1
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
2
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Li C, Lee H, Jung JH, Zhang Y, Wang J, Liu C, Sheffmaker RL, Segall AM, Zeng SX, Lu H. Coiled-coil domain containing 3 suppresses breast cancer growth by protecting p53 from proteasome-mediated degradation. Oncogene 2023; 42:154-164. [PMID: 36396725 DOI: 10.1038/s41388-022-02541-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Coiled-coil domain containing 3 (CCDC3) was previously shown to regulate liver lipid metabolism as a secretory protein. Here, we report an unexpected intracellular role of CCDC3 as a tumor suppressor in breast cancer (BrC). Bioinformatics datasets analysis showed that CCDC3 is under-expressed in BrCs, while its higher levels are correlated with higher overall survival and lower relapse of cancer patients, and CCDC3 is positively correlated with p53 and its target genes. Ectopic CCDC3 markedly suppressed proliferation, colony formation, and xenograft tumor growth by augmenting p53 activity in BrC cells. Depletion of endogenous CCDC3 by CRISPR-Cas9 increased proliferation and drug resistance of BrC cells by alleviating 5-Fluorouracil (5-FU)-induced p53 level and activity. Mechanistically, CCDC3 bound to the C-termini of p53 and MDM2, consequently stabilizing p53 in the nucleus and impairing MDM2 recruitment of p53 to the 26S proteosome without inhibiting p53 ubiquitination. p53 induced CCDC3 expression by binding to its promoter in BrC cells. Our results unveil a unique mechanism underlying CCDC3 activation of p53 in a positive feedback fashion to suppress BrC growth.
Collapse
Affiliation(s)
- Caiyue Li
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hyemin Lee
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ji Hoon Jung
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Yiwei Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jieqiong Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chang Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Department of Neuroscience, Tulane University, New Orleans, LA, 70118, USA
| | - Roger L Sheffmaker
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Allyson M Segall
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Hua Lu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Alfhili MA, Alsalmi E, Aljedai A, Alsughayyir J, Abudawood M, Basudan AM. Calcium-oxidative stress signaling axis and casein kinase 1α mediate eryptosis and hemolysis elicited by novel p53 agonist inauhzin. J Chemother 2021; 34:247-257. [PMID: 34410893 DOI: 10.1080/1120009x.2021.1963616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inauhzin (INZ) is a novel p53 agonist with antitumor activity. Anemia is a common side effect of chemotherapy and may arise from red blood cell (RBC) hemolysis or eryptosis. In this study, we investigate the mechanisms of INZ toxicity in human RBCs. RBCs were isolated from healthy donors and treated with antitumor concentrations of INZ (5-500 μM) for 24 h at 37 °C. Hemoglobin was photometrically measured, and cells were stained with Annexin-V-FITC for phosphatidylserine (PS), Fluo4/AM for calcium, and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) for oxidative stress. INZ caused significant dose-responsive, calcium-dependent hemolysis starting at 40 μM. Furthermore, INZ significantly increased Annexin-positive cells and Fluo4 and DCF fluorescence. The cytotoxicity of INZ was also significantly mitigated in presence of D4476. INZ possesses hemolytic and eryptotic potential characterized by cell membrane scrambling, intracellular calcium overload, cell shrinkage, and oxidative stress secondary to calcium influx from the extracellular space.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Essa Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Aljedai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Cheng WL, Chen KY, Lee KY, Feng PH, Wu SM. