1
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
2
|
Rastad H, Mozafary Bazargany MH, Samimisedeh P, Farahani M, Hashemnejad M, Moghadam S, Khodaparast Z, Shams R, Seifi-Alan M. Clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer: a systematic review study and meta-analysis. Pathol Res Pract 2023; 245:154403. [PMID: 37004278 DOI: 10.1016/j.prp.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Aberrant expression of lncRNAs in cancer cells can impact their key phenotypes. We aimed to summarize available evidence on clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer. METHODS A systematic search was performed on Medline and Embase databases using relevant key terms covering lncRNA TPT1-AS1, cancer, and clinical outcomes. The effect size estimates and their 95 % confidence interval (CI) were pooled using random-effects models. Meta- analyses were conducted using STATA 16.0 software. RESULTS Seventeen articles met our eligibility criteria. Tumor tissue compared to normal tissue showed increased level of lncRNA TPT1-AS1 expression (pooled standardized mean difference (95 % CI): 0.65 (0.52-0.79)). Overexpression of this lncRNA was a significant predictor for poor prognosis (Pooled log-rank test P-value < 0.001); in patients with high-level of lncRNA TPT1-AS1, the risk of death at five years was 1.40 times greater than their counterparts. The pooled Odds ratios for association lncRNA TPT1-AS1 with tumor stage, tumor size, and lymph node metastasis were 1.94 (95 % CI: 0.90-4.19, 8 studies, I2 = 79.6 %), 2.33 (95 % CI: 1.31-4.14, 5 studies, I2 = 40.0 %), and 1.89 (95 % CI: 1.08-3.36, 5 studies, I2 = 61.7 %), respectively. Regarding the identified potential mechanisms, lncRNA TPT1-AS1 plays a role in cancer growth mainly by sponging miRNAs and regulating their downstream targets or controlling the expression of key cell cycle regulators. CONCLUSION In cancer patients, elevated expression of lncRNA TPT1-AS1 might be associated with a shorter Overall Survival, advanced stages, larger tumor size, and lymph node metastasis.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Farahani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somaye Moghadam
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Khodaparast
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Habieb MSE, Goher SF, El-Torgman AEAE, El Sayed IET, Abd-Elfattah NZA. Biomedical impact of the expression of HOX locus-associated LncRNAs HOTAIR and HOTTIP in diffuse large B cell lymphoma. HUMAN GENE 2022; 34:201112. [DOI: 10.1016/j.humgen.2022.201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
A Computationally Constructed lncRNA-Associated Competing Triplet Network in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:8928282. [DOI: 10.1155/2022/8928282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed “RNA language.” However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found between normal renal tissues and ccRCC (fold
and false discovery
). A ceRNA network that comprised of 46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients’ clinical characteristics and overall survival (log-rank
), indicating their potential important roles in ccRCC. HOTTIP may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and prognosis biomarkers for ccRCC.
Collapse
|
5
|
Sharma U, Barwal TS, Murmu M, Acharya V, Pant N, Dey D, Vivek, Gautam A, Bazala S, Singh I, Azzouz F, Bishayee A, Jain A. Clinical potential of long non-coding RNA LINC01133 as a promising biomarker and therapeutic target in cancers. Biomark Med 2022; 16:349-369. [PMID: 35195032 DOI: 10.2217/bmm-2021-0682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, long intergenic non-protein coding RNA 01133 (LINC01133) was identified as a novel transcript in cancers. It modulates various hallmarks of cancers and acts as oncogenic in some cancers while tumor-suppressive in others. Furthermore, the expression of LINC01133 correlates with tumor size, advanced tumor node metastasis stage and lymphatic node metastasis, Ki-67 levels and overall survival of patients. Herein, the authors provide an in-depth analysis describing how LINC01133 modulates the multiple cancer-associated signaling pathways and the pathogenesis of various malignancies and treatment regimens. Based on the role played by LINC01133, the authors propose LINC01133 as both a potential biomarker and a therapeutic target in cancer.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Masang Murmu
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Varnali Acharya
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Neha Pant
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Damayanti Dey
