1
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
2
|
Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1649. [PMID: 37627644 PMCID: PMC10451779 DOI: 10.3390/antiox12081649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy is the retinal disease associated with hyperglycemia in patients who suffer from type 1 or type 2 diabetes. It includes maculopathy, involving the central retina and characterized by ischemia and/or edema, and peripheral retinopathy that progresses to a proliferative stage with neovascularization. Approximately 10% of the global population is estimated to suffer from diabetes, and around one in 5 of these individuals have diabetic retinopathy. One of the major effects of hyperglycemia is oxidative stress, the pathological state in which elevated production of reactive oxygen species damages tissues, cells, and macromolecules. The retina is relatively prone to oxidative stress due to its high metabolic activity. This review provides a summary of the role of oxidative stress in diabetic retinopathy, including a description of the retinal cell players and the molecular mechanisms. It discusses pathological processes, including the formation and effects of advanced glycation end-products, the impact of metabolic memory, and involvements of non-coding RNA. The opportunities for the therapeutic blockade of oxidative stress in diabetic retinopathy are also considered.
Collapse
Affiliation(s)
| | | | | | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (C.D.H.); (G.F.O.); (L.M.A.)
| |
Collapse
|
3
|
Gordillo GM, Guda PR, Singh K, Biswas A, Abouhashem AS, Rustagi Y, Sen A, Kumar M, Das A, Ghatak S, Khanna S, Sen CK, Roy S. Tissue nanotransfection causes tumor regression by its effect on nanovesicle cargo that alters microenvironmental macrophage state. Mol Ther 2023; 31:1402-1417. [PMID: 36380587 PMCID: PMC10188642 DOI: 10.1016/j.ymthe.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.
Collapse
Affiliation(s)
- Gayle M Gordillo
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA.
| | - Poornachander Reddy Guda
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Ayan Biswas
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Ahmed S Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Abhishek Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Amitava Das
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Ismail A, El-Mahdy HA, Eldeib MG, Doghish AS. miRNAs as cornerstones in diabetic microvascular complications. Mol Genet Metab 2023; 138:106978. [PMID: 36565688 DOI: 10.1016/j.ymgme.2022.106978] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is usually accompanied by nephropathy, retinopathy, and neuropathy as microvascular complications. MicroRNAs (miRNAs) can affect the kidney, retina, and peripheral neurons through their implication in pathways involved in angiogenesis, inflammation, apoptosis, as well as fibrosis within these tissues and hence, play a crucial role in the pathogenesis of microvascular complications. In this review, the updated knowledge of the role of miRNAs in the pathogenesis of diabetic microvascular complications was summarized. PubMed Central was searched extensively to retrieve data from a wide range of reputable biomedical reports/articles published after the year 2000 to systematically collect and present a review of the key molecular pathways mediating the hyperglycemia-induced adverse effects on vascular tissues, particularly in persons with T2DM. In the present review, miR-126, miR-29b, and miR-125a are implicated in diabetes-induced microvascular complications, while miR-146a is found to be connected to all these complications. Also, vascular endothelial growth factors are noted to be the most impacted targets by miRNAs in all diabetic microvascular problems.
Collapse
Affiliation(s)
- Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
5
|
Asgari M, Salehi I, Ranjbar K, Khosravi M, Zarrinkalam E. Interval training and Crataegus persica ameliorate diabetic nephropathy via miR-126/Nrf-2 mediated inhibition of stress oxidative in rats with diabetes after myocardial ischemia-reperfusion injury. Biomed Pharmacother 2022; 153:113411. [PMID: 36076481 DOI: 10.1016/j.biopha.2022.113411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial disorders are the most common cause of renal failure and mortality in diabetic patients, but the molecular mechanism of this process is not yet clear. The reduction of nuclear Erythroid2-related factor-2 (Nrf-2) and positive regulators of Nrf-2 proteins, such as DJ-1 and microRNA-126 (miR-126), after hypoxia and the promotion of reactive oxygen species, might be an intervention indicator in renal failure after myocardial ischemia-reperfusion. Therefore, this study evaluates the renoprotective effect of exercise training and Crataegus persica extract (CE) on myocardial ischemia-reperfusion-induced kidney injury in diabetic rats. Fifty rats were divided into five groups: healthy sedentary control (Con), sedentary diabetic (D), interval trained diabetic (TD), diabetic plus Crataegus persica extract treatment (CD), and interval trained diabetic plus Crataegus persica extract treatment (TCD) groups. The rats in the exercise groups were subjected to moderate-intensity interval training five days per week for ten weeks. The rats in CD and TCD groups received 300 mg/kg of Crataegus persica through gavage for ten weeks. Then, the subjects underwent 30 min of myocardial ischemia and subsequently reperfusion for 24 h. At the end of the experiment, insulin sensitivity, oxidative stress, renal function, histopathology of the kidney, Nrf-2, miR-126, and DJ-1 gene expression levels were evaluated. The results show that the treatments decreased elevated levels of renal oxidative stress, glomerular filtration rate, insulin sensitivity, and pathological score in diabetic rats. Also, the expression of Nrf-2 and miR-126, unlike DJ-1, decreased in diabetic rats due to interval training. Due to the results, diabetes aggravates acute myocardial ischemia-reperfusion-induced kidney injury, while moderate-intensity interval training and Crataegus persica treatment simultaneously ameliorate myocardial ischemia-reperfusion-induced renal injury via miR-126/Nrf-2 pathway and improve insulin sensitivity and renal function in type 1 diabetic rats.
Collapse
Affiliation(s)
- Masoumeh Asgari
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Iraj Salehi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran.
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Islamic Republic of Iran.
| | - Maryam Khosravi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Ebrahim Zarrinkalam
- Department of Physical Education and Sport Science, Hamedan Branch, Islamic Azad University, Hamedan, Islamic Republic of Iran
| |
Collapse
|