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer 2020; 11:1125-1140. [PMID: 31956359 PMCID: PMC6959074 DOI: 10.7150/jca.36359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking is the most common risk factor for lung carcinoma; other risks include genetic factors and exposure to radon gas, asbestos, secondhand smoke, and air pollution. Nicotine, the primary addictive constituent of cigarettes, contributes to cancer progression through activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated ion channels. Activation of nicotine/nAChR signaling is associated with lung cancer risk and drug resistance. We focused on nAChR pathways activated by nicotine and its downstream signaling involved in regulating apoptotic factors of mitochondria and drug resistance in lung cancer. Increasing evidence suggests that several sirtuins play a critical role in multiple aspects of cancer drug resistance. Thus, understanding the consequences of crosstalk between nicotine/nAChRs and sirtuin signaling pathways in the regulation of drug resistance could be a critical implication for cancer therapy.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Liu K, Gao W, Lin J. Effect of the p53α gene on the chemosensitivity of the H1299 human lung adenocarcinoma cell line. Oncol Lett 2017; 14:1411-1418. [PMID: 28789357 PMCID: PMC5529931 DOI: 10.3892/ol.2017.6356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/06/2017] [Indexed: 01/14/2023] Open
Abstract
To investigate the effects of tumor protein p53 (p53 or TP53) α gene on the chemosensitivity of the H1299 human lung adenocarcinoma cell line, the recombinant vector pEGFP-p53α was constructed. The vector pEGFP-p53α was transfected into the cultured p53-null H1299 cells using Lipofectamine 2000. The G418-resistant cells were then selected. The expression of the p53α gene in these cells was examined using reverse transcription-polymerase chain reaction, and TP53 protein expression was examined using western blot analysis and immunocytochemistry. An MTT assay and colony formation assay were used to analyze the response of the transfected cells to cisplatin (CDDP). DAPI staining was used to determine the level of apoptosis of the transfected cells. The transfected H1299 human lung adenocarcinoma cells stably expressed TP53 protein. The MTT assay demonstrated that the 50% inhibitory concentrations for the H1299, H1299/pEGFP-N1 and H1299/pEGFP-p53α cells were 28, 24 and 18 µmol/l, respectively. The survival rate of H1299/pEGFP-p53α cells was significantly reduced compared with that of H1299 and H1299/pEGFP-N1 cells (P<0.05). The colony formation assay and DAPI staining identified that the colony formation rate and the number of apoptotic cells of H1299/pEGFP-p53α were significantly reduced, compared with those of the H1299 and H1299/pEGFP-N1 cells (P<0.05). Therefor, the present study demonstrated that the transfection of H1299 cells with the p53α gene resulted in an increase in sensitivity to CDDP chemotherapy. The combination of CDDP and gene therapy for H1299 lung adenocarcinoma cell line provides an experimental basis for clinical research.
Collapse
Affiliation(s)
- Kaishan Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weisong Gao
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jun Lin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
7
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|
8
|
Lee WY, Lee WT, Cheng CH, Chen KC, Chou CM, Chung CH, Sun MS, Cheng HW, Ho MN, Lin CW. Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1. Oncotarget 2016; 6:27580-95. [PMID: 26363315 PMCID: PMC4695010 DOI: 10.18632/oncotarget.4768] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
Investigating existing drugs for repositioning can enable overcoming bottlenecks in the drug development process. Here, we investigated the effect and molecular mechanism of the antipsychotic drug chlorpromazine (CPZ) and identified its potential for treating colorectal cancer (CRC). Human CRC cell lines harboring different p53 statuses were used to investigate the inhibitory mechanism of CPZ. CPZ effectively inhibited tumor growth and induced apoptosis in CRC cells in a p53-dependent manner. Activation of c-jun N-terminal kinase (JNK) was crucial for CPZ-induced p53 expression and the subsequent induction of tumor apoptosis. Induction of p53 acetylation at lysine382 was involved in CPZ-mediated tumor apoptosis, and this induction was attenuated by sirtuin 1 (SIRT1), a class III histone deacetylase. By contrast, knocking down SIRT1 sensitized tumor cells to CPZ treatment. Moreover, CPZ induced the degradation of SIRT1 protein participating downstream of JNK, and JNK suppression abrogated CPZ-mediated SIRT1 downregulation. Clinical analysis revealed a significant association between high SIRT1 expression and poor outcome in CRC patients. These data suggest that SIRT1 is an attractive therapeutic target for CRC and that CPZ is a potential repositioned drug for treating CRC.