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Vivek
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Ashima Gautam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Sonali Bazala
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Ipsa Singh
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Farah Azzouz
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| |
Collapse
|
6
|
Tang Q, Li X, Chen Y, Long S, Yu Y, Sheng H, Wang S, Han L, Wu W. Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP-TUG1/miR-4726-5p/MUC1 pathway. Mol Carcinog 2022; 61:417-432. [PMID: 35040191 PMCID: PMC9302658 DOI: 10.1002/mc.23389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary malignancies. Drug resistance has significantly prevented the clinical application of sorafenib (SF), a first‐line targeted medicine for the treatment of HCC. Solamargine (SM), a natural alkaloid, has shown potential antitumor activity, but studies about antitumor effect of SM are obviously insufficient in HCC. In the present study, we found that SM significantly inhibited the growth of HCC and enhanced the anticancer effect of SF. In brief, SM significantly inhibited the growth of HepG2 and Huh‐7 cells. The combination of SM and SF showed a synergistic antitumor effect. Mechanistically, SM downregulated the expression of long noncoding RNA HOTTIP and TUG1, followed by increasing the expression of miR‐4726‐5p. Moreover, miR‐4726‐5p directly bound to the 3′‐UTR region of MUC1 and decreased the expression of MUC1 protein. Overexpression of MUC1 partially reversed the inhibitory effect of SM on HepG2 and Huh‐7 cells viability, which suggested that MUC1 may be the key target in SM‐induced growth inhibition of HCC. More importantly, the combination of SM and SF synergistically restrained the expression of MUC1 protein. Taken together, our study revealed that SM inhibited the growth of HCC and enhanced the anticancer effect of SF through HOTTIP‐TUG1/miR‐4726‐5p/MUC1 signaling pathway. These findings will provide potential therapeutic targets and strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaojuan Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Ling Han
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, P.R. China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
7
|
Shao W, Ding Q, Guo Y, Xing J, Huo Z, Wang Z, Xu Q, Guo Y. A Pan-Cancer Landscape of HOX-Related lncRNAs and Their Association With Prognosis and Tumor Microenvironment. Front Mol Biosci 2021; 8:767856. [PMID: 34805277 PMCID: PMC8602076 DOI: 10.3389/fmolb.2021.767856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
The highly conserved homology cassette family (HOX) as well as 18 referenced long non-coding antisense transcripts (HOXATs) play vital roles in the development of some cancers. Nevertheless, their expression patterns as well as their association with cancer prognosis and the tumor microenvironment (TME) in pan-cancers are still unclear. Here, based on public databases, the expression levels of HOXATs, their prognostic potentials, and correlation with tumor mutation burden (TMB), immune cell infiltration, immune subtype, immune response-related genes, and stemness scores corresponding to 33 tumor types were analyzed systematically using R language. The results of the analysis indicated that different cancer tissues show different HOXAT expression profiles. Further, HOXAT expression showed association with cancer prognosis and immune and stemness regulation. Gene set enrichment analysis also demonstrated that HOXATs participate in cancer- and immune-related pathways, and based on their expression levels, HOTAIRM1 and HOXB-AS1 showed potential involvement in oncogenesis as well as possible involvement in immune regulation across a variety of cancer types. Further investigation also confirmed a significantly higher expression of HOXB-AS1 in GBM than in lower grade glioma tissues. Importantly, in vitro cell function experiments indicated that HOXB-AS1 supports cancer stem cell and plays a fundamental role in glioma metastasis. In conclusion, our results provide valuable resources that can guide the investigation of the mechanisms related to the role of HOXATs in cancers as well as therapeutic analysis in this regard.
Collapse
Affiliation(s)
- Wei Shao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Juan Xing
- Henan Provincial Nanyang Central Hospital, Nanyang, China
| | - Zheng Huo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Zhan Wang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Yue Guo
- Henan Provincial Nanyang Central Hospital, Nanyang, China
| |
Collapse
|
8
|
Abstract
Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2021;10(2):122-133.
