1
|
Shandiz SAS, Hashemi A, Rezaei N, Haghani B, Baghbani-Arani F. Cytotoxic activity of silver nanoparticles prepared by eco-friendly synthesis using Lythrum salicaria extract on breast cancer cells. Mol Biol Rep 2024; 52:18. [PMID: 39589605 DOI: 10.1007/s11033-024-10092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Metal nanoparticles (NPs) have widely been investigated due to their several applications in therapeutic activities. The current investigation highlights the cytotoxic effects of the eco-friendly phytosynthesis route for silver nanoparticles using Lythrum salicaria (L. salicaria) extract (AgNPs-LS). METHODS AND RESULTS The change in color from colorless to brown confirmed the reduction of silver ions to AgNPs. x-ray diffraction (XRD) analysis demonstrated high crystallinity. The surface morphology of AgNPs-LS was spherical, and their average sizes were 50 nm. energy-dispersive x-ray analysis (EDAX) confirmed that silver was the predominant component, indicating the involvement of L. salicaria plant extract in the green synthesis process. In vitro dimethyl thiazolyl tetrazolium bromide (MTT) assay showed significant cytotoxicity of AgNPs-LS against MCF7 cells, with an IC50 of 113 µg mL- 1. In contrast, AgNPs-LS showed minimal cytotoxicity to HEK293 cells (IC50: 254 µg mL- 1), demonstrating a higher sensitivity of cancer cells to AgNPs-LS. Moreover, AgNPs-LS resulted in MCF7 cells producing reactive oxygen species (ROS) and undergoing cell cycle arrest at the G2/M phase, serving as barriers to the proliferation of cancer cells. Annexin V fluorescein isothiocyanate (FITC) assays and fluorescence microscopy confirmed the induction of apoptosis in MCF7 cells by AgNPs-LS. Gene expression analysis revealed upregulated pro-apoptotic genes (Bax, p53, caspase-3, and caspase-9) and downregulated an anti-apoptotic gene (Bcl2) in michigan cancer foundation7 (MCF7) cells treated with AgNPs-LS. CONCLUSION These results indicate that AgNPs-LS induced apoptosis via the intrinsic pathway (mitochondrial-mediated mechanism) and involved p53-dependent regulation. The current study results implied that AgNPs-LS fabricated by a bio-green approach could be helpful to the future of nanomedicine.
Collapse
Affiliation(s)
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box 14155-6153, Tehran, Iran
| | - Niloufar Rezaei
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Babak Haghani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Fahimeh Baghbani-Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| |
Collapse
|
2
|
Ho HY, Chen MK, Lin CC, Lo YS, Chuang YC, Hsieh MJ. Arenobufagin induces cell apoptosis by modulating the cell cycle regulator claspin and the JNK pathway in nasopharyngeal carcinoma cells. Expert Opin Ther Targets 2024; 28:461-471. [PMID: 38659296 DOI: 10.1080/14728222.2024.2348014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The high recurrence rate and incidence of distant metastasis of nasopharyngeal carcinoma (NPC) result in poor prognosis. It is necessary to identify natural compounds that can complement combination radiation therapy. Arenobufagin is commonly used for heart diseases and liver cancer, but its effectiveness in NPC is unclear. STUDY DESIGN AND METHODS The effect of arenobufagin-induced apoptosis was measured by a cell viability assay, tumorigenic assay, fluorescence assay, and Western blot assay through NPC-039 and NPC-BM cell lines. The protease array, Western blot assay, and transient transfection were used to investigate the underlying mechanism of arenobufagin-induced apoptosis. An NPC xenograft model was established to explore the antitumor activity of arenobufagin in vivo. RESULTS Our findings indicated that arenobufagin exerted cytotoxic effects on NPC cells, inhibiting proliferation through apoptosis activation. Downregulation of claspin was confirmed in arenobufagin-induced apoptosis. Combined treatment with arenobufagin and mitogen-activated protein kinase inhibitors demonstrated that arenobufagin induced NPC apoptosis through the c-Jun N-terminal kinases (JNK) pathway inhibition. Furthermore, arenobufagin suppressed NPC tumor proliferation in vivo. CONCLUSION Our results revealed the antitumor effect of arenobufagin in vitro and in vivo. Arenobufagin may have clinical utility in treating NPC due to its suppression of claspin and inhibition of the JNK pathway.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Jiaying Y, Bo S, Xiaolu W, Yanyan Z, Hongjie W, Nan S, Bo G, Linna W, Yan Z, Wenya G, Keke L, Shan J, Chuan L, Yu Z, Qinghe Z, Haiyu Z. Arenobufagin-loaded PEG-PLA nanoparticles for reducing toxicity and enhancing cancer therapy. Drug Deliv 2023; 30:2177362. [PMID: 36772846 PMCID: PMC9930844 DOI: 10.1080/10717544.2023.2177362] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Arenobufagin (ArBu) is a natural anticancer drug with good anti-tumor effects, but its clinical applications and drug development potential are limited due to its toxicity. The purpose of this study is to reduce the toxic side effects of ArBu and improve the efficacy of tumor treatment by incorporating it into poly(ethylene glycol)-b-poly (lactide) co-polymer (PEG-PLA). ArBu@PEG-PLA micelles were prepared by a thin film hydration method. The optimized micelles were characterized by size, stability, drug loading, encapsulation rate, and drug release. The tumor-inhibition efficacy of the micelles was evaluated on A549 cells and tumor-bearing mice. The ArBu@PEG-PLA micelles have good drug-loading capacity, release performance, and stability. They can accumulate at the tumor site through the EPR effect. The micelles induce apoptosis through a mitochondrial apoptosis pathway. Compared with the free ArBu, the ArBu@PEG-PLA micelles had lower toxicity and higher safety in the acute toxicity evaluation experiment. The in vivo anti-tumor experiment with tumor-bearing mice showed that the tumor-inhibition rate of ArBu@PEG-PLA micelles was 72.9%, which was 1.28-fold higher than that of free ArBu (57.1%), thus showing a good tumor treatment effect. This study indicates that ArBu@PEG-PLA polymeric micelles can significantly improve the toxicity and therapeutic efficacy of ArBu. These can lead to a new therapeutic strategy to reduce the toxicity of ArBu and enhance tumor treatment.