Collapse
Affiliation(s)
- Wen-Ying Lee
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wai-Theng Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Hung Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Min-Siou Sun
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Wei Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ni Ho
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Cao B, Wang K, Liao JM, Zhou X, Liao P, Zeng SX, He M, Chen L, He Y, Li W, Lu H. Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation. eLife 2016; 5. [PMID: 27383270 PMCID: PMC4959878 DOI: 10.7554/elife.15978] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence highlights the important roles of microRNAs in mediating p53’s tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p. DOI:http://dx.doi.org/10.7554/eLife.15978.001 The human body is kept mostly free from tumors by the actions of so-called tumor suppressor genes. One such gene encodes a protein called p53, which prevents tumors from growing by regulating the activity of many other genes that either inhibit cell growth or cause cells to die. For example, p53 regulates genes that encode short molecules called microRNAs, which in turn suppress the activity of other target genes. Although a number of microRNAs have been reported as p53-regulated genes, there are still more to find. Discovering these genes would in turn help researchers to better understand exactly how p53 acts to suppress the growth of tumors, and to treat cancers caused by mutations in this tumor suppressor gene. Cao, Wang et al. now discover a new microRNA – called miR-139-5p – as one that is activated by p53 in human cells. Colon tumors produce much lower levels of this microRNA than normal tissues, while the cancer cells with a higher level of miR-139-5p grow slower than do the cancer cells with less miR-139-5p. Further experiments showed that this is because miR-139-5p can suppress the production of a protein called PDE4D, which is often highly expressed in human cancers. The suppression of PDE4D by this microRNA results in an increase in the levels of a protein that can cause cancer cells to die. Cao, Wang et al. suggest that miR-139-5p and PDE4D form part of a signaling pathway that plays an important role in suppressing the growth of colon cancer cells. Since microRNAs often have more than one target, future studies could explore if miR-139-5p regulates the production of other cancer-related proteins as well. DOI:http://dx.doi.org/10.7554/eLife.15978.002
Collapse
Affiliation(s)
- Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Kebing Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ming Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lianzhou Chen
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
10
|
Jung JH, Liao JM, Zhang Q, Zeng S, Nguyen D, Hao Q, Zhou X, Cao B, Kim SH, Lu H. Inauhzin(c) inactivates c-Myc independently of p53. Cancer Biol Ther 2016; 16:412-9. [PMID: 25692307 DOI: 10.1080/15384047.2014.1002698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncogene MYC is deregulated in many human cancers, especially in lymphoma. Previously, we showed that inauhzin (INZ) activates p53 and inhibits tumor growth. However, whether INZ could suppress cancer cell growth independently of p53 activity is still elusive. Here, we report that INZ(c), a second generation of INZ, suppresses c-Myc activity and thus inhibits growth of human lymphoma cells in a p53-independent manner. INZ(c) treatment decreased c-Myc expression at both mRNA and protein level, and suppressed c-Myc transcriptional activity in human Burkitt's lymphoma Raji cells with mutant p53. Also, we showed that overexpressing ectopic c-Myc rescues the inhibition of cell proliferation by INZ(c) in Raji cells, implicating c-Myc activity is targeted by INZ(c). Interestingly, the effect of INZ(c) on c-Myc expression was impaired by disrupting the targeting of c-Myc mRNA by miRNAs via knockdown of ribosomal protein (RP) L5, RPL11, or Ago2, a subunit of RISC complex, indicating that INZ(c) targets c-Myc via miRNA pathways. These results reveal a new mechanism that INZ
Collapse
Key Words
- Dox, doxorubicin
- FACS, Fluorescence-activated cell sorting
- GTP, guanosine triphosphate
- INZ, inauhzin
- Inauhzin
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, Phosphate Buffered Saline
- PI, propidium iodide
- RISC, RNA-induced silencing complex
- RP, ribosomal protein
- RPL11
- RPL5
- UTR, untranslated region
- c-Myc
- lymphoma
- microRNA
- q-RT-PCR, Real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Ji Hoon Jung