Collapse
Affiliation(s)
- Chao Peng He
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Xin Chen Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Cheng Chen
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Hai Bin Zhang
- Department of Orthopedics, The Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Wen Dong Cao
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Qi Wu
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Chi Ma
- Department of Orthopedics, The First Affiliated Hospital (People’s Hospital of Xiangxi Autonomous Prefecture), Jishou University, Jishou, China
| |
Collapse
|
9
|
Soliman SE, ElTorgoman AMA, Assar MF, El Abd NS, Gohar SF, Girgis RE. Biochemical and molecular study of long non-coding RNAs (HOTTIP, ZEB-AS1 and MEG-3) in hepatocellular carcinoma. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Zhang C, Cao W, Wang J, Liu J, Liu J, Wu H, Li S, Zhang C. A prognostic long non-coding RNA-associated competing endogenous RNA network in head and neck squamous cell carcinoma. PeerJ 2020; 8:e9701. [PMID: 32983633 PMCID: PMC7500352 DOI: 10.7717/peerj.9701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to develop multi-RNA-based models using a competing endogenous RNA (ceRNA) regulatory network to provide survival risk prediction in head and neck squamous cell carcinoma (HNSCC). METHODS All long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA expression data and clinicopathological features related to HNSCC were derived from The Cancer Genome Atlas. Differentially expressed RNAs were calculated using R. Prognostic factors were identified using univariate Cox regression analysis. Functional analysis was performed using GO, KEGG pathways, and PPI network. Based on the results, we derived a risk signature and compared high- and low-risk subgroups using LASSO regression analysis. Survival analysis and the relationship between risk signature and clinicopathological features were performed using log-rank tests and Cox regression analysis. A ceRNA regulatory network was constructed, and prognostic lncRNAs and miRNA expression levels were validated in vitro and in vivo. RESULTS A list of 207 lncRNAs, 18 miRNAs and 362 mRNAs related to overall survival was established. Five lncRNAs (HOTTIP, LINC00460, RMST, SFTA1P, and TM4SF19-AS1), one miRNA (hsa-miR-206), and one mRNA (STC2) were used to construct the ceRNA network. Three prognostic models contained 13 lncRNAs, eight miRNAs, and 17 mRNAs, which correlated with the patient status, disease-free survival (DFS), stage, grade, T stage, N stage, TP53 mutation status, angiolymphatic invasion, HPV status, and extracapsular spread. KEGG pathway analysis revealed significant enrichment of "Transcriptional misregulation in cancer" and "Neuroactive ligand-receptor interaction." In addition, HOTTIP, LINC00460, miR-206 and STC2 were validated in GTEx data, GEO microarrays and six HNSCC cell lines. CONCLUSIONS Our findings clarify the interaction of ceRNA regulatory networks and crucial clinicopathological features. These results show that prognostic biomarkers can be identified by constructing multi-RNA-based prognostic models, which can be used for survival risk prediction in patients with HNSCC.
Collapse
Affiliation(s)
- Chengyao Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, Chongqing, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Jiawu Wang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jiannan Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Jialiang Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Hao Wu
- College of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Siyi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital & Shanghai Ninth People’s Hospital (Fengcheng Branch Hospital), College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| |
Collapse
|
11
|
Jiang S, Liu Y, Xu B, Zhang Y, Yang M. Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1584. [PMID: 31925936 DOI: 10.1002/wrna.1584] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a bone and joint disease characterized by progressive cartilage degradation. In the face of global trends of population aging, OA is expected to become the fourth most common disabling disease by 2020. Nevertheless, the detailed pathogenesis of OA has not yet been elucidated. Noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs, and circular RNAs, do not encode proteins but have recently emerged as important regulators of apoptosis and autophagy of chondrocytes, thereby highlighting a potential role in chondrocyte injury leading to OA onset and progression. We here review recent findings on these regulatory roles of ncRNAs to provide new directions for research on the pathogenesis of OA and offer new therapeutic targets for prevention and treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yan Zhang
- Operating Room, Tianjin Binhai New Area Tanggu Obstetrics and Gynecology Hospital, Tianjin, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, China
| |
Collapse
|
12
|
Cao MX, Tang YL, Zhang WL, Tang YJ, Liang XH. Non-coding RNAs as Regulators of Lymphangiogenesis in Lymphatic Development, Inflammation, and Cancer Metastasis. Front Oncol 2019; 9:916. [PMID: 31616631 PMCID: PMC6763613 DOI: 10.3389/fonc.2019.00916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs (ncRNAs), which do not encode proteins, have pivotal roles in manipulating gene expression in development, physiology, and pathology. Emerging data have shown that ncRNAs can regulate lymphangiogenesis, which refers to lymphatics deriving from preexisting vessels, becomes established during embryogenesis, and has a close relationship with pathological conditions such as lymphatic developmental diseases, inflammation, and cancer. This review summarizes the molecular mechanisms of lymphangiogenesis in lymphatic development, inflammation and cancer metastasis, and discusses ncRNAs' regulatory effects on them. Therapeutic targets with regard to lymphangiogenesis are also discussed.
