1
|
Sun C, Gui J, Sheng Y, Huang L, Zhu X, Huang K. Specific signaling pathways mediated programmed cell death in tumor microenvironment and target therapies. Discov Oncol 2025; 16:776. [PMID: 40377777 PMCID: PMC12084487 DOI: 10.1007/s12672-025-02592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Increasing evidence has shown that programmed cell death (PCD) plays a crucial role in tumorigenesis and cancer progression. The components of PCD are complex and include various mechanisms such as apoptosis, necroptosis, alkaliptosis, oxeiptosis, and anoikis, all of which are interrelated in their functions and regulatory pathways. Given the significance of these processes, it is essential to conduct a comprehensive study on PCD to elucidate its multifaceted nature. Key signaling pathways, particularly the caspase signaling pathway, the RIPK1/RIPK3/MLKL pathway, and the mTOR signaling pathway, are pivotal in regulating PCD and influencing tumor progression. In this review, we briefly describe the generation mechanisms of different PCD components and focus on the regulatory mechanisms of these three major signaling pathways within the context of global PCD. Furthermore, we discuss various tumor therapeutic compounds that target different signaling axes of these pathways, which may provide novel strategies for effective tumor therapy and help improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Chengpeng Sun
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Jiawei Gui
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Yilei Sheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Le Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
| | - Xingen Zhu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Kai Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Park MN, Kim M, Lee S, Kang S, Ahn CH, Tallei TE, Kim W, Kim B. Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology. Antioxidants (Basel) 2025; 14:501. [PMID: 40427384 PMCID: PMC12108341 DOI: 10.3390/antiox14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species (ROS) play a dual role in cancer progression, acting as both signaling molecules and drivers of oxidative damage. Emerging evidence highlights the intricate interplay between ROS, microRNAs (miRNAs), and exosomes within the tumor microenvironment (TME), forming a regulatory axis that modulates immune responses, angiogenesis, and therapeutic resistance. In particular, oxidative stress not only stimulates exosome biogenesis but also influences the selective packaging of redox-sensitive miRNAs (miR-21, miR-155, and miR-210) via RNA-binding proteins such as hnRNPA2B1 and SYNCRIP. These miRNAs, delivered through exosomes, alter gene expression in recipient cells and promote tumor-supportive phenotypes such as M2 macrophage polarization, CD8+ T-cell suppression, and endothelial remodeling. This review systematically explores how this ROS-miRNA-exosome axis orchestrates communication across immune and stromal cell populations under hypoxic and inflammatory conditions. Particular emphasis is placed on the role of NADPH oxidases, hypoxia-inducible factors, and autophagy-related mechanisms in regulating exosomal output. In addition, we analyze the therapeutic relevance of natural products and herbal compounds-such as curcumin, resveratrol, and ginsenosides-which have demonstrated promising capabilities to modulate ROS levels, miRNA expression, and exosome dynamics. We further discuss the clinical potential of leveraging this axis for cancer therapy, including strategies involving mesenchymal stem cell-derived exosomes, ferroptosis regulation, and miRNA-based immune modulation. Incorporating insights from spatial transcriptomics and single-cell analysis, this review provides a mechanistic foundation for the development of exosome-centered, redox-modulating therapeutics. Ultimately, this work aims to guide future research and drug discovery efforts toward integrating herbal medicine and redox biology in the fight against cancer.