Collapse
Affiliation(s)
- Yang Jiaying
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Sun Bo
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Wei Xiaolu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Zhou Yanyan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Wang Hongjie
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Si Nan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Gao Bo
- China Resources Sanjiu Modern Traditional Chinese Medicine Pharmaceutical Co., Ltd, Shenzhen, China
| | - Wang Linna
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Zhang Yan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Gao Wenya
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Luo Keke
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Jiang Shan
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Luo Chuan
- Anhui Huarun Jinchan Pharmaceutical Co., Ltd, Anhui, China
| | - Zhao Yu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China,CONTACT Zhao Yu
| | - Zhao Qinghe
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China,Zhao Qinghe
| | - Zhao Haiyu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China,Zhao Haiyu China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| |
Collapse
|
4
|
Liu C, Li D, Wang J, Wang Z. Arenobufagin increases the sensitivity of gastric cancer to cisplatin via alkaliptosis. Heliyon 2023; 9:e21110. [PMID: 37920505 PMCID: PMC10618551 DOI: 10.1016/j.heliyon.2023.e21110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background Gastric cancer is the third leading cause of cancer-related death worldwide, for which several novel therapeutic strategies have been developed. Cisplatin (CDDP) mainly exerts its anti-gastric cancer effects; however, drug resistance limits its use. Thus, the development of drugs that can augment their antitumor effects is necessary. Arenobufagin (ArBu) is a novel anticancer drug, and the effects of ArBu in combination with CDDP on gastric cancer have not yet been studied. Aims To identify a possible synergistic effect between ArBu and CDDP in gastric cancer and investigate the underlying mechanism. Methods Cell viability, colony formation, migration, apoptosis, cell cycle, western blotting, immunofluorescence, and reverse-transcription polymerase chain reaction (RT-PCR) were analyzed in vitro. Western blotting, RT-PCR, hematoxylin and eosin (H&E) staining and blood biochemistry were carried out to examine in vivo. Results We found that ArBu, in combination with CDDP, effectively inhibited the proliferation and migration of gastric cancer cells, promoted apoptosis, and downregulated the expression of carbonic anhydrase 9 (CA9), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). In addition, treatment with ArBu in combination with CDDP increased the level of inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB), E-cadherin, and nuclear factor kappa-B/p65 (NF-κB/p65). Furthermore, the combination of ArBu and CDDP inhibited tumor growth in xenograft nude mice with no obvious side effects. Conclusions ArBu synergizes with CDDP to inhibit tumor growth both in vivo and in vitro by inducing alkaliptosis. This indicated that ArBu combined with CDDP may serve as a potential agent for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Dongchang Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Jian Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
5
|
Saeed RA, Khan MI, Butt MS, Faisal MN. Phytochemical screening of Prunus avium for its antioxidative and anti-mutagenic potential against DMBA-induced hepatocarcinogenesis. Front Nutr 2023; 10:1132356. [PMID: 37266135 PMCID: PMC10231329 DOI: 10.3389/fnut.2023.1132356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Scope Prunus avium fruit is the richer source of phenolics known to exert anticancer and anti-invasive activities. The study aimed at elucidating antiproliferative and chemo-preventive potential of sweet cherries (P. avium) against the in vivo hepatocarcinoma model. Methods and results The quantification of ultrasound-assisted extract (UAE) of P. avium depicted anthocyanins, ferulic acid, gallic acid, quercetin, syringic acid and p- and m-coumaric acids as major phytochemicals. The hepatocarcinoma (HCC) was induced in rats through intraperitoneal administration of DMBA (20 mg/kg B.W) once a week for the period of eight weeks. The intragastric administration of P. avium UAE, as cotreatment (500 mg/Kg B.W) to treatment group, significantly (p < 0.01) attenuated the raised serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) as well as total oxidative stress (TOS) and enhanced total antioxidant capacity TAOC in contrast to diseased rats. Moreover, microscopic examination of hepatic tissues confirmed the pleomorphism, nests of neoplastic hepatocytes and necrosis in HCC-bearing rats as compared to extract-fed rats, where these necrotic changes were suppressed. Besides, qRT-PCR analysis of hepatic tissues demonstrated the higher mRNA expression of CHEK1, CHEK2 and P21/CDKN1α genes, while downexpression of ATM gene in extract fed rats, further denoting the anti-mutagenic potential. Conclusion Consequently, the polyphenol-rich sweet cherries UAE exhibited antiproliferative and chemo-preventive potential by reducing tumor biomarkers, serum transaminases and oxidative stress, as well as enhancing antioxidant status. It further upregulated the downstream targets of ATM signaling cascade.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Tang W, Zhang Y, Yang K, Ma J, Dong L, Wu C, Lv R, Wang C, Luo C, Zhang H, Miao Z, Wu Y. Discovery of Novel 3,11-Bispeptide Ester Arenobufagin Derivatives with Potential in Vivo Antitumor Activity and Reduced Cardiotoxicity. Chem Biodivers 2023; 20:e202200911. [PMID: 36627123 DOI: 10.1002/cbdv.202200911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Arenobufagin, one of the bufadienolides isolated from traditional Chinese medicine Chan'su, exhibits potent antitumor activity. However, serious toxicity and small therapeutic window limits its drug development. In the present study, to our knowledge, novel 3,11-bispeptide ester arenobufagin derivatives have been firstly designed and synthesized on the base of our previous discovery of active 3-monopeptide ester derivative. The in vitro antiproliferative activity evaluation revealed that the moiety at C3 and C11 hydroxy had an important influence on cytotoxic activity and selectivity. Compound ZM350 notably inhibited tumor growth by 58.8 % at a dose 10 mg/kg in an A549 nude mice xenograft model. Therefore, compound ZM350 also presented a concentration-dependent apoptosis induction and low inhibitory effect against both hERG potassium channel and Cav1.2 calcium channel. Our study suggests that novel 3,11-bispeptide ester derivatives will be a potential benefit to further antitumor agent development of arenobufagin.
Collapse
Affiliation(s)
- Wenmin Tang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Yanming Zhang
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Keli Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Jianjiang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Lian Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chen Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Rongxue Lv
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chuan Luo
- Anhui China Resources Jinchan Pharmaceutical Co., Ltd., 39 Longfa Road, Huaibei, 235000, P. R. China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, 200433, P. R. China
| | - Zhenyuan Miao
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| |
Collapse
|
7
|
Chen K, Li A, Wang J, Li D, Wang X, Liu C, Wang Z. Arenobufagin causes ferroptosis in human gastric cancer cells by increasing rev-erbα expression. J Tradit Complement Med 2022; 13:72-80. [PMID: 36685074 PMCID: PMC9845647 DOI: 10.1016/j.jtcme.2022.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background and aims Gastric cancer is the fifth most diagnosed malignant tumor worldwide with limited effective chemotherapy. Ferroptosis is a new type of programmed cell death, which is becoming as a novel therapeutic target for tumors. Arenobufagin (ArBu) is a bufadienolide isolated from toad skin and venom, which exhibits broad-spectrum anti-tumor activity. It is unclear whether ArBu causes ferroptosis, thereby exhibiting anti-tumor activity in gastric cancer. We aimed to determine whether ArBu causes ferroptosis in cultured human gastric cancer cells. Experimental procedure Different human gastric cancer cells were treated with ArBu (5-20 μM, 48 h). Indicators of apoptosis and ferroptosis were measured. CRISPR/Cas-9 system was employed to delete Nr1d1 gene. Results ArBu incubation reduced cell viability in a concentration-dependent manner. ArBu caused ferroptosis but not apoptosis at a lower concentration (10 μM), despite it caused both of them at a higher concentration (20 μM). Cotreatment with a selective ferroptosis inhibitor ferrostatin-1 protected against ArBu (10 μM)-induced reduction in cell viability. ArBu-mediated ferroptosis was associated with abnormal expression of genes involved in iron uptake, lipid peroxidation, and antioxidants. Particularly, Nr1d1 gene expression was most significantly increased after ArBu treatment. Furthermore, activating Rev-erbα encoded by Nr1d1 by a selective agonist GSK4112 (1 and 2 μM, 48 h) caused ferroptosis. In contrast, Rev-erbα knockout using the CRISPR/Cas-9 system diminished ArBu-induced ferroptosis in cultured human gastric cancer cells. Conclusion ArBu causes ferroptosis by increasing Rev-erbα expression in human gastric cancer cells. This has implications of ArBu as a promising therapy for gastric cancer. Section 1. Natural Products. Taxonomy classification by EVISE Traditional medicine, pharmacology, gastric cancer, signal pathway.
