the synbiotic increased anti-oxidation and alleviated inflammation in mice. Additionally, histopathological examination revealed that colonic goblet cell loss and severe mucosal damage in the model group were significantly reversed by the combination of inulin and P. acidilactici. Moreover, synbiotic treatment significantly reduced the levels of IL-1β, TNF-α, and IL-6 in the serum of mice. Thus, a synbiotic composed of inulin and P. acidilactici has preventive and therapeutic effects on DSSinduced colitis in mice.
Collapse
Affiliation(s)
- Mingzhu Wang
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Longzhou Zhang
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Huiyan Piao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Yuanming Jin
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Chengdu Cui
- Department of Animal Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xin Jin
- Laboratory Animal Center?Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Lianhua Cui
- Department of Animal Science, Yanbian University, Yanji, Jilin 133002, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Chunri Yan
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
7
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
8
|
Sharma S, Bhatia R, Devi K, Rawat A, Singh S, Bhadada SK, Bishnoi M, Sharma SS, Kondepudi KK. A synbiotic combination of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11, isomaltooligosaccharides and finger millet arabinoxylan prevents dextran sodium sulphate induced ulcerative colitis in mice. Int J Biol Macromol 2023; 231:123326. [PMID: 36681226 DOI: 10.1016/j.ijbiomac.2023.123326] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/23/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Decreased bifidobacterial abundance, disrupted gut barrier function, dysregulated immune response and ulceration have been reported in the gut microbiota of IBD patients. Non-digestible carbohydrates with bifidogenic effect enrich the gut microbiota with Bifidobacterium spp. and could help in overcoming inflammatory gut conditions. In this study, the protective effect of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11; isomaltooligosaccharides (IMOS); Finger millet arabinoxylan (FM-AX) and their Synbiotic mix were evaluated against dextran sodium sulphate (DSS) induced UC in male Balb/c mice for 25 days. All the interventions ameliorated symptoms of colitis such as disease activity index (DAI), histological damage to the colon, gut-bacterial dysbiosis and inflammation. However, the synbiotic mix was more potent in amelioration of some of the parameters such as decreased TNF-α and lipocalin levels; increased anti-inflammatory markers (IL-10 and IL-22), and improved short chain fatty acids (SCFAs) levels in the cecum content. Furthermore, mouse colitis histological scoring (MCHI) also suggested the preventive role of synbiotic mix. All the dietary interventions aid in improving the DAI and immune parameters; restoration or regeneration of the altered selected gut bacteria, enhances the SCFA production, strengthens gut barrier, prevents gut inflammation and decreases the colonic MCHI score in DSS fed mice.
Collapse
Affiliation(s)
- Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Kirti Devi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anita Rawat
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - Shashank Singh
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India; Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India; Regional Center for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
9
|
Comparative Genomic Analysis and Physiological Properties of Limosilactobacillus fermentum SMFM2017-NK2 with Ability to Inflammatory Bowel Disease. Microorganisms 2023; 11:microorganisms11030547. [PMID: 36985121 PMCID: PMC10057904 DOI: 10.3390/microorganisms11030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The objective of this study was to evaluate the anti-inflammatory effect of Latilactobacillus sakei SMFM2017-NK1 (LS1), L. sakei SMFM2017-NK3 (LS2), and Limosilactobacillus fermentum SMFM2017-NK2 (LF) on colitis using an animal model. DSS (dextran sulfate sodium salt) was orally injected into C57BL/6N mice to induce inflammation in the colon for seven days. Colitis mice models were treated with LS1, LS2, and LF, respectively, and Lacticaseibacillus rhamnosus GG (LGG) was used as a positive control. During oral administration of lactic acid bacteria, the weights of the mice were measured, and the disease activity index (DAI) score was determined by judging the degree of diarrhea and bloody stool. When comparing the differences between the minimum weight after DSS administration and the maximum weight after lactic acid bacteriaadministration were compared, the LF-treated group showed the highest weight gain at 8.91%. The DAI scores of the LF, LS2, and LGG groups were lower than that of the control group. After sacrifice, mRNA expression levels for proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) and mediators (iNOS and COX-2) in the colon were measured. LF was selected as a superior strain for anti-inflammation in the colon. It was further analyzed to determine its biochemical characteristics, cytotoxicity, and thermal stability. Catalase and oxidase activities for LF were negative. In cytotoxicity and heat stability tests, the LF group had higher cell viability than the LGG group. The genome of LF was obtained, and 5682 CDS, 114 tRNA, 2 RNA, and 5 repeat regions were predicted. Especially, LF could be distinguished from the other three L. fermentum strains based on taxonomic profiling, specific orthologous genes of the strain, and genomic variants. The results of this study suggest that L. fermentum SMFM2017-NK2 is a novel strain with an anti-inflammatory effect on colitis.