Collapse
Affiliation(s)
- Ming-Xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Gharib E, Anaraki F, Baghdar K, Ghavidel P, Sadeghi H, Nasrabadi PN, Peyravian N, Aghdaei HA, Zali MR, Mojarad EN. Investigating the diagnostic performance of HOTTIP, PVT1, and UCA1 long noncoding RNAs as a predictive panel for the screening of colorectal cancer patients with lymph node metastasis. J Cell Biochem 2019; 120:14780-14790. [PMID: 30993787 DOI: 10.1002/jcb.28739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
Like other noncoding RNAs (ncRNAs), dysregulation of long ncRNAs (lncRNAs) has been associated with various clinicopathological features of colorectal cancer (CRC) patients such as lymph node metastasis (LNM). Recently, three aberrant expressed oncogenic lncRNA (onco-lncRNAs), including HOXA transcript at the distal tip (HOTTIP), plasmacytoma variant translocation 1 (PVT1), and urothelial carcinoma associated 1 (UCA1) have been reported in LNM. Herein, we compared the diagnostic performance of these lncRNAs as individual biomarkers and as a discriminating panel between LNM CRC patients, nonmetastatic lymph nodes (NLN) and normal healthy subjects. The lncRNAs expression level was measured by quantitative real-time PCR and analyzed by the Mann-Whitney U test. The receiver operating characteristic (ROC) curve analysis was applied to evaluate the diagnostic power. The Kaplan-Meier survival analysis was performed to outline the overall survival (OS) of CRC patients with an abnormal level of lncRNAs. The area under the ROC curve (AUC) of the overexpressed HOTTIP (0.7817; 95% CI, 0.6809-0.8824), PVT1 (0.8559; 95% CI, 0.7737-0.9382), and UCA1 (0.8135; 95% CI, 0.722-0.9051) introduced them as individual CRC biomarkers. As a predictive panel, the AUC values of the HOTTIP, PVT1, and UCA1 for training set were 0.9256 (95% CI, 0.8634-0.9879; all CRCs), 0.8708 (95% CI, 0.7709-0.9378; NLN) and 0.9804 (95% CI, 0.9585-0.9998; LNM), and for validation set were 0.9286 (95% CI, 0.8752-0.9820; all CRCs), 0.8911 (95% CI, 0.8238-0.9585; NLN), and 0.9833 (95% CI, 0.9642-1.002; LNM), respectively. Also, HOTTIP/PVT1/UCA1 panel dysregulation had a marked correlation with patient's OS in training set (logrank test P = 0.0121; hazard ratio [HR], 0.1225; 95% confidence interval [CI], 0.02376-0.6312), and in validation set (logrank test P < 0.0001, HR, 0.2003; 95% CI, 0.08942-0.4486). These data showed that the combination of HOTTIP, PVT1, and UCA1 as a predictive panel, has a better diagnostic performance than each of these lncRNAs individually, and could be used for the screening of patients with advanced CRC.
Collapse
Affiliation(s)
- Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhrosadat Anaraki
- Colorectal Division of Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghdar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Ghavidel
- Department of Biology, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Sadeghi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parinaz Nasri Nasrabadi
- Department of Biology, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, hahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhang ZL, Zhao LJ, Xu L, Chai L, Wang F, Xu YP, Zhou SH, Fu Y. Transcriptomic model-based lncRNAs and mRNAs serve as independent prognostic indicators in head and neck squamous cell carcinoma. Oncol Lett 2019; 17:5536-5544. [PMID: 31186775 PMCID: PMC6507369 DOI: 10.3892/ol.2019.10213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is one of most common types of cancer worldwide, and mRNAs and long non-coding RNAs (lncRNAs) have been identified as prognostic biomarkers in HNSC. In the present study, using gene expression datasets from multiple platforms, survival-associated genes in HNSC were identified. Subsequently, a combination of 17 genes (14 mRNAs and 3 lncRNA) was optimized using random forest variable hunting and a risk score model for HNSC prognosis was developed using a cohort from The Cancer Genome Atlas. Patients with high-risk scores tend to have earlier disease recurrence and lower survival rates, compared with those with low-risk scores. This observation was further validated in three independent datasets (GSE41613, GSE10300 and E-MTAB-302). Association analysis revealed that the risk score is independent of other clinicopathological observations. On the basis of the results depicted in the nomogram, the risk score performs better in 3-year survival rate prediction than other clinical observations. In summary, the lncRNA-mRNA signature-based risk score successfully predicts the survival of HNSC and serves as an indicator of prognosis.