Collapse
Affiliation(s)
- Ke Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| | - Angling Li
- Anhui Medical University, Hefei, Anhui, PR China
| | - Jian Wang
- Anhui Medical University, Hefei, Anhui, PR China
| | - Dongchang Li
- Anhui Medical University, Hefei, Anhui, PR China
| | | | - Chengwei Liu
- Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Corresponding author. Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
8
|
Yuan B, Li J, Miyashita SI, Kikuchi H, Xuan M, Matsuzaki H, Iwata N, Kamiuchi S, Sunaga K, Sakamoto T, Hibino Y, Okazaki M. Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196577. [PMID: 36235115 PMCID: PMC9571627 DOI: 10.3390/molecules27196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
- Correspondence: ; Tel./Fax: +81-49-271-8026
| | - Jingmei Li
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shin-Ich Miyashita
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Katsuyoshi Sunaga
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
9
|
Zhang Y, Yuan B, Bian B, Zhao H, Kiyomi A, Hayashi H, Iwatani Y, Sugiura M, Takagi N. Cytotoxic Effects of Hellebrigenin and Arenobufagin Against Human Breast Cancer Cells. Front Oncol 2021; 11:711220. [PMID: 34513690 PMCID: PMC8427765 DOI: 10.3389/fonc.2021.711220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Development of new therapeutic strategies for breast cancer is urgently needed due to the sustained emergence of drug resistance, tumor recurrence and metastasis. To gain a novel insight into therapeutic approaches to fight against breast cancer, the cytocidal effects of hellebrigenin (Helle) and arenobufagin (Areno) were investigated in human estrogen receptor (ER)-positive breast cancer cell line MCF-7 and triple-negative breast cancer cell line MDA-MB-231. Helle exhibited more potent cytotoxicity than Areno in both cancer cells, and MCF-7 cells were more susceptible to both drugs in comparison with MDA-MB-231 cells. Apoptotic-like morphological characteristics, along with the downregulation of the expression level of Bcl-2 and Bcl-xL and the upregulation of the expression level of Bad, were observed in Helle-treated MCF-7 cells. Helle also caused the activation of caspase-8, caspase-9, along with the cleavage of poly(ADP-ribose) polymerase in MCF-7 cells. Helle-mediated necrosis-like phenotype, as evidenced by the increased propidium iodide (PI)-positive cells was further observed. G2/M cell cycle arrest was also induced by Helle in the cells. Upregulation of the expression level of p21 and downregulation of the expression level of cyclin D1, cyclin E1, cdc25C and survivin were observed in MCF-7 cells treated with Helle and occurred in parallel with G2/M arrest. Autophagy was triggered in MCF-7 cells and the addition of wortmannin or 3-MA, two well-known autophagy inhibitors, slightly but significantly rescued the cells. Furthermore, similar alterations of some key molecules associated with the aforementioned biological phenomena were observed in MDA-MB-231 cells. Intriguingly, the numbers of PI-positive cells in Helle-treated MCF-7 cells were significantly reduced by wortmannin and 3-MA, respectively. In addition, Helle-triggered G2/M arrest was significantly corrected by wortmannin, suggesting autophagy induction contributed to Helle-induced cytotoxicity of breast cancer cells by modulating necrosis and cell cycle arrest. Collectively, our results suggested potential usefulness of both Helle and Areno in developing therapeutic strategies to treat patients with different types of breast cancer, especially ER-positive breast cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Yuan
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anna Kiyomi
- Department of Drug Safety and Risk Management, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Munetoshi Sugiura
- Department of Drug Safety and Risk Management, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| |
Collapse
|
10
|
Chen B, Wang C, Ma J, Ma H, Wang Y, Zhang H, Zhu Y, Yao J, Luo C, Miao Z, Wu Y. Discovery of 3-peptide substituted arenobufagin derivatives as potent antitumor agents with low cardiotoxicity. Steroids 2021; 166:108772. [PMID: 33271132 DOI: 10.1016/j.steroids.2020.108772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022]
Abstract
Active natural productscan be valuable lead compounds and numerous drugs derived from natural products have successfully entered the clinic. Arenobufagin, one of the important active components of toad venom, indicates significant antitumor activities with limited preclinical development for its strong cardiotoxicity. Ten 3-monopeptide substituted arenobufagin derivatives have been designed and synthesized. Antitumor activity and cardiotoxicity assays lead to the discovery of compound ZM226 as a potent antitumor agent with low cardiotoxicity. These findings suggest optimization of arenobufagin on position 3 maybe an efficacious strategy for the development of antitumor drug candidates derived from arenobufagin.
Collapse
Affiliation(s)
- Baobao Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Jianjiang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Haijun Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, People's Republic of China
| | - Yuan Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, People's Republic of China
| | - Hui Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yazhao Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chuan Luo
- Anhui China Resources Jinchan Pharmaceutical Co., Ltd., 39 Longfa Road, Huaibei, Anhui 235000, People's Repubilic of China.
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| |
Collapse
|
11
|
The Parotoid Gland Secretion from Peruvian Toad Rhinella horribilis (Wiegmann, 1833): Chemical Composition and Effect on the Proliferation and Migration of Lung Cancer Cells. Toxins (Basel) 2020; 12:toxins12090608. [PMID: 32971938 PMCID: PMC7551750 DOI: 10.3390/toxins12090608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Since Rhinella sp. toads produce bioactive substances, some species have been used in traditional medicine and magical practices by ancient cultures in Peru. During several decades, the Rhinella horribilis toad was confused with the invasive toad Rhinella marina, a species documented with extensive toxinological studies. In contrast, the chemical composition and biological effects of the parotoid gland secretions (PGS) remain still unknown for R. horribilis. In this work, we determine for the first time 55 compounds from the PGS of R. horribilis, which were identified using HPLC-MS/MS. The crude extract inhibited the proliferation of A549 cancer cells with IC50 values of 0.031 ± 0.007 and 0.015 ± 0.001 µg/mL at 24 and 48 h of exposure, respectively. Moreover, it inhibited the clonogenic capacity, increased ROS levels, and prevented the etoposide-induced apoptosis, suggesting that the effect of R. horribilis poison secretion was by cell cycle blocking before of G2/M-phase checkpoint. Fraction B was the most active and strongly inhibited cancer cell migration. Our results indicate that the PGS of R. horribilis are composed of alkaloids, bufadienolides, and argininyl diacids derivatives, inhibiting the proliferation and migration of A549 cells.
Collapse
|
12
|
Geng X, Wang F, Tian D, Huang L, Streator E, Zhu J, Kurihara H, He R, Yao X, Zhang Y, Tang J. Cardiac glycosides inhibit cancer through Na/K-ATPase-dependent cell death induction. Biochem Pharmacol 2020; 182:114226. [PMID: 32976831 DOI: 10.1016/j.bcp.2020.114226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Successful drug repurposing relies on the understanding of molecular mechanisms of the target compound. Cardiac glycosides have demonstrated potent anticancer activities; however, the pharmacological mechanisms underlying their anticancer effects remained elusive, which has restricted their further development in cancer treatment. A bottleneck is the lack of comprehensive understanding about genes and signaling pathways that are altered at the early stage of drug treatment, which is key to understand how they inhibit cancer. To address this issue, we first investigated the anticancer effects of a panel of 68 naturally isolated cardiac glycosides. Our results illustrate critical structure activity relationship of these compounds on cancer cell survival. We confirmed the anticancer effect of cardiac glycoside in mouse tumor xenografts. Through RNA sequencing, quantitative PCR and immunoblotting, we show that cardiac glycoside first activated autophagy and then induced apoptosis. Further activating autophagy by rapamycin or inhibiting apoptosis by caspase inhibitor mitigated cardiac glycoside-induced cell death, whereas inhibiting autophagy by RNA interference-mediated depletion of critical autophagy genes enhanced cell death. While depletion of Na/K-ATPase, the protein target of cardiac glycosides, by RNA interference inhibited both autophagy activation and apoptosis induction by cardiac glycoside, expression of human, but not rodent Na/K-ATPase, increased cell sensitivity to cardiac glycoside. In conclusion, our analyses reveal sequential activation of autophagy and apoptosis during early stages of cardiac glycoside treatment and indicate the importance of Na/K-ATPase in their anticancer effects.
