1
|
Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther 2022; 20:1095-1108. [PMID: 35576494 DOI: 10.1080/14787210.2022.2078308] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Antibiotic resistance is one of the biggest public health threats worldwide. Currently, antibiotic-resistant bacteria kill 700,000 people every year. These data represent the near future in which we find ourselves, a "post-antibiotic era" where the identification and development of new treatments are key. This review is focused on the current and emerging antimicrobial therapies which can solve this global threat. AREAS COVERED Through a literature search using databases such as Medline and Web of Science, and search engines such as Google Scholar, different antimicrobial therapies were analyzed, including pathogen-oriented therapy, phagotherapy, microbiota and antivirulent therapy. Additionally, the development pathways of new antibiotics were described, emphasizing on the potential advantages that the combination of a drug repurposing strategy with the application of mathematical prediction models could bring to solve the problem of AMRs. EXPERT OPINION This review offers several starting points to solve a single problem: reducing the number of AMR. The data suggest that the strategies described could provide many benefits to improve antimicrobial treatments. However, the development of new antimicrobials remains necessary. Drug repurposing, with the application of mathematical prediction models, is considered to be of interest due to its rapid and effective potential to increase the current therapeutic arsenal.
Collapse
Affiliation(s)
- Antonio Tarín-Pelló
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud
| | - Beatriz Suay-García
- ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115 Alfara del Patriarca, Valencia, Spain
| | - María-Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud
| |
Collapse
|
2
|
Halaweish HF, Boatman S, Staley C. Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front Cell Infect Microbiol 2022; 12:826114. [PMID: 35372103 PMCID: PMC8968856 DOI: 10.3389/fcimb.2022.826114] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been established as a highly restorative therapeutic approach for treating recurrent Clostridioides difficile infection (rCDI). Recently, the use of capsule-based fecal microbiota transplantation (cFMT) has been shown to be a clinically effective approach to restore intestinal microbiota composition. This convenient, oral delivery provides an easy route of administration and a newfound flexibility for clinicians and patients. In this review, we discuss the development of cFMT, paying particular attention to lyophilized cFMT products. We review the available published clinical studies comparing cFMT with lower endoscopic FMT (eFMT) or placebo. We further discuss the pharmacokinetics of FMT, which should be understood in a framework of microbial ecology that considers the complex and dynamic interactions of gut microbiota with host factors and other microorganisms. Promisingly, the results of multiple trials investigating cFMT vs. eFMT in rCDI show cFMT to be as effective as eFMT at preventing rCDI. However, its efficacy in non-rCDI conditions, including obesity and metabolic syndrome, inflammatory bowel disease, HIV, and neurologic conditions, is less clear and more research is needed in these areas. Standardization of formulation, dose, and timing of administration to ensure optimal microbiota engraftment and clinical response is also a challenge to be addressed. Overall, cFMT is a practical method for fecal microbiota transplantation, with similar efficacy to eFMT in the resolution of rCDI, that holds therapeutic potential in a variety of other diseases.
Collapse
Affiliation(s)
- Hossam F. Halaweish
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Sonja Boatman
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Christopher Staley,
| |
Collapse
|
3
|
Shang Z, Chan SY, Song Q, Li P, Huang W. The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2016201. [PMID: 33083786 PMCID: PMC7539235 DOI: 10.34133/2020/2016201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
Abstract
The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
4
|
Nice EC. The status of proteomics as we enter the 2020s: Towards personalised/precision medicine. Anal Biochem 2020; 644:113840. [PMID: 32745541 DOI: 10.1016/j.ab.2020.113840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
The last decade has seen many major advances in proteomics, with over 70,000 publications in the field since 2010. A comprehensive omics toolbox has been developed facilitating rapid in depth analysis of the human proteome. Such studies are advancing our understanding of the biology of both health and disease. The combination of proteomics with other omics platforms (the omics pipeline), in particular proteogenomics, is giving important insights to the molecular changes leading to disease, covering the spectrum from genotype to phenotype and identifying potential biomarkers for disease detection, surveillance and monitoring, and revealing potential new drug targets. Discovery-based finding are now being translated to clinical application, supporting the rollout of precision/personalised medicine. This perspective has focused on twelve areas of importance that have fuelled the field. Recent exemplars are given to illustrate this and show how, together with some emerging technologies, they are anticipated to lead to further advances in the field. However, hurdles still remain to be overcome, especially in the area of Big Data analysis.