Collapse
|
10
|
Chen Q, Liu C, Zhang Y, Wang S, Li F. Effect of Lactobacillus plantarum KSFY01 on the exercise capacity of D-galactose-induced oxidative stress-aged mice. Front Microbiol 2022; 13:1030833. [PMID: 36620024 PMCID: PMC9812958 DOI: 10.3389/fmicb.2022.1030833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Aging is a process that involves comprehensive physiological changes throughout the body, and improvements in the exercise capacity of individuals may delay aging and relieve fatigue. Probiotics are subject to ongoing research to investigate their antioxidant properties. The purpose of this study was to investigate the effect of the probiotic Lactobacillus plantarum KSFY01 (L. plantarum KSFY01) on exercise tolerance in mice induced into a state of accelerated physiological aging by oxidative stress. Methods A mouse model of accelerated aging was established using D-galactose to induce oxidative stress. The bacteria L. plantarum KSFY01 was isolated from fermented yak yogurt. The effect of L. plantarum KSFY01 on the improvement of exercise capacity in aging-accelerated mice was evaluated by measuring their running time until exhaustion, histopathological sections, related biochemical indicators, and underlying gene expression. Results The oral administration of L. plantarum KSFY01 prolonged the running time of mice and reduced their creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferasem (AST) levels. From this study, we observed that L. plantarum KSFY01 significantly improved the exercise capacity of mice and alleviated liver damage. Treatment with L. plantarum KSFY01 reduced the blood urea nitrogen (BUN), lactic acid (LD) accumulation, and lactate dehydrogenase (LDH) elevations produced by the accelerated aging state, and also reversed the changes in muscle glycogen (MG). Overall, L. plantarum KSFY01 could effectively improve metabolite accumulation, thereby relieving fatigue in exercised mice. The results of the antioxidant indices in vivo showed that L. plantarum KSFY01 intervention increased the activity of antioxidant enzymes, decreased the level of malondialdehyde (MDA), and restored the balance between the oxidative and antioxidant systems in fatigued mice. By investigating the underlying molecular mechanism, our results showed that L. plantarum KSFY01 intervention significantly reversed the decline in the expression levels of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway-related factors and improved the body's antioxidant capacity. We determined that the underlying molecular mechanism responsible for the antioxidant effect of L. plantarum KSFY01 mainly involves the activation of the Nrf2 pathway. The effect of L. plantarum KSFY01 was dose-dependent, and the expression level of Nrf2 increased with increasing dosage of the probiotic. Conclusion This study demonstrated that the probiotic L. plantarum KSFY01 exerts antioxidant effects and improved the athletic ability of mice. These findings are of significance to the development and utilization of probiotic resources.
Collapse
Affiliation(s)
- Qiuping Chen
- Department of Education Management, Our Lady of Fatima University, Valenzuela, Philippines
| | - Chuannan Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yinglong Zhang
- School of Physical Education, Yan’an University, Yan’an, China
| | - Shuai Wang
- The First Middle School of Tongliao City, Tongliao, China
| | - Fang Li
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education, Chongqing, China,*Correspondence: Fang Li, ✉
| |
Collapse
|
11
|
Xie M, Zhang X, Wang X, Chen G, Liu J, Zeng X, Yang W. Effects of arabinoxylan and chlorogenic acid on the intestinal microbiota in dextran sulfate sodium-treated mice. Front Nutr 2022; 9:950446. [PMID: 36518999 PMCID: PMC9742537 DOI: 10.3389/fnut.2022.950446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/27/2022] [Indexed: 02/23/2025] Open
Abstract
Dietary non-starch polysaccharides and phenolics are usually ingested at the same time. They are both regarded as prebiotics, and they regulate the intestinal microbiota through various mechanisms. Notably, however, reports of their combined or synergistic effects are rare. Arabinoxylan (AX), a polysaccharide, and chlorogenic acid (CA), a polyphenol, are widely consumed, and their effects on the microbiota have previously been discussed. In the present study, they were given to dextran sulfate sodium (DSS)-treated mice, separately and together, and the intestinal microbiota were investigated by high-throughput sequencing. The data showed that CA attenuated body weight loss, colon shortening, and histological damage in DSS-treated mice, while neither AX nor the AX+CA combination exhibited any ameliorating potential. AX+CA had less of a modulating effect on intestinal microbiota profiles than did CA. AX+CA administration increased the relative abundance of Flavonifractor, Coprobacillus, and Clostridium_XlVa, and decreased the abundance of Robinsoniella and Lactobacillus. Compared to AX and CA, AX+CA contributed to a more complicated shift in the biological functions of the intestinal microbiotaAX seemed to weaken the beneficial effects of CA, at least in the present experimental model of DSS-induced colitis. The combined effects and mechanisms of dietary polysaccharides and phenolic compounds on the intestinal microbiota and on overall health still need to be further investigated.