Collapse
Affiliation(s)
- Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihua Huang
- International Academic Support & Delivery Unit, BGI Genomics, Co., Ltd., Shenzhen 518083, People's Republic of China
| | - Evan Streator
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jingjing Zhu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hiroshi Kurihara
- Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Rongrong He
- Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
13
|
Deng LJ, Li Y, Qi M, Liu JS, Wang S, Hu LJ, Lei YH, Jiang RW, Chen WM, Qi Q, Tian HY, Han WL, Wu BJ, Chen JX, Ye WC, Zhang DM. Molecular mechanisms of bufadienolides and their novel strategies for cancer treatment. Eur J Pharmacol 2020; 887:173379. [PMID: 32758567 DOI: 10.1016/j.ejphar.2020.173379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Bufadienolides are cardioactive C24 steroids with an α-pyrone ring at position C17. In the last ten years, accumulating studies have revealed the anticancer activities of bufadienolides and their underlying mechanisms, such as induction of autophagy and apoptosis, cell cycle disruption, inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and stemness, and multidrug resistance reversal. As Na+/K+-ATPase inhibitors, bufadienolides have inevitable cardiotoxicity. Short half-lives, poor stability, low plasma concentration and oral bioavailability in vivo are obstacles for their applications as drugs. To improve the drug potency of bufadienolides and reduce their side effects, prodrug strategies and drug delivery systems such as liposomes and nanoparticles have been applied. Therefore, systematic and recapitulated information about the antitumor activity of bufadienolides, with special emphasis on the molecular or cellular mechanisms, prodrug strategies and drug delivery systems, is of high interest. Here, we systematically review the anticancer effects of bufadienolides and the molecular or cellular mechanisms of action. Research advancements regarding bufadienolide prodrugs and their tumor-targeting delivery strategies are critically summarized. This work highlights recent scientific advances regarding bufadienolides as effective anticancer agents from 2011 to 2019, which will help researchers to understand the molecular pathways involving bufadienolides, resulting in a selective and safe new lead compound or therapeutic strategy with improved therapeutic applications of bufadienolides for cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Deng
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Jun Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yu-He Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Yan Tian
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Li Han
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Jian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Lei Y, Gan H, Huang Y, Chen Y, Chen L, Shan A, Zhao H, Wu M, Li X, Ma Q, Wang J, Zhang E, Zhang J, Li Y, Xue F, Deng L. Digitoxin inhibits proliferation of multidrug-resistant HepG2 cells through G 2/M cell cycle arrest and apoptosis. Oncol Lett 2020; 20:71. [PMID: 32863904 PMCID: PMC7436926 DOI: 10.3892/ol.2020.11932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a challenge in the medical field due to its high malignancy and mortality rates particularly for HCC, which has developed multidrug resistance. Therefore, the identification of efficient chemotherapeutic drugs for multidrug resistant HCC has become an urgent issue. Natural products have always been of significance in drug discovery. In the present study, a cell-based method was used to screen a natural compound library, which consisted of 78 compounds, and the doxorubicin-resistant cancer cell line, HepG2/ADM, as screening tools. The findings of the present study led to the shortlisting of one of the compounds, digitoxin, which displayed an inhibitory effect on HepG2/ADM cells, with 50% inhibitory concentration values of 132.65±3.83, 52.29±6.26, and 9.13±3.67 nM for 24, 48, and 72 h, respectively. Immunofluorescence, western blotting and cell cycle analyses revealed that digitoxin induced G2/M cell cycle arrest via the serine/threonine-protein kinase ATR (ATR)-serine/threonine-protein kinase Chk2 (CHK2)-M-phase inducer phosphatase 3 (CDC25C) signaling pathway in HepG2/ADM cells, which may have resulted from a DNA double-stranded break. Digitoxin also induced mitochondrial apoptosis, which was characterized by changes in the interaction between Bcl-2 and Bax, the release of cytochrome c, as well as the activation of the caspase-3 and −9. To the best of our knowledge, the present study is the first report that digitoxin displays an anti-HCC effect on HepG2/ADM cells through G2/M cell cycle arrest, which was mediated by the ATR-CHK2-CDC25C signaling pathway and mitochondrial apoptosis. Therefore, digitoxin could be a promising chemotherapeutic agent for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Hua Gan
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuqing Huang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Huan Zhao
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Mansi Wu
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaojuan Li
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qingyu Ma
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Jiayan Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan 418000, P.R. China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan 418000, P.R. China
| | - Feifei Xue
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
15
|
Gan H, Qi M, Chan C, Leung P, Ye G, Lei Y, Liu A, Xue F, Liu D, Ye W, Zhang D, Deng L, Chen J. Digitoxin inhibits HeLa cell growth through the induction of G2/M cell cycle arrest and apoptosis in vitro and in vivo. Int J Oncol 2020; 57:562-573. [PMID: 32468057 DOI: 10.3892/ijo.2020.5070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is the fourth most common gynecological malignancy affecting the health of women worldwide and the second most common cause of cancer‑related mortality among women in developing regions. Thus, the development of effective chemotherapeutic drugs for the treatment of cervical cancer has become an important issue in the medical field. The application of natural products for the prevention and treatment of various diseases, particularly cancer, has always attracted widespread attention. In the present study, a library of natural products composed of 78 single compounds was screened and it was found that digitoxin exhibited the highest cytotoxicity against HeLa cervical cancer cells with an IC50 value of 28 nM at 48 h. Furthermore, digitoxin exhibited extensive antitumor activities in a variety of malignant cell lines, including the lung cancer cell line, A549, the hepatoma cell line, MHCC97H, and the colon cancer cell line, HCT116. Mechanistically, digitoxin caused DNA double‑stranded breaks (DSBs), inhibited the cell cycle at the G2/M phase via the ataxia telangiectasia mutated serine/threonine kinase (ATM)/ATM and Rad3‑related serine/threonine kinase (ATR)‑checkpoint kinase (CHK1)/checkpoint kinase 2 (CHK2)‑Cdc25C pathway and ultimately triggered mitochondrial apoptosis, which was characterized by the disruption of Bax/Bcl‑2, the release of cytochrome c and the sequential activation of caspases and poly(ADP‑ribose) polymerase (PARP). In addition, the in vivo anticancer effect of digitoxin was confirmed in HeLa cell xenotransplantation models. On the whole, the findings of the present study demonstrate the efficacy of digitoxin against cervical cancer in vivo and elucidate its molecular mechanisms, including DSBs, cell cycle arrest and mitochondrial apoptosis. These results will contribute to the development of digitoxin as a chemotherapeutic agent in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Hua Gan
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chakpiu Chan
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Pan Leung
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Geni Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Aiai Liu
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Feifei Xue
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dongdong Liu
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lijuan Deng
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiaxu Chen
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
16
|
Zhong Y, Zhao C, Wu WY, Fan TY, Li NG, Chen M, Duan JA, Shi ZH. Total synthesis, chemical modification and structure-activity relationship of bufadienolides. Eur J Med Chem 2020; 189:112038. [PMID: 31945667 DOI: 10.1016/j.ejmech.2020.112038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Bufadienolides are a type of natural cardiac steroids and originally isolated from the Traditional Chinese Medicine Chan'Su, they have been used for the treatment of heart disease in traditional remedies as well as in modern medicinal therapy with potent anti-tumor activities. Due to their unique molecular structures with unsaturated six-membered lactones attached to the steroid core, bufadienolides have received great attention in the synthetic organic community. This review presents total synthetic efforts to some representative bufadienolides, chemical modification of bufadienolides will also be given to discuss their structure-activity relationship in anti-tumor.