Collapse
Affiliation(s)
- Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
| | - Myoungchan Kim
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
| | - Soojin Lee
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
| | - Sojin Kang
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia;
- Department of Biology, Faculty of Medicine, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Woojin Kim
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.N.P.); (M.K.); (S.L.); (S.K.); (C.-H.A.); (W.K.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Yen JH, Keak PY, Wu CL, Chen HJ, Gao WY, Liou JW, Chen YR, Lin LI, Chen PY. Shikonin, a natural naphthoquinone phytochemical, exerts anti-leukemia effects in human CBF-AML cell lines and zebrafish xenograft models. Biomed Pharmacother 2024; 179:117395. [PMID: 39241566 DOI: 10.1016/j.biopha.2024.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Core binding factor acute myeloid leukemia (CBF-AML) stands out as the most common type of adult AML, characterized by specific chromosomal rearrangements involving CBF genes, particularly t(8;21). Shikonin (SHK), a naphthoquinone phytochemical widely employed as a food colorant and traditional Chinese herbal medicine, exhibits antioxidant, anti-inflammatory, and anti-cancer activities. In this study, we aim to investigate the antileukemic effects of SHK and its underlying mechanisms in human CBF-AML cells and zebrafish xenograft models. Our study revealed that SHK reduced the viability of CBF-AML cells. SHK induced cell cycle arrest, promoted cell apoptosis, and induced differentiation in Kasumi-1 cells. Additionally, SHK downregulated the gene expression of AML1-ETO and c-KIT in Kasumi-1 cells. In animal studies, SHK showed no toxic effects in zebrafish and markedly inhibited the growth of leukemia cells in zebrafish xenografts. Transcriptomic analysis showed that differentially expressed genes (DEGs) altered by SHK are linked to key biological processes like DNA repair, replication, cell cycle regulation, apoptosis, and division. Furthermore, KEGG pathways associated with cell growth, such as the cell cycle and p53 signaling pathway, were significantly enriched by DEGs. Analysis of AML-associated genes in response to SHK treatment using DisGeNET and the STRING database indicated that SHK downregulates the expression of cell division regulators regarding AML progression. Finally, we found that SHK combined with cytarabine synergistically reduced the viability of Kasumi-1 cells. In conclusion, our findings provide novel insights into the mechanisms of SHK in suppressing leukemia cell growth, suggesting its potential as a chemotherapeutic agent for human CBF-AML.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei Ying Keak
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Hsuan-Jan Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Ruei Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City 10048, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan.
| |
Collapse
|
5
|
Zhao MN, Su L, Song F, Wei ZF, Qin TX, Zhang YW, Li W, Gao SJ. Shikonin Exerts an Antileukemia Effect against FLT3-ITD Mutated Acute Myeloid Leukemia Cells via Targeting FLT3 and Its Downstream Pathways. Acta Haematol 2023; 147:310-324. [PMID: 37926079 PMCID: PMC11251672 DOI: 10.1159/000534101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) with internal tandem duplication (ITD) mutations in Fms-like tyrosine kinase 3 (FLT3) has an unfavorable prognosis. Recently, using newly emerging inhibitors of FLT3 has led to improved outcomes of patients with FLT3-ITD mutations. However, drug resistance and relapse continue to be significant challenges in the treatment of patients with FLT3-ITD mutations. This study aimed to evaluate the antileukemic effects of shikonin (SHK) and its mechanisms of action against AML cells with FLT3-ITD mutations in vitro and in vivo. METHODS The CCK-8 assay was used to analyze cell viability, and flow cytometry was used to detect cell apoptosis and differentiation. Western blotting and real-time polymerase chain reaction were used to examine the expression of certain proteins and genes. Leukemia mouse model was created to evaluate the antileukemia effect of SHK against FLT3-ITD mutated leukemia in vivo. RESULTS After screening a series of leukemia cell lines, those with FLT3-ITD mutations were found to be more sensitive to SHK in terms of proliferation inhibition and apoptosis induction than those without FLT3-ITD mutation. SHK suppresses the expression and phosphorylation of FLT3 receptors and their downstream molecules. Inhibition of the NF-κB/miR-155 pathway is an important mechanism through which SHK kills FLT3-AML cells. Moreover, a low concentration of SHK promotes the differentiation of AML cells with FLT3-ITD mutations. Finally, SHK could significantly inhibit the growth of MV4-11 cells in leukemia bearing mice. CONCLUSION The findings of this study indicate that SHK may be a promising drug for the treatment of FLT3-ITD mutated AML.