- a Department of Biochemistry & Molecular Biology and Cancer Center ; Tulane University School of Medicine ; New Orleans , LA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yildirim M, Kaya V, Demirpence O, Gunduz S, Bozcuk H. Prognostic significance of p53 in gastric cancer: a meta- analysis. Asian Pac J Cancer Prev 2015; 16:327-32. [PMID: 25640374 DOI: 10.7314/apjcp.2015.16.1.327] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is one of the frequently seen cancers in the world and it is the second most common reason for death due to cancer. The prognostic role of expression of p53 detected by immunohistochemistry in gastric cancer remains controversial. This meta-analysis aimed to explore any association between overexpression and survival outcomes. MATERIALS AND METHODS We systematically searched for studies investigating the relationships between expression of p53 detected by immunohistochemistry and prognosis of gastric cancer patients. Study quality was assessed using the Newcastle-Ottawa Scale. After careful review, survival data were extracted from eligible studies. A meta-analysis was performed to generate combined hazard ratios for overall survival and disease-free survival. RESULTS A total of 4.330 patients from 21 studies were included in the analysis. Our results showed tissue p53 overexpression in patients with gastric cancer to be associated with poor prognosis in terms of overall survival (HR, 1.610; 95% CI, 1.394 -5.235; p: <0.001). Pooled hazard ratio for disease free survival showed that p53 positivity or negativity were not statitistically significant (HR, 1.219; 95%CI, 0.782-1.899; p:0.382). CONCLUSIONS The present meta-analysis indicated overexpression of p53 detected by immunohistochemistry to be associated with a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Mustafa Yildirim
- Department of Medical Oncology, Ministry of Health Batman Regional Government Hospital, Batman, Turkey E-mail :
| | | | | | | | | |
Collapse
|
12
|
Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat 2015; 23:69-78. [PMID: 26341193 DOI: 10.1016/j.drup.2015.08.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide substantial new evidence that altering the acidic tumor microenvironment is an effective, well tolerated and low cost strategy for the overcoming of anticancer drug resistance.
Collapse
Affiliation(s)
- Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK
| | | | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
13
|
Li KL, Kang J, Zhang P, Li LI, Wang YB, Chen HY, He Y. Efficacy of recombinant adenoviral human p53 gene in the treatment of lung cancer-mediated pleural effusion. Oncol Lett 2015; 9:2193-2198. [PMID: 26137039 DOI: 10.3892/ol.2015.3054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pleural effusion induced by lung cancer exerts a negative impact on quality of life and prognosis. The aim of the present study was to evaluate the value of the recombinant adenoviral human p53 gene (rAd-p53) in the local treatment of lung cancer and its synergistic effect with chemotherapy. The present study retrospectively recruited 210 patients with lung cancer-mediated pleural effusion who had adopted a treatment strategy of platinum chemotherapy. Pleurodesis was performed via the injection of cisplatin or rAd-p53. Long-term follow-up was conducted to investigate the therapeutic effects of cisplatin and rAd-p53 administration on pleural effusion and other relevant clinical indicators. The short-term effect of pleurodesis was as follows: The efficacy rate of rAd-p53 therapy was significantly higher compared with cisplatin therapy (71.26 vs. 54.47%), and the efficacy of treatment with ≥2×1012 viral particles of rAd-p53 for pleurodesis was significantly greater than treatment with 40 mg cisplatin (P<0.05). Furthermore, efficacy analysis performed 6 and 12 months after pleurodesis indicated that the efficacy rate of rAd-p53 was significantly greater than that of cisplatin (P<0.05). A comparison of median progression-free survival (PFS) time identified a significant difference (P<0.05) between rAd-p53 and cisplatin therapy (3.3 vs. 2.7 months); however, a comparison of median overall survival time identified no significant difference (P>0.05) between rAd-p53 and cisplatin therapy (9.6 vs. 8.7 months). In addition, Cox regression analysis indicated that PFS was not affected by clinical indicators such as age, gender, prognostic staging and smoking status; however, PFS was affected by pathological subtype (adenocarcinoma or squamous carcinoma) in the rAd-p53 group. rAd-p53 administration for pleurodesis exerts long-term therapeutic effects on the local treatment of lung cancer. Thus, a combination of rAd-p53 and chemotherapy may exert a synergistic effect and reverse multidrug resistance.