Collapse
Affiliation(s)
- Yue- Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao- Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Yu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min- Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
Arenobufagin Inhibits the Phosphatidylinositol 3-kinase/Protein Kinase B/Mammalian Target of Rapamycin Pathway and Induces Apoptosis and Autophagy in Pancreatic Cancer Cells. Pancreas 2020; 49:261-272. [PMID: 32011523 DOI: 10.1097/mpa.0000000000001471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of arenobufagin on pancreatic carcinoma in vitro and in vivo and its molecular mechanism. METHODS The proliferation of pancreatic cancer cells was detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Transmission electron microscopy was used to observe the formation of autophagic vacuoles after arenobufagin treatment. Hoechst 33258 and monodansylcadaverine fluorescence staining were performed to evaluate cell apoptosis and autophagy. Annexin V-fluorescein isothiocyanate/propidium iodide double-staining and JC-1 staining assays were used to evaluate apoptosis-related changes. Reverse-transcription polymerase chain reaction and western blotting were carried out to examine the expression of apoptosis- and autophagy-related markers after arenobufagin treatment. A tumor xenograft nude mouse model was established to evaluate arenobufagin efficacy in vivo. RESULTS Arenobufagin effectively inhibited the proliferation of SW1990 and BxPC3 cells and induced cell arrest, apoptosis, and autophagy. Arenobufagin upregulated the expression of apoptotic- and autophagy-related proteins while downregulated the expression of phosphatidylinositol 3-kinase family proteins. Furthermore, arenobufagin also exerted inhibitory effects on tumor growth in xenograft nude mice. CONCLUSIONS Arenobufagin inhibits tumor growth in vivo and in vitro. The mechanism underlying arenobufagin action may involve induction of autophagy and apoptosis through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway.
Collapse
|
18
|
Yuan B, Shimada R, Xu K, Han L, Si N, Zhao H, Bian B, Hayashi H, Okazaki M, Takagi N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact 2019; 314:108849. [DOI: 10.1016/j.cbi.2019.108849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
19
|
Pan Z, Zhang X, Yu P, Chen X, Lu P, Li M, Liu X, Li Z, Wei F, Wang K, Zheng Q, Li D. Cinobufagin Induces Cell Cycle Arrest at the G2/M Phase and Promotes Apoptosis in Malignant Melanoma Cells. Front Oncol 2019; 9:853. [PMID: 31552178 PMCID: PMC6738445 DOI: 10.3389/fonc.2019.00853] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence has shown that cinobufagin, as an active ingredient of Venenum Bufonis, inhibits tumor development. The aim of this study was to investigate the inhibitory effects of cinobufagin on A375 human malignant melanoma cells. MTT and colony formation assays showed that cinobufagin significantly inhibited A375 cell proliferation and cell colony formation. Additional studies demonstrated that cinobufagin markedly increased the levels of ATM serine/threonine kinase (ATM) and checkpoint kinase 2 (Chk2) and decreased the levels of cell division cycle 25C (CDC25C), cyclin-dependent kinase 1 (CDK1), and cyclin B, subsequently inducing G2/M cell cycle arrest in A375 cells. Moreover, cinobufagin clearly inhibited the levels of phosphoinositide 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), AKT, p-AKT, and B-cell lymphoma 2 (Bcl-2). By contrast, it increased the levels of Bcl-2-associated death promoter, Bcl-2-associated X, cytoplasmic cytochrome C, and apoptotic protease activating factor 1, leading to increased levels of cleaved caspase-9 and cleaved caspase-3, resulting in the apoptosis of A375 cells. Together, these results indicate that cinobufagin can induce cell cycle arrest at the G2/M phase and apoptosis, leading to inhibition of A375/B16 cell proliferation. Thus, cinobufagin may be useful for melanoma treatment.
Collapse
Affiliation(s)
- Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Xin Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Pengfei Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoyu Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Peng Lu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Xiaona Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Zhipeng Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Kejun Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Liu JS, Deng LJ, Tian HY, Ruan ZX, Cao HH, Ye WC, Zhang DM, Yu ZL. Anti-tumor effects and 3D-quantitative structure-activity relationship analysis of bufadienolides from toad venom. Fitoterapia 2019; 134:362-371. [PMID: 30872126 DOI: 10.1016/j.fitote.2019.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Toad venom (venenum bufonis, also called Chan'su) has been widely used for centuries in China to treat different diseases, especially for cancer. Bufadienolides are mainly responsible for the anti-cancer effects of toad venom. However, systematic chemical composition and cytotoxicity as well as key pharmacophores of these bufadienolides from toad venom have not yet been defined clearly. To enrich the understanding of the diversity of bufadienolides and to find bufadienolides with better activities from toad venom. This study was carried out to isolate chemical constituents, research their anti-tumor effects and mechanisms by MTT assay, flow cytometry and Western blotting, and develop a CoMFA and CoMSIA quantitative structure-activity relationship (QSAR) model for illustrating the vital relationship between the chemical structures and cytotoxicities. Among 47 natural bufadienolides, most of bufadienolides (21 compounds isolated in this study and 26 compounds isolated previously) could significantly inhibit the proliferation of cancer cells, and compounds 1, 8, 12, 18 and 19 showed the most potent inhibitory activity against four types of human tumor cells. Compound 18 induced G2/M cell cycle arrest and apoptosis. Moreover, 3D contour maps generated from CoMFA and CoMSIA identified several pharmacophores of bufadienolides responsible for the anti-tumor activities. Our study might provide reliable information for future structure modification and rational drug design of bufadienolides with anticancer activities in medical chemistry.
Collapse
Affiliation(s)
- Jun-Shan Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Hai-Yan Tian
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Xiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Hui-Hui Cao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China.
| |
Collapse
|
21
|
Deng LJ, Qi M, Peng QL, Chen MF, Qi Q, Zhang JY, Yao N, Huang MH, Li XB, Peng YH, Liu JS, Fu DR, Chen JX, Ye WC, Zhang DM. Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein. Cancer Cell Int 2018; 18:209. [PMID: 30574018 PMCID: PMC6299615 DOI: 10.1186/s12935-018-0706-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background It has been demonstrated that bufadienolides exert potent anti-cancer activity in various tumor types. However, the mechanisms that underlie their anti-cancer properties remain unclear. Yes-associated protein, a key effector of Hippo signaling, functions as a transcription coactivator, plays oncogenic and tumor suppressor roles under different conditions. Here, we report that arenobufagin (ABF), a representative bufadienolide, induced breast cancer MCF-7 cells to undergo apoptosis, which occurred through the JNK-mediated multisite phosphorylation of YAP. Methods Cytotoxicity was examined using an MTT assay. ABF-induced apoptosis was measured with a TUNEL assay and Annexin V-FITC/PI double staining assay. Western blotting, immunofluorescence, qRT-PCR and coimmunoprecipitation were employed to assess the expression levels of the indicated molecules. Lose-of-function experiments were carried out with siRNA transfection and pharmacological inhibitors. ABF-induced phosphopeptides were enriched with Ti4+-IMAC chromatography and further subjected to reverse-phase nano-LC–MS/MS analysis. Results ABF significantly reduced the viability of MCF-7 cells and increased the percentage of early and late apoptotic cells in a concentration- and time-dependent manner. Following ABF treatment, YAP accumulated in the nucleus and bound to p73, which enhanced the transcription of the pro-apoptotic genes Bax and p53AIP1. YAP knock-down significantly attenuated ABF-induced apoptotic cell death. Importantly, we found that the mobility shift of YAP was derived from its phosphorylation at multiple sites, including Tyr357. Moreover, mass spectrometry analysis identified 19 potential phosphorylation sites in YAP, with a distribution of 14 phosphoserine and 5 phosphothreonine residues. Furthermore, we found that the JNK inhibitor SP600125 completely diminished the mobility shift of YAP and its phosphorylation at Tyr357, the binding of YAP and p73, the transcription of Bax and p53AIP1 as well as the apoptosis induced by ABF. These data indicate that ABF induced YAP multisite phosphorylation, which was associated with p73 binding, and that apoptosis was mediated by the JNK signaling pathway. Conclusions Our data demonstrate that ABF suppresses MCF-7 breast cancer proliferation by triggering the pro-apoptotic activity of YAP, which is mediated by JNK signaling-induced YAP multisite phosphorylation as well as its association with p73. The present work not only provides additional information on the use of ABF as an anti-breast cancer drug, but also offers evidence that the induction of the tumor suppressor role of YAP may be a therapeutic strategy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0706-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Juan Deng
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,2Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Ming Qi
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Qun-Long Peng
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Min-Feng Chen
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Qi Qi
- 4Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Jia-Yan Zhang
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Nan Yao
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Mao-Hua Huang
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Xiao-Bo Li
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Yin-Hui Peng
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Jun-Shan Liu
- 5School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Deng-Rui Fu
- Guangzhou Yucai Middle School, Fujin Road 2#, Dongshan District, Guangzhou, China
| | - Jia-Xu Chen
- 2Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Wen-Cai Ye
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Dong-Mei Zhang
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| |
Collapse
|
22
|
The Ethanol Supernatant Extracts of Liushenwan Could Alleviate Nanodiethylnitrosamine-Induced Liver Cancer in Mice. Can J Gastroenterol Hepatol 2018; 2018:6934809. [PMID: 30356380 PMCID: PMC6178154 DOI: 10.1155/2018/6934809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of cancerous deaths worldwide. At present, the treatment of hepatocellular carcinoma (HCC) remains to be a problem globally. Liushenwan (LSW), an ancient Chinese medicine previously used to treat localized infections, was recently reported to possess anticancer activity. Here in this study, we aim to examine the effect of LSW-ET (LSW-ET is the supernatant fraction of LSW from ultrasound assisted ethanol extraction) in prevention and treatment on nanodiethylnitrosamine- (nanoDEN-) induced HCC in mice. In nanoDEN-induced HCC mice treated with LSW-ET by oral (po) or intragastric gavage (ig), we observed an alleviation of serum ALT and AST levels, amelioration in histopathological stainings, and an inhibition in liver tumor growth. In addition, compared with the nanoDEN group, downregulation of multiple pivotal factors (COX-2, β-catenin, PCNA, and HMGB-1) was observed in LSW-ET-po and LSW-ET-ig groups. Taken together, the delivery of LSW-ET by oral could be a potential prevention and treatment of liver cancer.