Collapse
Affiliation(s)
- Mu-Nan Zhao
- Department of Cancer, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Fei Song
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Zhi-Feng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Tian-Xue Qin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun-Wei Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Cancer, The First Hospital of Jilin University, Changchun, China
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Su-Jun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Dong H, Chang CD, Gao F, Zhang N, Yan XJ, Wu X, Wang YH. The anti-leukemia activity and mechanisms of shikonin: a mini review. Front Pharmacol 2023; 14:1271252. [PMID: 38026987 PMCID: PMC10651754 DOI: 10.3389/fphar.2023.1271252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Leukemia encompasses a group of highly heterogeneous diseases that pose a serious threat to human health. The long-term outcome of patients with leukemia still needs to be improved and new effective therapeutic strategies continue to be an unmet clinical need. Shikonin (SHK) is a naphthoquinone derivative that shows multiple biological function includes anti-tumor, anti-inflammatory, and anti-allergic effects. Numerous studies have reported the anti-leukemia activity of SHK during the last 3 decades and there are studies showing that SHK is particularly effective towards various leukemia cells compared to solid tumors. In this review, we will discuss the anti-leukemia effect of SHK and summarize the underlying mechanisms. Therefore, SHK may be a promising agent to be developed as an anti-leukemia drug.
Collapse
Affiliation(s)
- Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Chun-Di Chang
- Department of Neurology, Jilin Province People’s Hospital, Changchun, China
| | - Fei Gao
- Endocrine Department, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Na Zhang
- Electrodiagnosis Department, Jilin Province FAW General Hospital, Changchun, China
| | - Xing-Jian Yan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xue Wu
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yue-Hui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Wu SC, Lai SW, Lu XJ, Lai HF, Chen YG, Chen PH, Ho CL, Wu YY, Chiu YL. Profiling of miRNAs and their interfering targets in peripheral blood mononuclear cells from patients with chronic myeloid leukaemia. Front Oncol 2023; 13:1173970. [PMID: 37476380 PMCID: PMC10356106 DOI: 10.3389/fonc.2023.1173970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction MicroRNAs may be implicated in the acquisition of drug resistance in chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but also genes associated with the activation of drug transfer proteins or essential signaling pathways. Methods To understand the impact of specifically expressed miRNAs in chronic myeloid leukemia and their target genes, we collected peripheral blood mononuclear cells (PBMC) from patients diagnosed with chronic myeloid leukemia (CML) and healthy donors to determine whole miRNA expression by small RNA sequencing and screened out 31 differentially expressed microRNAs (DE-miRNAs) with high expression. With the utilization of miRNA set enrichment analysis tools, we present here a comprehensive analysis of the relevance of DE-miRNAs to disease and biological function. Furthermore, the literature-based miRNA-target gene database was used to analyze the overall target genes of the DE-miRNAs and to define their associated biological responses. We further integrated DE-miRNA target genes to identify CML miRNA targeted gene signature singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical CML patients. Finally, the association of CMTGSS stratification with multiple CML cell lineage gene sets was validated in PBMC samples from CML patients using GSEA. Results Although individual miRNAs have been reported to have varying degrees of impact on CML, overall, our results show that abnormally upregulated miRNAs are associated with apoptosis and aberrantly downregulated miRNAs are associated with cell cycle. The clinical database shows that our defined DE-miRNAs are associated with the prognosis of CML patients. CMTGSS-based stratification analysis presented a tendency for miRNAs to affect cell differentiation in the blood microenvironment. Conclusion Collectively, this study defined differentially expressed miRNAs by miRNA sequencing from clinical samples and comprehensively analyzed the biological functions of the differential miRNAs in association with the target genes. The analysis of the enrichment of specific myeloid differentiated cells and immune cells also suggests the magnitude and potential targets of differentially expressed miRNAs in the clinical setting. It helps us to make links between the different results obtained from the multi-faceted studies to provide more potential research directions.