Collapse
Affiliation(s)
- Zhi-Li Zhang
- Ear, Nose and Throat Department, The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Li-Jing Zhao
- Ear, Nose and Throat Department, The Second Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Lin Xu
- Ear, Nose and Throat Department, The Second Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Liang Chai
- Ear, Nose and Throat Department, The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Wang
- Ear, Nose and Throat Department, The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ya-Ping Xu
- Ear, Nose and Throat Department, The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shui-Hong Zhou
- Ear, Nose and Throat Department, The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Fu
- Ear, Nose and Throat Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| |
Collapse
|
15
|
HOTTIP Functions as a Key Candidate Biomarker in Head and Neck Squamous Cell Carcinoma by Integrated Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5450617. [PMID: 31032351 PMCID: PMC6457310 DOI: 10.1155/2019/5450617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/10/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Background Accumulating evidence has demonstrated the pivotal role of long noncoding RNAs (lncRNAs) in competing endogenous RNA (ceRNA) networks for predicting survival and evaluating prognosis in cancer patients. However, the pathogenesis of head and neck squamous cell carcinoma (HNSCC) remains unclear, and prognostic biomarkers for HNSCC are still lacking. Methods A total of 546 RNA sequencing profiles of HNSCC patients with clinical outcome data were obtained from the Cancer Genome Atlas (TCGA) database, providing a large sample of RNA sequencing data. From these, 71 Long noncoding RNAs lncRNAs, 8 microRNAs (miRNAs), and 16 messenger RNAs (mRNAs) were identified to construct a HNSCC-specific ceRNA network (fold change >2, P < 0.05). Univariate and multivariate Cox proportional regression models were used to assess independent indicators of prognosis. Then the expression of lncRNAs harboring prognostic value was validated in human HNSCC cell lines and tumor samples from our cohort and another two datasets from GEO (Gene Expression Omnibus) databases. Results As a result, a 3-mRNA signature and 6-lncRNA signature were identified. The six-lncRNA signature exhibited the highest prognostic value. Notably, in the six lncRNAs, HOTTIP showed the greatest prognostic value and was significantly correlated with clinical stage and histological grade of HNSCC patients. Furthermore, it was proved that HOTTIP was upregulated in HNSCC cell lines and cancerous tissues compared with corresponding normal cell lines and normal tissues. Functional assessment analysis revealed that HOTTIP might play a key role in the oncogenesis and progression of HNSCC. Conclusion The present study deepened our understanding of the ceRNA-related regulatory mechanism in the pathogenesis of HNSCC and identified candidate prognostic biomarkers for clinical outcome prediction in HNSCC. HOTTIP may function as a key candidate biomarker in HNSCC and serve as a prognostic marker for HNSCC patients.
Collapse
|
16
|
Han S, Jin X, Liu Z, Xing F, Han Y, Yu X, He G, Qiu F. The long noncoding RNA HOTTIP promotes breast cancer cell migration, invasiveness, and epithelial-mesenchymal transition via the Wnt-β-catenin signaling pathway. Biochem Cell Biol 2019; 97:655-664. [PMID: 30676763 DOI: 10.1139/bcb-2018-0313] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNA HOTTIP (HOXA transcript at the distal tip) has recently been reported to have a role in the proliferation of various cancer cells, yet its role in cell migration, invasiveness, and the EMT (epithelial-mesenchymal transition) in breast cancer and the potential mechanisms remain unknown. Breast cancer cell lines MDA-MB-231 and MDA-MB-468 were transfected with shRNA (short hairpin RNA) that specifically targeting HOTTIP. We observed a remarkable decrease in migration and invasiveness in these two breast cancer cell lines after knock-down of HOTTIP by shHOTTIP. We also demonstrated that the EMT of these two breast cell lines was suppressed after HOTTIP knock-down, as evidenced by increased E-cadherin levels, and decreased levels of N-cadherin, Snail, and Twist. Moreover, HOTTIP silencing also suppressed tumor metastasis in nude mice in vivo. In addition, we found that the expression of β-catenin was significantly decreased in breast cancer cells after knock-down of HOTTIP. In a further rescue experiment using overexpression of β-catenin, the rates of cell migration, invasiveness, and EMT of HOTTIP-silenced breast cancer cells were promoted, disclosing a potential role of the Wnt-β-catenin signaling pathway in this process. Overall, we discovered the positive regulatory function of HOTTIP in the migration, invasiveness, and EMT of breast cancer cells, via regulating the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Sijia Han
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaoming Jin
- Department of Endocrinology, Northern Theater Command Airforce Hospital of Chinese PLA, Shenyang 110042, People's Republic of China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fei Xing
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ye Han
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaopeng Yu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Guijin He
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fang Qiu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
17
|
He W, Zhong G, Wang P, Jiang C, Jiang N, Huang J. Downregulation of long noncoding RNA FENDRR predicts poor prognosis in renal cell carcinoma. Oncol Lett 2018; 17:103-112. [PMID: 30655744 PMCID: PMC6313193 DOI: 10.3892/ol.2018.9624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2018] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNA FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) dysregulation associates with multiple types of human cancer. However, the biological functions of FENDRR in renal cell carcinoma are unresolved. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the expression level of FENDRR in renal cell carcinoma tissues. An RNA interference assay and ectopic expression experiments were conducted to evaluate the effects of FENDRR on cell proliferation, migration, invasion and colony formation in vitro. RNA immunoprecipitation was conducted to identify proteins associated with FENDRR. It was observed that FENDRR is frequently downregulated in renal cell carcinoma and overexpression of FENDRR attenuated proliferation, migration, invasion and colony growth of renal carcinoma cells. Conversely, knockdown of FENDRR promotes proliferation and invasiveness of renal carcinoma cells. Downregulation of FENDRR associates with poor prognosis of renal cell carcinoma. Mechanistically, it was identified that FENDRR may bind to Polycomb Repressive Complex 2 and lysin methyltransferase 2A histone modifying complexes. In summary, FENDRR acts as an tumor suppressor in renal cell carcinoma and may serve as a candidate target for gene therapy.