Collapse
|
23
|
Han L, Yuan B, Shimada R, Hayashi H, Si N, Zhao HY, Bian B, Takagi N. Cytocidal effects of arenobufagin and hellebrigenin, two active bufadienolide compounds, against human glioblastoma cell line U-87. Int J Oncol 2018; 53:2488-2502. [PMID: 30272276 PMCID: PMC6203163 DOI: 10.3892/ijo.2018.4567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most common and lethal intracranial tumor type, characterized by high angiogenic and infiltrative capacities. To provide a novel insight into therapeutic strategies against glioblastoma, the cytotoxicity of arenobufagin and hellebrigenin was investigated in the human glioblastoma cell line, U-87. Similar dose-dependent cytotoxicity was observed in the cells, whereas no detectable toxicity was confirmed in mouse primary astrocytes. Treatment with each drug downregulated the expression levels of Cdc25C, Cyclin B1 and survivin, which occurred in parallel with G2/M phase arrest. Necrotic-like cell death was only observed in the cells treated with a relatively high concentration (>100 ng/ml). These results indicate that the two drugs exhibited distinct cytotoxicity against cancerous glial cells with high potency and selectivity, suggesting that growth inhibition associated with G2/M phase arrest and/or necrosis were attributed to their toxicities. Activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway was also observed in treated cells. Notably, a specific inhibitor of p38 MAPK, SB203580, itself caused a significant decrease in cell viability, and further enhanced the cytotoxicity of the two drugs, suggesting an important pro-survival role for p38 MAPK. Given that p38 MAPK serves an essential role in promoting glioblastoma cell survival, developing a novel combination regimen of arenobufagin/hellebrigenin plus a p38 MAPK inhibitor may improve the efficacy of the two drugs, and may provide more therapeutic benefits to patients with glioblastoma. The qualitative assessment demonstrated the existence of arenobufagin in the cerebrospinal fluid of arenobufagin-treated rats, supporting its clinical application.
Collapse
Affiliation(s)
- Lingyu Han
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Ryota Shimada
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
24
|
Bufalin suppresses hepatocarcinogenesis by targeting β-catenin/TCF signaling via cell cycle-related kinase. Sci Rep 2018; 8:3891. [PMID: 29497076 PMCID: PMC5832857 DOI: 10.1038/s41598-018-22113-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, of which treatment options are limited especially in advanced stage. Bufalin, the major digoxin-like component of the traditional Chinese medicine Chansu, exhibits significant antitumor activities in hepatoma cells, but the potential mechanism is obscure. Cell cycle-related kinase (CCRK) is recently identified to be a crucial oncogenic master regulator to drive hepatocarcinogenesis. Here we investigated the molecular function of bufalin on CCRK-regulated signaling pathway, and expounded the underlying mechanism in HCC suppression. In vitro with PLC5 HCC cells and human immortal LO2 cells, proliferation, malignant transformation and cell cycle progression assays were performed to evaluate the antitumor effect of bufalin. In vivo with xenograft and orthotopic mice models, tumor growths with weight and volume change were assessed with or without bufalin treatment. Western blot, RT-qPCR, immunofluorescence and immunohistochemistry were conducted to examine the expression level of CCRK and β-catenin/TCF signaling cascade. We revealed that bufalin suppresses PLC5 HCC cell proliferation, transformation and cell cycle progression rather than LO2 cells, which is correlated with CCRK-mediated β-catenin/TCF signaling. It was also confirmed in mice model. Thus, bufalin is a potential anti-HCC therapeutic candidate through the inhibition of CCRK-driven β-catenin/TCF oncogenic signaling pathway.
Collapse
|
25
|
Wang L, Wang QT, Liu YP, Dong QQ, Hu HJ, Miao Z, Li S, Liu Y, Zhou H, Zhang TC, Ma WJ, Luo XG. ATM Signaling Pathway Is Implicated in the SMYD3-mediated Proliferation and Migration of Gastric Cancer Cells. J Gastric Cancer 2017; 17:295-305. [PMID: 29302370 PMCID: PMC5746651 DOI: 10.5230/jgc.2017.17.e33] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/23/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose We previously found that the histone methyltransferase suppressor of variegation, enhancer of zeste, trithorax and myeloid-nervy-deformed epidermal autoregulatory factor-1 domain-containing protein 3 (SMYD3) is a potential independent predictive factor or prognostic factor for overall survival in gastric cancer patients, but its roles seem to differ from those in other cancers. Therefore, in this study, the detailed functions of SMYD3 in cell proliferation and migration in gastric cancer were examined. Materials and Methods SMYD3 was overexpressed or suppressed by transfection with an expression plasmid or siRNA, and a wound healing migration assay and Transwell assay were performed to detect the migration and invasion ability of gastric cancer cells. Additionally, an MTT assay and clonogenic assay were performed to evaluate cell proliferation, and a cell cycle analysis was performed by propidium iodide staining. Furthermore, the expression of genes implicated in the ataxia telangiectasia mutated (ATM) pathway and proteins involved in cell cycle regulation were detected by polymerase chain reaction and western blot analyses. Results Compared with control cells, gastric cancer cells transfected with si-SMYD3 showed lower migration and invasion abilities (P<0.05), and the absence of SMYD3 halted cells in G2/M phase and activated the ATM pathway. Furthermore, the opposite patterns were observed when SMYD3 was elevated in normal gastric cells. Conclusions To the best of our knowledge, this study provides the first evidence that the absence of SMYD3 could inhibit the migration, invasion, and proliferation of gastric cancer cells and halt cells in G2/M phase via the ATM-CHK2/p53-Cdc25C pathway. These findings indicated that SMYD3 plays crucial roles in the proliferation, migration, and invasion of gastric cancer cells and may be a useful therapeutic target in human gastric carcinomas.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qiu-Tong Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu-Peng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing-Qing Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hai-Jie Hu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhi Miao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yong Liu
- Department of Gastric Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wen-Jian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
26
|
Zhu Z, Yi S, Shan Z, Guo H, Ke S. Effect of isoflurane + N 2O inhalation and propofol + fentanyl anesthesia on myocardial function as assessed by cardiac troponin, caspase-3, cyclooxygenase-2 and inducible nitric oxide synthase expression. Exp Ther Med 2017; 14:4377-4382. [PMID: 29067116 DOI: 10.3892/etm.2017.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate the effect of isoflurane + N2O inhalation and propofol + fentanyl anesthesia on myocardial function as assessed by cardiac troponin T (cTnT). A total of 60 patients were randomized into two groups: isoflurane + N2O inhalation (n=30) and propofol + fentanyl anesthesia (n=30). The findings demonstrated that there was no significant difference between the two experimental groups in terms of cTnT levels, demographic properties or hemodynamic parameters. Isoflurane + N2O inhalation and propofol + fentanyl anesthesia, respectively, were also investigated in a rat model of myocardial infarction. Myocardial cell damage, inflammation and oxidative stress levels, caspase-3/9 activities and cyclooxygenase-2 protein expression were markedly decreased, although there was no statistical significance difference between the two experimental groups. Notably, inducible nitric oxide synthase protein expression in the isoflurane + N2O inhalation group was significantly higher than that of the propofol + fentanyl anesthesia group (P<0.01). In conclusion, isoflurane + N2O inhalation and propofol + fentanyl anesthesia are not associated with risks for myocardial function.