Collapse
Affiliation(s)
- Sheng-Cheng Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Magong City, Taiwan
| | - Shiue-Wei Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Guang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Ying Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
8
|
Ansaryan S, Liu YC, Li X, Economou AM, Eberhardt CS, Jandus C, Altug H. High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat Biomed Eng 2023:10.1038/s41551-023-01017-1. [PMID: 37012313 PMCID: PMC10365996 DOI: 10.1038/s41551-023-01017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Methods for the analysis of cell secretions at the single-cell level only provide semiquantitative endpoint readouts. Here we describe a microwell array for the real-time spatiotemporal monitoring of extracellular secretions from hundreds of single cells in parallel. The microwell array incorporates a gold substrate with arrays of nanometric holes functionalized with receptors for a specific analyte, and is illuminated with light spectrally overlapping with the device's spectrum of extraordinary optical transmission. Spectral shifts in surface plasmon resonance resulting from analyte-receptor bindings around a secreting cell are recorded by a camera as variations in the intensity of the transmitted light while machine-learning-assisted cell tracking eliminates the influence of cell movements. We used the microwell array to characterize the antibody-secretion profiles of hybridoma cells and of a rare subset of antibody-secreting cells sorted from human donor peripheral blood mononuclear cells. High-throughput measurements of spatiotemporal secretory profiles at the single-cell level will aid the study of the physiological mechanisms governing protein secretion.
Collapse
Affiliation(s)
- Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yen-Cheng Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xiaokang Li
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Agora Center, Lausanne, Switzerland
| | | | - Christiane Sigrid Eberhardt
- Center for Vaccinology, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Camilla Jandus
- Ludwig Institute for Cancer Research, Lausanne Branch, Agora Center, Lausanne, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Boonnate P, Kariya R, Okada S. Shikonin Induces ROS-Dependent Apoptosis Via Mitochondria Depolarization and ER Stress in Adult T Cell Leukemia/Lymphoma. Antioxidants (Basel) 2023; 12:864. [PMID: 37107239 PMCID: PMC10135058 DOI: 10.3390/antiox12040864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Adult T cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy that develops in some elderly human T-cell leukemia virus (HTVL-1) carriers. ATLL has a poor prognosis despite conventional and targeted therapies, and a new safe and efficient therapy is required. Here, we examined the anti-ATLL effect of Shikonin (SHK), a naphthoquinone derivative that has shown several anti-cancer activities. SHK induced apoptosis of ATLL cells accompanied by generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and induction of endoplasmic reticulum (ER) stress. Treatment with a ROS scavenger, N-acetylcysteine (NAC), blocked both loss of mitochondrial membrane potential and ER stress, and prevented apoptosis of ATLL cells, indicating that ROS is an upstream trigger of SHK-induced apoptosis of ATLL cells through disruption of the mitochondrial membrane potential and ER stress. In an ATLL xenografted mouse model, SHK treatment suppressed tumor growth without significant adverse effects. These results suggest that SHK could be a potent anti-reagent against ATLL.
Collapse
Affiliation(s)
| | | | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (P.B.); (R.K.)