Collapse
Affiliation(s)
- Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
Belga S, Chiang D, Kabbani D, Abraldes JG, Cervera C. The direct and indirect effects of vancomycin-resistant enterococci colonization in liver transplant candidates and recipients. Expert Rev Anti Infect Ther 2019; 17:363-373. [PMID: 30977692 DOI: 10.1080/14787210.2019.1607297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Vancomycin-resistant enterococci (VRE) colonization and subsequent infection results in increased morbidity, mortality and use of health-care resources. The burden of VRE colonization in liver transplant candidates and recipients is significant. VRE colonization is a marker of gut dysbiosis and its impact on the microbiota-liver axis, may negatively affect graft function and result in negative outcomes pre- and post-transplantation. Areas covered: In this article we describe the epidemiology of VRE colonization, risk factors for VRE infection, health-care costs associated with VRE, with a focus on the impact of VRE colonization on liver transplant recipients' fecal microbiota, the therapeutic strategies for VRE decolonization and proposed pathophysiologic mechanisms of VRE colonization in liver transplant recipients. Expert opinion: VRE colonization results in a significant loss of bacterial microbiome diversity. This may have metabolic consequences, with low production of short-chain fatty acids which may, in turn, result in immune dysregulation. As antibiotics have failed to decolonize the gut, alternative strategies such as fecal microbiota transplantation (FMT), stimulation of intestinal antimicrobial peptides and phage therapy warrants future studies.
Collapse
Affiliation(s)
- Sara Belga
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| | - Diana Chiang
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| | - Dima Kabbani
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| | - Juan G Abraldes
- b Department of Medicine, Division of Gastroenterology and Hepatology , University of Alberta , Edmonton , Alberta , Canada
| | - Carlos Cervera
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
6
|
Lin H, He QY, Shi L, Sleeman M, Baker MS, Nice EC. Proteomics and the microbiome: pitfalls and potential. Expert Rev Proteomics 2018; 16:501-511. [PMID: 30223687 DOI: 10.1080/14789450.2018.1523724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Human symbiotic microbiota are now known to play important roles in human health and disease. Significant progress in our understanding of the human microbiome has been driven by recent technological advances in the fields of genomics, transcriptomics, and proteomics. As a complementary method to metagenomics, proteomics is enabling detailed protein profiling of the microbiome to decipher its structure and function and to analyze its relationship with the human body. Fecal proteomics is being increasingly applied to discover and validate potential health and disease biomarkers, and Therapeutic Goods Administration (TGA)-approved instrumentation and a range of clinical assays are being developed that will collectively play key roles in advancing personalized medicine. Areas covered: This review will introduce the complexity of the microbiome and its role in health and disease (in particular the gastrointestinal tract or gut microbiome), discuss current genomic and proteomic methods for studying this system, including the discovery of potential biomarkers, and outline the development of clinically accepted protocols leading to personalized medicine. Expert commentary: Recognition of the important role the microbiome plays in both health and disease is driving current research in this key area. A proteogenomics approach will be essential to unravel the biologies underlying this complex network.
Collapse
Affiliation(s)
- Huafeng Lin
- a Department of Biotechnology , College of Life Science and Technology, Jinan University , Guangzhou , Guangdong , China.,b Institute of Food Safety and Nutrition Research , Jinan University , Guangzhou , China
| | - Qing-Yu He
- c Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou , China
| | - Lei Shi
- b Institute of Food Safety and Nutrition Research , Jinan University , Guangzhou , China
| | - Mark Sleeman
- d Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Mark S Baker
- e Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Edouard C Nice
- f Department of Biochemistry and Molecular Biology , Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
7
|
Arneth BM. Gut–brain axis biochemical signalling from the gastrointestinal tract to the central nervous system: gut dysbiosis and altered brain function. Postgrad Med J 2018; 94:446-452. [DOI: 10.1136/postgradmedj-2017-135424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/26/2022]
Abstract
BackgroundThe gut–brain axis facilitates a critical bidirectional link and communication between the brain and the gut. Recent studies have highlighted the significance of interactions in the gut–brain axis, with a particular focus on intestinal functions, the nervous system and the brain. Furthermore, researchers have examined the effects of the gut microbiome on mental health and psychiatric well-being.The present study reviewed published evidence to explore the concept of the gut–brain axis.AimsThis systematic review investigated the relationship between human brain function and the gut–brain axis.MethodsTo achieve these objectives, peer-reviewed articles on the gut–brain axis were identified in various electronic databases, including PubMed, MEDLINE, CIHAHL, Web of Science and PsycINFO.ResultsData obtained from previous studies showed that the gut–brain axis links various peripheral intestinal functions to brain centres through a broad range of processes and pathways, such as endocrine signalling and immune system activation. Researchers have found that the vagus nerve drives bidirectional communication between the various systems in the gut–brain axis. In humans, the signals are transmitted from the liminal environment to the central nervous system.ConclusionsThe communication that occurs in the gut–brain axis can alter brain function and trigger various psychiatric conditions, such as schizophrenia and depression. Thus, elucidation of the gut–brain axis is critical for the management of certain psychiatric and mental disorders.