Collapse
Affiliation(s)
- Zhuanghui Zhu
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shuanglian Yi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China.,Department of Cardiac Surgery, Teaching Hospital of Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Hongwei Guo
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shaofan Ke
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
27
|
Arenobufagin Induces Apoptotic Cell Death in Human Non-Small-Cell Lung Cancer Cells via the Noxa-Related Pathway. Molecules 2017; 22:molecules22091525. [PMID: 28892004 PMCID: PMC6151516 DOI: 10.3390/molecules22091525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Arenobufagin, an active component isolated from the traditional Chinese medicine Chan Su, exhibits anticancer influences in several human malignancies. However, the effects and action mechanisms of arenobufagin on non-small-cell lung cancer (NSCLC) are still unknown. In this study, we reported that arenobufagin acted through activation of Noxa-related pathways and promoted apoptotic cell death in human NSCLC cells. Our results revealed that arenobufagin-induced apoptosis was caspase-dependent, as evidenced by the fact that caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) were cleaved, and pretreatment with a pan-caspase inhibitor Z-VAD-FMK inhibited the pro-apoptosis effect of arenobufagin. Mechanistically, we further found that arenobufagin rapidly upregulated the expression of the pro-apoptosis protein Noxa, and abrogated the anti-apoptosis protein Mcl-1, a major binding partner of Noxa in the cell. More importantly, the knockdown of Noxa greatly blocked arenobufagin-induced cell death, highlighting the contribution of this protein in the anti-NSCLC effects of arenobufagin. Interestingly, arenobufagin also increased the expression of p53, a direct transcriptional activator for the upregulation of the Noxa protein. Taken together, our results suggest that arenobufagin is a potential anti-NSCLC agent that triggers apoptotic cell death in NSCLC cells through interfering with the Noxa-related pathway.
Collapse
|
28
|
Li L, Lei Q, Zhang S, Kong L, Qin B. Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncol Rep 2017; 38:2607-2618. [PMID: 28901457 PMCID: PMC5780015 DOI: 10.3892/or.2017.5946] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the pathogeny, but the molecular mechanisms of HCC are still not well understood. To identify the candidate genes in the carcinogenesis and progression of HCC, microarray datasets GSE19665, GSE33006 and GSE41804 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape. A total of 273 DEGs were identified, consisting of 189 downregulated genes and 84 upregulated genes. The enriched functions and pathways of the DEGs include protein activation cascade, complement activation, carbohydrate binding, complement and coagulation cascades, mitotic cell cycle and oocyte meiosis. Sixteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell division, cell cycle and nuclear division. Survival analysis showed that BUB1, CDC20, KIF20A, RACGAP1 and CEP55 may be involved in the carcinogenesis, invasion or recurrence of HCC. In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of HCC, and provide candidate targets for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Lin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Qingsong Lei
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Lingna Kong
- The Nursing College of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Feng Y, Wang C, Tian X, Huo X, Feng L, Sun C, Ge G, Yang L, Ning J, Ma X. In vitro phase I metabolism of gamabufotalin and arenobufagin: Reveal the effect of substituent group on metabolic stability. Fitoterapia 2017; 121:38-45. [DOI: 10.1016/j.fitote.2017.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
|
30
|
Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, Peng Y, Ye W, Zhang D. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacol Res 2017; 123:130-142. [PMID: 28712972 DOI: 10.1016/j.phrs.2017.07.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis; thus, developing EMT inhibitors may be a feasible treatment for metastatic PCa. Here, we discovered that arenobufagin and four other bufadienolides suppressed PC3 cell EMT. These compounds modulated EMT marker expression with elevating E-cadherin and reducing ZEB1, vimentin and slug expression, and attenuated the migration and invasion of PC3 cells. Among these five compounds, arenobufagin exhibited the most potent activity. We found that the mRNA and protein expression of β-catenin and β-catenin/TCF4 target genes, which are related to tumor invasion and metastasis, were down-regulated after arenobufagin treatment. Overexpression of β-catenin in PC3 cells antagonized the EMT inhibition effect of arenobufagin, while silencing β-catenin with siRNA enhanced the inhibitory effect of arenobufagin on EMT. In addition, arenobufagin restrained xenograft tumor EMT, as demonstrated by decreased mesenchymal marker expression and increased epithelial marker expression, and reduced the tumor metastatic foci in lung. This study demonstrates a novel anticancer activity of arenobufagin, which inhibits PC3 cell EMT by down-regulating β-catenin, thereby reducing PCa metastasis. In addition, it also provides new evidence for the development of arenobufagin as a treatment for metastatic prostate cancer.
Collapse
Affiliation(s)
- Liping Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Weiqian Mai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Jianyang Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Zhenjian Zhuo
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xueping Lei
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Lijuan Deng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510632, PR China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Yinghui Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
31
|
Lee YJ, Bae JH, Kim SA, Kim SH, Woo KM, Nam HS, Cho MK, Lee SH. Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells. Mol Cells 2017; 40:567-576. [PMID: 28835017 PMCID: PMC5582303 DOI: 10.14348/molcells.2017.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
The Na+/H+ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular Na+ and the extrusion of intracellular H+. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent Na+/H+-exchange inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a sub-G0/G1 peak, and a G2/M phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, p-ATMSer1981, p-ATRSer428, p-CHK1Ser345, and p-CHK2Thr68, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acid-tolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151,
Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Jin-Ho Bae
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Soo-A Kim
- Department of Physical Medicine and Rehabilitation, Cheonan Hospital, Cheonan 31151,
Korea
| | - Sung-Ho Kim
- Department of Chemistry, College of Natural Sciences, Soonchunhyang University, Asan 31538,
Korea
| | - Kee-Min Woo
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151,
Korea
| | - Hae-Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Moon-Kyun Cho
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Sang-Han Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151,
Korea
| |
Collapse
|
32
|
Yuan X, Xie Q, Su K, Li Z, Dong D, Wu B. Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles. Int J Nanomedicine 2017; 12:4981-4989. [PMID: 28761339 PMCID: PMC5516778 DOI: 10.2147/ijn.s139128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Arenobufagin (ABG) is a major active component of toad venom, a traditional Chinese medicine used for cancer therapy. However, poor aqueous solubility limits its pharmacological studies in vivo due to administration difficulties. In this study, we aimed to develop a polymeric nanomicelle (PN) system to enhance the solubility of ABG for effective intravenous delivery. ABG-loaded PNs (ABG-PNs) were prepared with methoxy poly (ethylene glycol)-block-poly (d,l-lactic-co-glycolic acid) (mPEG-PLGA) using the solvent-diffusion technique. The obtained ABG-PNs were 105 nm in size with a small polydispersity index of 0.08. The entrapment efficiency and drug loading were 71.9% and 4.58%, respectively. Cellular uptake of ABG-PNs was controlled by specific clathrin-mediated endocytosis. In addition, ABG-PNs showed improved drug pharmacokinetics with an increased area under the curve value (a 1.73-fold increase) and a decreased elimination clearance (37.8% decrease). The nanomicelles showed increased drug concentrations in the liver and lung. In contrast, drug concentrations in both heart and brain were decreased. Moreover, the nanomicelles enhanced the anticancer effect of the pure drug probably via increased cellular uptake of drug molecules. In conclusion, the mPEG-PLGA-based nanomicelle system is a satisfactory carrier for the systemic delivery of ABG.