| |
Collapse
|
10
|
Liu X, Tu H, Peng J. Progress in study on the final executor of necroptosis MLKL and its inhibitors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:242-251. [PMID: 36999471 PMCID: PMC10930346 DOI: 10.11817/j.issn.1672-7347.2023.220411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 04/01/2023]
Abstract
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| | - Hua Tu
- Department of Pharmacy, Fourth Hospital of Changsha, Changsha 410006, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
11
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
12
|
Xu L, Ma W, Jin Y, Sun X, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. N, N-dimethylformamide exposure induced liver abnormal mitophagy by targeting miR-92a-1-5p-BNIP3L pathway in vivo and vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156218. [PMID: 35623527 DOI: 10.1016/j.scitotenv.2022.156218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear. In the present study, we identified that DMF could induce abnormal autophagy flux in cells. We also showed that DMF-induced mitochondrial dysfunction and lethal mitophagy which further leads to autophagic cell death. Next, miRNA microarray analysis identified miR-92a-1-5p as the most down-regulated miRNA upon DMF exposure. Mechanistically, miR-92a-1-5p regulated mitochondrial function and mitophagy by targeting mitochondrial protein BNIP3L. Exogenous miR-92a-1-5p significantly attenuated DMF-induced mitochondrial dysfunction and mitophagy in vitro and in vivo. Our study highlights the mechanistic link between miRNAs and mitophagy under environmental stress, which provided a new clue for the mitochondrial epigenetics mechanism on environmental toxicant-induced hepatoxicity.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Cui D, Wang S, Guo J, Yang M, Li Y, Zhang Y, Ma W. Shikonin from Chinese herbal medicine induces GSDME-controlled pyroptosis in tumor cells. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Li G, Wang X, Liu Y, Li H, Mu H, Zhang Y, Li Q. Multi-omics analysis reveals the panoramic picture of necroptosis-related regulators in pan-cancer. Aging (Albany NY) 2022; 14:5034-5058. [PMID: 35748782 PMCID: PMC9271292 DOI: 10.18632/aging.204124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
Background: Unlike apoptosis, necroptosis is a tightly regulated form of programmed cell death (PCD) that occurs in a caspase-independent manner and is mainly triggered by receptor-interacting serine/threonine-protein kinases RIPK1 and RIPK3 and the RIPK3 substrate mixed-lineage kinase domain-like protein (MLKL). A growing body of evidence has documented that necroptosis, as a novel therapeutic strategy to overcome apoptosis resistance, has potential pro- or anti-tumoral effects in tumorigenesis, metastasis, and immunosurveillance. However, comprehensive multi-omics studies on regulators of necroptosis from a pan-cancer perspective are lacking. Methods: In the present study, a pan-cancer multi-omics analysis of necroptosis-related regulators was performed by integrating over 10,000 multi-dimensional cancer genomic data across 33 cancer types from TCGA, 481 small-molecule drug response data from CTRP, and normal tissue data from GTEx. Pan-cancer pathway-level analyses of necroptosis were conducted by gene set variation analysis (GSVA), including differential expression, clinical relevance, immune cell infiltration, and regulation of cancer-related pathways. Results: Genomic alterations and abnormal epigenetic modifications were associated with dysregulated gene expression levels of necroptosis-related regulators. Changes in the gene expression levels of necroptosis-related regulators significantly influenced cancer progression, intratumoral heterogeneity, alterations in the immunological condition, and regulation of cancer marker-related pathways. These changes, in turn, caused differences in potential drug sensitivity and the prognosis of patients. Conclusion: Necroptosis-related regulators are expected to become novel biomarkers of prognosis and provide a fresh perspective on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Guanghao Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoxuan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Yongheng Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Huikai Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Han Mu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanting Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
15
|
Markowitsch SD, Vakhrusheva O, Schupp P, Akele Y, Kitanovic J, Slade KS, Efferth T, Thomas A, Tsaur I, Mager R, Haferkamp A, Juengel E. Shikonin Inhibits Cell Growth of Sunitinib-Resistant Renal Cell Carcinoma by Activating the Necrosome Complex and Inhibiting the AKT/mTOR Signaling Pathway. Cancers (Basel) 2022; 14:cancers14051114. [PMID: 35267423 PMCID: PMC8909272 DOI: 10.3390/cancers14051114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Therapy resistance remains a major challenge in treating advanced renal cell carcinoma (RCC), making more effective treatment strategies crucial. Shikonin (SHI) from traditional Chinese medicine has exhibited antitumor properties in several tumor entities. We, therefore, currently investigated SHI's impact on progressive growth and metastatic behavior