Collapse
Affiliation(s)
- Wang He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Pei Wang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chun Jiang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ning Jiang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
18
|
Shi G, Li H, Gao F, Tan Q. lncRNA H19 predicts poor prognosis in patients with melanoma and regulates cell growth, invasion, migration and epithelial-mesenchymal transition in melanoma cells. Onco Targets Ther 2018; 11:3583-3595. [PMID: 29950863 PMCID: PMC6016262 DOI: 10.2147/ott.s160143] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Melanoma is a deadly malignancy and the poor prognosis of patients with advanced disease is relatively poor. Recent studies indicate that long non-coding RNAs are involved in the pathogenesis of malignant melanoma. This study aims to investigate the role of the long non-coding RNA H19 in melanoma and to explore the underlying molecular mechanisms. Materials and methods The expression levels of H19 in clinical samples and melanoma cells were determined by quantitative real-time PCR. The cell growth and cell metastasis were assessed by Cell Counting Kit 8, cell invasion and wound healing assays. Cell apoptosis and cell cycle were determined by flow cytometry. Protein levels were determined by Western blotting assay. Results H19 was highly expressed in melanoma tissues compared to normal adjacent skin tissues, and the tissue expression level of H19 from melanoma patients with metastasis was significantly higher than that from patients without distant metastasis. In addition, the high expression of H19 in melanoma tissues was associated with advanced tumor invasion and TNM stage, distal metastasis, lymph node metastasis and shorter overall survival in patients with melanoma. The in vitro functional assays showed that knockdown of H19 inhibited cell growth, invasion and migration and also induced cell apoptosis as well as G0/G1 arrest in melanoma cells. Further quantitative real-time PCR and Western blot experiments showed that knockdown of H19 differentially regulated the epithelial–mesenchymal transition (EMT)-related gene expressions and reversed EMT in melanoma cell lines. Knockdown of H19 suppressed in vivo tumor growth and modulated the expressions of EMT-related genes in nude mice. Conclusion The results from this study suggest that upregulation of H19 contributes to melanoma development and progression.
Collapse
Affiliation(s)
- Gaofeng Shi
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Plastic Surgery, the Affiliated Wuxi No 4 People's Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Hu Li
- Department of Plastic Surgery, the Affiliated Wuxi No 4 People's Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Fengshan Gao
- Department of Plastic Surgery, the Affiliated Wuxi No 4 People's Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Qian Tan
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Ye Y, Li Y, Wei Y, Xu Y, Wang R, Fu Z, Zheng S, Zhou Q, Zhou Y, Chen R, Chen T. Anticancer effect of HOTTIP regulates human pancreatic cancer via the metabotropic glutamate receptor 1 pathway. Oncol Lett 2018; 16:1937-1942. [PMID: 30008887 DOI: 10.3892/ol.2018.8870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 10/20/2017] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to determine how the expression and function of HOTTIP modifies, and regulates the metabotropic glutamate receptor 1 (mGluR1) to affect human pancreatic cancer cell viability. HOTTIP expression was higher in human pancreatic cancer tissue compared with in para-carcinoma tissue. However, downregulation of HOTTIP expression was revealed to significantly reduce cell viability, induce apoptosis, promote caspase-3 and caspase-8 activities and increase Bax expression in pancreatic cancer cells. Additionally, downregulation of HOTTIP expression significantly suppressed mGluR1 and mitigated activation of the phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway in pancreatic cancer cells. To the best of our knowledge, the present study is the first to identify that the anticancer effect of HOTTIP against human pancreatic cancer functions the mGluR1 pathway.