Collapse
Affiliation(s)
- Xue Yuan
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Qian Xie
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy
| | - Keyu Su
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy
| | - Zhijie Li
- International Ocular Surface Research Centre and Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Dong Dong
- International Ocular Surface Research Centre and Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
33
|
Deng LJ, Wang LH, Peng CK, Li YB, Huang MH, Chen MF, Lei XP, Qi M, Cen Y, Ye WC, Zhang DM, Chen WM. Fibroblast Activation Protein α Activated Tripeptide Bufadienolide Antitumor Prodrug with Reduced Cardiotoxicity. J Med Chem 2017; 60:5320-5333. [DOI: 10.1021/acs.jmedchem.6b01755] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li-Juan Deng
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Long-Hai Wang
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Cheng-Kang Peng
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yi-Bin Li
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Mao-Hua Huang
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Ping Lei
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ming Qi
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yun Cen
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- Guangdong Province Key Laboratory
of Pharmacodynamic Constituents of TCM and New Drugs Research, College
of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
34
|
Schmeda-Hirschmann G, Gomez CV, Rojas de Arias A, Burgos-Edwards A, Alfonso J, Rolon M, Brusquetti F, Netto F, Urra FA, Cárdenas C. The Paraguayan Rhinella toad venom: Implications in the traditional medicine and proliferation of breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:106-118. [PMID: 28131913 DOI: 10.1016/j.jep.2017.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toads belonging to genus Rhinella are used in Paraguayan traditional medicine to treat cancer and skin infections. AIM OF THE STUDY The objective of the study was to determine the composition of venoms obtained from three different Paraguayan Rhinella species, to establish the constituents of a preparation sold in the capital city of Paraguay to treat cancer as containing the toad as ingredient, to establish the effect of the most active Rhinella schneideri venom on the cell cycle using human breast cancer cells and to assess the antiprotozoal activity of the venoms. METHODS The venom obtained from the toads parotid glands was analyzed by HPLC-MS-MS. The preparation sold in the capital city of Paraguay to treat cancer that is advertised as made using the toad was analyzed by HPLC-MS-MS. The effect of the R. schneideri venom and the preparation was investigated on human breast cancer cells. The antiprotozoal activity was evaluated on Leishmania braziliensis, L. infantum and murine macrophages. RESULTS From the venoms of R. ornata, R. schneideri and R. scitula, some 40 compounds were identified by spectroscopic and spectrometric means. Several minor constituents are reported for the first time. The preparation sold as made from the toad did not contained bufadienolides or compounds that can be associated with the toad but plant compounds, mainly phenolics and flavonoids. The venom showed activity on human breast cancer cells and modified the cell cycle proliferation. The antiprotozoal effect was higher for the R. schneideri venom and can be related to the composition and relative ratio of constituents compared with R. ornata and R. scitula. CONCLUSIONS The preparation sold in the capital city of Paraguay as containing the toad venom, used popularly to treat cancer did not contain the toad venom constituents. Consistent with this, this preparation was inactive on proliferation of human breast cancer cells. In contrast, the toad venoms of Rhinella species altered the cell cycle progression, affecting the proliferation of malignant cells. The findings suggest that care should be taken with the providers of the preparation and that the crude drug present a strong activity towards human breast cancer cell lines. The antiprotozoal effect of the R. schneideri venom was moderate while the venom of R. ornata was devoid of activity and that of R. scitula was active at very high concentration.
Collapse
Affiliation(s)
- Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile.
| | - Celeste Vega Gomez
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | - Alberto Burgos-Edwards
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000 Talca, Chile
| | - Jorge Alfonso
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | - Miriam Rolon
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O` Leary, Barrio La Encarnación, Código Postal: 1255, Asunción, Paraguay
| | | | - Flavia Netto
- Instituto de Investigación Biológica del Paraguay, CP 1429 Asunción, Paraguay
| | - Félix A Urra
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Independencia 1027, Casilla 7, Santiago, Chile
| | - César Cárdenas
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Independencia 1027, Casilla 7, Santiago, Chile
| |
Collapse
|
35
|
Schmeda-Hirschmann G, Quispe C, Arana GV, Theoduloz C, Urra FA, Cárdenas C. Antiproliferative activity and chemical composition of the venom from the Amazonian toad Rhinella marina (Anura: Bufonidae). Toxicon 2016; 121:119-129. [DOI: 10.1016/j.toxicon.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
|
36
|
Yuan B, He J, Kisoh K, Hayashi H, Tanaka S, Si N, Zhao HY, Hirano T, Bian B, Takagi N. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells. Oncol Rep 2016; 36:1377-84. [PMID: 27431260 DOI: 10.3892/or.2016.4946] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
The growth inhibitory effects of bufadienolide compounds were investigated in two intractable cancer cells, a human glioblastoma cell line U-87 and a pancreatic cancer cell line SW1990. Among four bufadienolide compounds, a dose-dependent cytotoxicity was observed in these cancer cells after treatment with gamabufotalin and arenobufagin. The IC50 values of the two compounds were 3-5 times higher in normal peripheral blood mononuclear cells (PBMCs) than these values for both cancer cell lines. However, similar phenomena were not observed for two other bufadienolide compounds, telocinobufagin and bufalin. These results thus suggest that gamabufotalin and arenobufagin possess selective cytotoxic activity against tumor cells rather than normal cells. Moreover, a clear dose-dependent lactate dehydrogenase (LDH) release, a well-known hallmark of necrosis, was observed in both cancer cells treated with gamabufotalin, suggesting that gamabufotalin-mediated cell death is predominantly associated with a necrosis-like phenotype. Of most importance, treatment with as little as 8 ng/ml of gamabufotalin, even an almost non-toxic concentration to PBMCs, efficiently downregulated the percentages of CD4+CD25+Foxp3+ regulator T (Treg) cells in mitogen-activated PBMCs. Given that Treg cells play a critical role in tumor immunotolerance by suppressing antitumor immunity, these results suggest that gamabufotalin may serve as a promising candidate, as an adjuvant therapeutic agent by manipulating Treg cells to enhance the efficacy of conventional anticancer drugs and lessen their side-effects. These findings provide insights into the clinical application of gamabufotalin for cancer patients with glioblastoma/pancreatic cancer based on its cytocidal effect against tumor cells as well as its depletion of Treg cells.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Jing He
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keishi Kisoh
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
37
|
Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells. PLoS One 2016; 11:e0159034. [PMID: 27428326 PMCID: PMC4948917 DOI: 10.1371/journal.pone.0159034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K-ATPase α1 and α3 subunits and increased the expression of WEE1 in HeLa cells. Antibodies against Na, K-ATPase α1 and α3 subunits alone or combinated with arenobufagin also inhibited the activity of proteasome. Furthermore, the expression of the possible intermediate proteins ataxin-1 and translationally-controlled tumor protein was increased in HeLa cells treated with arenobufagin by flow cytometry analysis, respectively. These results indicated that arenobufagin might directly bind with Na, K-ATPase α1 and α3 subunits and the inhibitive effect of arenobufagin on proteasomal activity of HeLa cells might be related to its binding with Na, K-ATPase.
Collapse
|