Collapse
|
8
|
Staley C, Khoruts A, Sadowsky MJ. Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Arch Med Res 2017; 48:766-773. [PMID: 29183720 DOI: 10.1016/j.arcmed.2017.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
The intestinal microbiota comprise an important organ that plays a vital role in host digestion, development, energy maintenance, hemostasis, and immunity. Disruption of the gut microbial community due to diet, lifestyle, or antibiotic exposure increases susceptibility to chronic infection and disease. Fecal microbiota transplantation (FMT) involves the transfer of gut microbiota from a healthy donor to a patient in order to restore normal diversity and function of the microbial community. This method has become a well established alternative therapy for the treatment of recurrent Clostridium difficile infection. Recent clinical trials and studies in animal models suggest promise for this method to treat inflammatory bowel diseases, as well as metabolic syndrome. In addition, due to signaling interactions between the gut microbiota and brain, FMT has been suggested as a potential treatment for some psychological disorders, including autism spectrum disorder. Importantly, advances in next-generation sequencing and multi-omics approaches are increasingly improving our understanding of the mechanisms by which FMT results in cure of these various conditions. In this review, we summarize the current applications of FMT and highlight potential future uses and current challenges in understanding and optimizing FMT procedures.
Collapse
Affiliation(s)
| | - Alexander Khoruts
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA; Division of Gastroenterology and Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA; Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
9
|
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 2017; 6:47. [PMID: 28515903 PMCID: PMC5433038 DOI: 10.1186/s13756-017-0208-x&token2=exp=1496969815~acl=/static/pdf/676/art%253a10.1186%252fs1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/10/2017] [Indexed: 04/09/2024] Open
Abstract
The causes of antimicrobial resistance (AMR) in developing countries are complex and may be rooted in practices of health care professionals and patients' behavior towards the use of antimicrobials as well as supply chains of antimicrobials in the population. Some of these factors may include inappropriate prescription practices, inadequate patient education, limited diagnostic facilities, unauthorized sale of antimicrobials, lack of appropriate functioning drug regulatory mechanisms, and non-human use of antimicrobials such as in animal production. Considering that these factors in developing countries may vary from those in developed countries, intervention efforts in developing countries need to address the context and focus on the root causes specific to this part of the world. Here, we describe these health-seeking behaviors that lead to the threat of AMR and healthcare practices that drive the development of AMR in developing countries and we discuss alternatives for disease prevention as well as other treatment options worth exploring.
Collapse
Affiliation(s)
- James A. Ayukekbong
- Section for Clinical Microbiology, Redeem Biomedical, P.O. Box 16, Buea, Cameroon
- Metabiota Inc., Nanaimo, BC Canada
| | - Michel Ntemgwa
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON Canada
| | - Andrew N. Atabe
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
10
|
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 2017; 6:47. [PMID: 28515903 PMCID: PMC5433038 DOI: 10.1186/s13756-017-0208-x] [Citation(s) in RCA: 664] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/10/2017] [Indexed: 12/29/2022] Open
Abstract
The causes of antimicrobial resistance (AMR) in developing countries are complex and may be rooted in practices of health care professionals and patients’ behavior towards the use of antimicrobials as well as supply chains of antimicrobials in the population. Some of these factors may include inappropriate prescription practices, inadequate patient education, limited diagnostic facilities, unauthorized sale of antimicrobials, lack of appropriate functioning drug regulatory mechanisms, and non-human use of antimicrobials such as in animal production. Considering that these factors in developing countries may vary from those in developed countries, intervention efforts in developing countries need to address the context and focus on the root causes specific to this part of the world. Here, we describe these health-seeking behaviors that lead to the threat of AMR and healthcare practices that drive the development of AMR in developing countries and we discuss alternatives for disease prevention as well as other treatment options worth exploring.
Collapse
Affiliation(s)
- James A Ayukekbong
- Section for Clinical Microbiology, Redeem Biomedical, P.O. Box 16, Buea, Cameroon.,Metabiota Inc., Nanaimo, BC Canada
| | - Michel Ntemgwa
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON Canada
| | - Andrew N Atabe
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Duvall JR, Bedard L, Naylor-Olsen AM, Manson AL, Bittker JA, Sun W, Fitzgerald ME, He Z, Lee MD, Marie JC, Muncipinto G, Rush D, Xu D, Xu H, Zhang M, Earl AM, Palmer MA, Foley MA, Vacca JP, Scherer CA. Identification of Highly Specific Diversity-Oriented Synthesis-Derived Inhibitors of Clostridium difficile. ACS Infect Dis 2017; 3:349-359. [PMID: 28215073 PMCID: PMC5509442 DOI: 10.1021/acsinfecdis.6b00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In 2013, the Centers for Disease Control highlighted Clostridium difficile as an urgent threat for antibiotic-resistant infections, in part due to the emergence of highly virulent fluoroquinolone-resistant strains. Limited therapeutic options currently exist, many of which result in disease relapse. We sought to identify molecules specifically targeting C. difficile in high-throughput screens of our diversity-oriented synthesis compound collection. We identified two scaffolds with apparently novel mechanisms of action that selectively target C. difficile while having little to no activity against other intestinal anaerobes; preliminary evidence suggests that compounds from one of these scaffolds target the glutamate racemase. In vivo efficacy data suggest that both compound series may provide lead optimization candidates.