Collapse
Affiliation(s)
- Kun-Lin Li
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Jun Kang
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Peng Zhang
- College of Interpreting and Translation, Sichuan International Studies University, Shapingba, Chongqing 400031, P.R. China
| | - L I Li
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Yu-Bo Wang
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Heng-Yi Chen
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Yong He
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
14
|
Abstract
Reactivating the tumor suppressor p53 offers an attractive strategy for developing cancer therapy. We recently identified Inauhzin (INZ) as a novel non-genotoxic p53-activating compound. To develop INZ into a clinically applicable anticancer drug, we have initiated preclinical toxicity studies. Here, we report our study on determining the maximum tolerated dose (MTD) of INZ analog, Inauhzin-C (INZ (C)), following intraperitoneal (i.p.) administration (Phase A) and its toxicity following i.p. administration over a period of 5-day dosing plus 2-day recovery (Phase B) in CD-1 mice. The Phase A study showed that the MTD of INZ (C) is 200 mg/kg for female and 250 mg/kg for male, respectively. The Phase B study showed that the administration of INZ (C) via 5-day consecutive i.p. injection is tolerated by female CD-1 mice at all dose levels tested from 50 mg/kg to 120 mg/kg without significant changes in biochemical and pathological parameters in the animals. Together, these results indicate that our previously determined effective dose of INZ at 30–60 mg/kg via i.p. is quite safe to mice, and imply that this compound have the features worthy for further development into a clinically applicable drug.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, Louisiana, LA 70112
| | - Shelya X Zeng
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, Louisiana, LA 70112
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, Louisiana, LA 70112
| |
Collapse
|
15
|
Zhang Q, Zhou X, Wu R, Mosley A, Zeng SX, Xing Z, Lu H. The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress. eLife 2014; 3. [PMID: 25347121 PMCID: PMC4209374 DOI: 10.7554/elife.03077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
The 'ribosomal stress (RS)-p53 pathway' is triggered by any stressor or genetic alteration that disrupts ribosomal biogenesis, and mediated by several ribosomal proteins (RPs), such as RPL11 and RPL5, which inhibit MDM2 and activate p53. Inosine monophosphate (IMP) dehydrogenase 2 (IMPDH2) is a rate-limiting enzyme in de novo guanine nucleotide biosynthesis and crucial for maintaining cellular guanine deoxy- and ribonucleotide pools needed for DNA and RNA synthesis. It is highly expressed in many malignancies. We previously showed that inhibition of IMPDH2 leads to p53 activation by causing RS. Surprisingly, our current study reveals that Inauzhin (INZ), a novel non-genotoxic p53 activator by inhibiting SIRT1, can also inhibit cellular IMPDH2 activity, and reduce the levels of cellular GTP and GTP-binding nucleostemin that is essential for rRNA processing. Consequently, INZ induces RS and the RPL11/RPL5-MDM2 interaction, activating p53. These results support the new notion that INZ suppresses cancer cell growth by dually targeting SIRT1 and IMPDH2.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - RuiZhi Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
16
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
17
|
Abstract
The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as "the guardian of the genome", because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2-MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, Louisiana, LA, 70112, USA
| | | | | |
Collapse
|