Collapse
Affiliation(s)
- Yibiao Ye
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Yanshan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yunping Wei
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Yunxiuxiu Xu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Ruomei Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Zhiqiang Fu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shangyou Zheng
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Quanbo Zhou
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yu Zhou
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Rufu Chen
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
20
|
Liu G, Dong C, Wang X, Hou G, Zheng Y, Xu H, Zhan X, Liu L. Regulatory activity based risk model identifies survival of stage II and III colorectal carcinoma. Oncotarget 2017; 8:98360-98370. [PMID: 29228695 PMCID: PMC5716735 DOI: 10.18632/oncotarget.21312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/26/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical and pathological indicators are inadequate for prognosis of stage II and III colorectal carcinoma (CRC). In this study, we utilized the activity of regulatory factors, univariate Cox regression and random forest for variable selection and developed a multivariate Cox model to predict the overall survival of Stage II/III colorectal carcinoma in GSE39582 datasets (469 samples). Patients in low-risk group showed a significant longer overall survival and recurrence-free survival time than those in high-risk group. This finding was further validated in five other independent datasets (GSE14333, GSE17536, GSE17537, GSE33113, and GSE37892). Besides, associations between clinicopathological information and risk score were analyzed. A nomogram including risk score was plotted to facilitate the utilization of risk score. The risk score model is also demonstrated to be effective on predicting both overall and recurrence-free survival of chemotherapy received patients. After performing Gene Set Enrichment Analysis (GSEA) between high and low risk groups, we found that several cell-cell interaction KEGG pathways were identified. Funnel plot results showed that there was no publication bias in these datasets. In summary, by utilizing the regulatory activity in stage II and III colorectal carcinoma, the risk score successfully predicts the survival of 1021 stage II/III CRC patients in six independent datasets.
Collapse
Affiliation(s)
- Gang Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chuanpeng Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu Zheng
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilin Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaohui Zhan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhang Y, Huang JC, Cai KT, Yu XB, Chen YR, Pan WY, He ZL, Lv J, Feng ZB, Chen G. Long non‑coding RNA HOTTIP promotes hepatocellular carcinoma tumorigenesis and development: A comprehensive investigation based on bioinformatics, qRT‑PCR and meta‑analysis of 393 cases. Int J Oncol 2017; 51:1705-1721. [PMID: 29039502 PMCID: PMC5673011 DOI: 10.3892/ijo.2017.4164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
HOTTIP functions as an independent biomarker in multiple cancers. However, the role of HOTTIP in hepatocellular carcinoma (HCC) remains unclear. In this study, we sought to investigate the HOTTIP expression in HCC and normal liver. We combined quantitative reverse transcription-polymerase chain reactions (qRT-PCR), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), Multi Experiment Matrix (MEM) and Oncomine database to assess the clinical role and the potential molecular mechanism of HOTTIP in HCC. Furthermore, a meta-analysis was performed to evaluate the relationship between HOTTIP and HCC tumorigenesis and development. Additionally, bioinformatics analysis, which contained Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and network analysis, were applied to investigate the underlying functions, pathways and networks of the potential genes. HOTTIP was obviously upregulated in HCC. A statistically significant higher expression of HOTTIP was found in TNM (III +IV), age (≥60), sex (male), race (white) and cirrhosis (no) compared to the control groups (P<0.05). Furthermore, the meta-analysis of 393 cases from multiple centers indicated that HOTTIP had high diagnostic value in HCC. Additionally, according to GO and KEGG analyses, we found that the most strongly enriched functional terms were gland development, transcription factor activity and extrinsic to membrane. Also, the HOTTIP co-expressed genes were significantly related to PPAR signaling pathway. We speculate that HOTTIP might play a vital part in HCC via regulating various pathways, especially PPAR signaling pathway. However, the detailed mechanism should be confirmed by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kai-Teng Cai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xi-Bing Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - You-Rong Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Ya Pan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ze-Liang He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Luo J, Qu J, Wu DK, Lu ZL, Sun YS, Qu Q. Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget 2017; 8:22187-22202. [PMID: 28108736 PMCID: PMC5400657 DOI: 10.18632/oncotarget.14728] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer, with a high incidence and high mortality. Long non-coding RNAs (lncRNAs) are involved in the development, invasion and metastasis, early diagnosis, prognosis, the chemoresistance and radioresistance of CRC through interference with mRNA activity, directly combining with proteins to regulate their activity or alter their localization, influencing downstream gene expression by inhibiting RNA polymerase and regulating gene expression as competing endogenous RNAs. Recent progress in next generation sequencing and transcriptome analysis has revealed that tissue and cancer-type specific lncRNAs could be useful prognostic markers. Here, the CRC-associated lncRNAs from recent studies until October 2016 are reviewed and multiple studies that have confirmed CRC-associated lncRNAs are summarized. This review may be helpful in understanding the overall relationships between the lncRNAs involved in CRC.