Collapse
Affiliation(s)
- Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xianzhu Zhang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoxiao Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianhui Liu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenjian Yang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
12
|
Liu B, Yang L, Wu Y, Zhao X. Protective effect of Limosilactobacillus fermentum HFY06 on dextran sulfate sodium-induced colitis in mice. Front Microbiol 2022; 13:935792. [PMID: 36171753 PMCID: PMC9512270 DOI: 10.3389/fmicb.2022.935792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis is one of the main gastrointestinal diseases that threaten human health. This study investigated the effect of Limosilactobacillus fermentum HFY06 (LF-HFY06) on dextran sulfate sodium (DSS)-induced murine colitis. The protective effect of LF-HFY06 was evaluated by examining the length and histopathological sections of colon, related biochemical indicators, and genes related to inflammation. Direct and microscopic observations showed that LF-HFY06 increased the length of the colon and ameliorated the pathological damage induced by DSS. The biochemical indicators showed that LF-HFY06 enhanced the activities of antioxidant enzymes total superoxide dismutase (T-SOD) and catalase (CAT) in serum, while reducing the level of malondialdehyde (MDA). It was also observed that the serum inflammatory cytokines levels of tumor necrosis factor-α (TNF-α), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and IL-12 were decreased, and the anti-inflammatory cytokine IL-10 level was increased. The qPCR experiment revealed that LF-HFY06 downregulated the mRNA expression levels of nuclear factor-κB-p65 (Rela), Tnf, Il 1b, Il 6, and prostaglandin-endoperoxide synthase 2 (Ptgs2) in colon tissues, and upregulated the mRNA expression of NF-κB inhibitor-α (Nfkbia) and Il 10. These data indicated that LF-HFY06 inhibited inflammation through the NF-κB signaling pathway to prevent the occurrence and development of colitis. This research demonstrates that probiotics LF-HFY06 have the potential to prevent and treat colitis.
Collapse
Affiliation(s)
- Bihui Liu
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Lei Yang
- Department of Urology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ya Wu
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- *Correspondence: Xin Zhao,
| |
Collapse
|
13
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
14
|
Morus macroura Miq. Fruit extract protects against acetic acid-induced ulcerative colitis in rats: Novel mechanistic insights on its impact on miRNA-223 and on the TNFα/NFκB/NLRP3 inflammatory axis. Food Chem Toxicol 2022; 165:113146. [PMID: 35595039 DOI: 10.1016/j.fct.2022.113146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Nod-like receptor pyrin domain-1 containing 3 (NLRP3) inflammasome/tumor necrosis factor alpha (TNFα)/nuclear factor kappa B (NFκB) inflammatory pathway is known to be involved in the pathogenesis of ulcerative colitis (UC). Inversely, miRNA-223 can exert counter-regulatory effect on NLRP3 expression. The mulberry tree (Morus macroura) fruit is attaining increased importance for its antioxidant and anti-inflammatory activity in addition to its high safety profile. Accordingly, we attempted to explore the possible protective effect of mulberry fruit extract (MFE) in acetic acid (AA)-induced UC rat model. Phytochemical constituents of MFE were characterized using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the in vivo study, three doses of MFE were orally given for seven days before intra-rectal induction of UC by AA on day eight. Screening study revealed that MFE (300 mg/kg) significantly reduced macroscopic and microscopic UC scores. Biochemically, MFE ameliorated oxidative stress, levels of TNFR1, NLRP3, p-NFκB p65, TNFα, IL-1β, and IL-18, caspase-1 activity, but enhanced miRNA-223 expression. In conclusion, our study provided a novel protective impact for MFE against UC, in which miRNA-223 and TNFα/NFκB/NLRP3 pathway are involved. These results provide a promising step that might encourage further investigations of MFE as a protective agent in UC patients.
Collapse
|