in therapy-sensitive (parental) and therapy-resistant Caki-1, 786-O, KTCTL-26, and A498 RCC cells. Tumor cell growth, proliferation, clonogenic capacity, cell cycle phase distribution, induction of cell death (apoptosis and necroptosis), and the expression and activity of regulating and signaling proteins were evaluated. Moreover, the adhesion and chemotactic activity of the RCC cells after exposure to SHI were investigated. SHI significantly inhibited the growth, proliferation, and clone formation in parental and sunitinib-resistant RCC cells by G2/M phase arrest through down-regulation of cell cycle activating proteins. Furthermore, SHI induced apoptosis and necroptosis by activating necrosome complex proteins. Concomitantly, SHI impaired the AKT/mTOR pathway. Adhesion and motility were cell line specifically affected by SHI. Thus, SHI may hold promise as an additive option in treating patients with advanced and therapy-resistant RCC.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Yasminn Akele
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Jovana Kitanovic
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Kimberly S. Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - René Mager
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
- Correspondence: ; Tel.: +49-6131-17-5433; Fax: +49-6131-17-4410
| |
Collapse
|
16
|
The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci 2022; 296:120437. [DOI: 10.1016/j.lfs.2022.120437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
|
17
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
18
|
Song H, Chen L, Liu W, Xu X, Zhou Y, Zhu J, Chen X, Li Z, Zhou H. Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTEN gene promoter methylation. Cell Death Dis 2021; 12:440. [PMID: 33941772 PMCID: PMC8093289 DOI: 10.1038/s41419-021-03637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to play a key role in chronic myelocytic leukemia (CML) development, and we aimed to identify the involvement of the lncRNA HOX antisense intergenic RNA (HOTAIR) in CML via binding to DNA methyltransferase 1 (DNMT1) to accelerate methylation of the phosphatase and tensin homolog (PTEN) gene promoter. Bone marrow samples from CML patients and normal bone marrow samples from healthy controls were collected. HOTAIR, DNMT1, DNMT3A, DNMT3B, and PTEN expression was detected. The biological characteristics of CML cells were detected. The relationship among HOTAIR, DNMT1, and PTEN was verified. Tumor volume and weight in mice injected with CML cells were tested. We found that HOTAIR and DNMT1 expression was increased and PTEN expression was decreased in CML. We also investigated whether downregulated HOTAIR or DNMT1 reduced proliferation, colony formation, invasion, and migration and increased the apoptosis rate of CML cells. Moreover, we tested whether low expression of HOTAIR or DNMT1 reduced the volume and weight of tumors in mice with CML. Collectively, the results of this studied showed that depleted HOTAIR demonstrated reduced binding to DNMT1 to suppress CML progression, which may be related to methylation of the PTEN promoter.
Collapse
MESH Headings
- Animals
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- PTEN Phosphohydrolase/genetics
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transfection
Collapse
Affiliation(s)
- Haiping Song
- Breast and Thyroid Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Xu
- Department of Hematology, Foshan No.1 People's Hospital, Fosan, China
| | - Yongming Zhou
- Department of Hematology, The Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Markowitsch SD, Juetter KM, Schupp P, Hauschulte K, Vakhrusheva O, Slade KS, Thomas A, Tsaur I, Cinatl J, Michaelis M, Efferth T, Haferkamp A, Juengel E. Shikonin Reduces Growth of Docetaxel-Resistant Prostate Cancer Cells Mainly through Necroptosis. Cancers (Basel) 2021; 13:882. [PMID: 33672520 PMCID: PMC7923752 DOI: 10.3390/cancers13040882] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce. Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP, and 22Rv1 were exposed to SHI [0.1-1.5 μM], and tumor cell growth, proliferation, cell cycling, cell death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly, the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently inhibited tumor cell growth and proliferation in parental and DX-resistant PCa cells, accompanied by cell cycle arrest in the G2/M or S phase and modulation of cell cycle regulating proteins. SHI induced apoptosis and more dominantly necroptosis in both parental and DX-resistant PCa cells. This was shown by enhanced pRIP1 and pRIP3 expression and returned growth if applying the necroptosis inhibitor necrostatin-1. No SHI-induced alteration in metabolic activity of the PCa cells was detected. The significant antitumor effects induced by SHI to parental and DX-resistant PCa cells make the addition of SHI to standard therapy a promising treatment strategy for patients with advanced PCa.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kira M. Juetter
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kristine Hauschulte
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kimberly Sue Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt, Germany;
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| |
Collapse
|