Collapse
Affiliation(s)
- Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, P. R. China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhi-Li Lu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Yue-Sheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, P. R. China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
23
|
Qiao L, Liu X, Tang Y, Zhao Z, Zhang J, Feng Y. Down regulation of the long non-coding RNA PCAT-1 induced growth arrest and apoptosis of colorectal cancer cells. Life Sci 2017; 188:37-44. [PMID: 28855110 DOI: 10.1016/j.lfs.2017.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/16/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
Abstract
AIMS The long non-coding RNA (lncRNA) was reported to be involved in the progress of various cancers, however, its effect in colorectal cancer (CRC) remains unknown. The goal of the present study is to investigate the function role of lncRNA PCAT-1 in colorectal cancer. MAIN METHODS The expression of lncRNA PCAT-1 in four CRC cell lines was measured by real-time PCR, and two lncRNA PCAT-1 high expression cell lines were selected. LncRNA PCAT-1 in these two CRC cell lines was down-regulated by shRNA, and the stable transfected cells were established. Functional involvement of lncRNA PCAT-1 in proliferation and apoptosis of the two CRC cells were evaluated in vitro. Mover, the effect of lncRNA PCAT-1 in tumor proliferation was also evaluated in CRC cell xenograft. KEY FINDINGS The results showed that down-regulation of lncRNA PCAT-1 in CRC cells inhibited proliferation, blocked cell cycle transition, and suppressed the expression of cyclins and c-myc. The apoptosis cell proportion was elevated with increased expression of pro-apoptotic proteins and decreased anti-apoptotic proteins in lncRNA PCAT-1 knock down cells. Forced over-expression of c-myc in PCAT-1 down-regulated CRC cells increased the level of cyclins. The xenograft growth in lncRNA PCAT-1 down-regulated cells was significantly inhibited along with the reduced proliferative cells. SIGNIFICANCE Our study revealed a tumorigenic effect of lncRNA PCAT-1 in CRC cells, and this effect is partly dependent on the inhibition of c-myc.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiangyu Liu
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yichao Tang
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zheng Zhao
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Jilong Zhang
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yong Feng
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
24
|
Niu ZS, Niu XJ, Wang WH. Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications. World J Gastroenterol 2017; 23:5860-5874. [PMID: 28932078 PMCID: PMC5583571 DOI: 10.3748/wjg.v23.i32.5860] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/10/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Disease Progression
- Early Detection of Cancer/methods
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Prognosis
- RNA, Long Noncoding/analysis
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Oncology Specialty, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
25
|
Seven LncRNA-mRNA based risk score predicts the survival of head and neck squamous cell carcinoma. Sci Rep 2017; 7:309. [PMID: 28331188 PMCID: PMC5428014 DOI: 10.1038/s41598-017-00252-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of mRNAs and long non-coding RNAs (lncRNAs) is one of the most important features of carcinogenesis and cancer development. However, studies integrating the expression of mRNAs and lncRNAs to predict the survival of head and neck squamous cell carcinoma (HNSC) are still limited, hitherto. In current work, we identified survival related mRNAs and lncRNAs in three datasets (TCGA dataset, E-TABM-302, GSE41613). By random forest, seven gene signatures (six mRNAs and lncRNA) were further selected to develop the risk score model. The risk score was significantly associated with survival in both training and testing datasets (E-TABM-302, GSE41613, and E-MTAB-1324). Furthermore, correlation analyses showed that the risk score is independent from clinicopathological features. According to Cox multivariable hazard model and nomogram, the risk score contributes the most to survival than the other clinical information, including gender, age, histologic grade, and alcohol taking. The Gene Set Enrichment Analysis (GSEA) indicates that the risk score is associated with cancer related pathways. In summary, the lncRNA-mRNA based risk score model we developed successfully predicts the survival of 755 HNSC samples in five datasets and two platforms. It is independent from clinical information and performs better than clinical information for prognosis.
Collapse
|