Collapse
Affiliation(s)
- Jeremy R. Duvall
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Leanne Bedard
- WuXi AppTec Early Risk Sharing Group, 1690 Sumneytown Pike, Suite 150, Lansdale, Pennsylvania 19446, United States
| | - Adel M. Naylor-Olsen
- WuXi AppTec Early Risk Sharing Group, 1690 Sumneytown Pike, Suite 150, Lansdale, Pennsylvania 19446, United States
| | - Abigail L. Manson
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Joshua A. Bittker
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Wenye Sun
- WuXi AppTec, 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Mark E. Fitzgerald
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Zhenmin He
- WuXi AppTec, 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Maurice D. Lee
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jean-Charles Marie
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Giovanni Muncipinto
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Diane Rush
- WuXi AppTec Early Risk Sharing Group, 1690 Sumneytown Pike, Suite 150, Lansdale, Pennsylvania 19446, United States
| | - Deming Xu
- WuXi AppTec, 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Huisheng Xu
- WuXi AppTec, 168 Nanhai Road, TEDA, Tianjin 300457, China
| | | | - Ashlee M. Earl
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Michelle A. Palmer
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Michael A. Foley
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Joseph P. Vacca
- WuXi AppTec Early Risk Sharing Group, 1690 Sumneytown Pike, Suite 150, Lansdale, Pennsylvania 19446, United States
| | - Christina A. Scherer
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
12
|
The Long-term Efficacy and Safety of Fecal Microbiota Transplant for Recurrent, Severe, and Complicated Clostridium difficile Infection in 146 Elderly Individuals. J Clin Gastroenterol 2016; 50:403-7. [PMID: 26352106 DOI: 10.1097/mcg.0000000000000410] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Clostridium difficile infection (CDI) in the elderly has a higher prevalence, greater morbidity and mortality, and lower response to conventional treatment than the general population. Fecal microbiota transplant (FMT) is highly effective therapy for CDI but has not been studied specifically in the elderly. This study aims to determine the long-term efficacy and safety of FMT for recurrent (RCDI), severe (SCDI), and complicated (CCDI) CDI in elderly patients. METHODS A multicenter, long-term follow-up study was performed with demographic, pre-FMT, and post-FMT data collected from elderly patients with RCDI, SCDI, and CCDI, through a 47-item questionnaire. Outcome measures included primary and secondary cure rates, early (<12 wk) and late (≥12 wk) recurrence rates, and adverse events (AEs), including post-FMT diagnoses. RESULTS Of 168 eligible patients, 146 patients met the inclusion criteria. Of these, 68.5% were women. The mean (range) age was 78.6 (65 to 97) years and the follow-up period was 12.3 (1 to 48) months. FMT was performed for RCDI in 89 (61%), SCDI in 45 (30.8%), and CCDI in 12 (8.2%) patients. The primary and secondary cure rates were 82.9% and 95.9%, respectively. Early and late recurrences occurred in 25 and 6 patients, respectively. AEs included CDI-negative diarrhea in 7 (4.8%) and constipation in 4 (2.7%) patients. Serious AEs, recorded in 6 patients, were hospital admissions for CDI-related diarrhea, one of which culminated in death. New diagnoses post-FMT included microscopic colitis (2), Sjogren syndrome (1), follicular lymphoma (1), contact dermatitis and idiopathic Bence-Jones proteinuria (1), and laryngeal carcinoma (1)-all, however, were associated with predisposing factors. CONCLUSIONS FMT is a safe and effective treatment option for RCDI, SCDI, and CCDI in elderly patients.
Collapse
|
13
|
Sobol S, Baker A, Konrad R, Miniard J. Fecal Microbiota Transplant: Could Your Stool Save a Life? J Nurse Pract 2015. [DOI: 10.1016/j.nurpra.2015.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infect Dis 2015; 15:191. [PMID: 25885020 PMCID: PMC4506624 DOI: 10.1186/s12879-015-0930-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI), a complication of antibiotic-induced injury to the gut microbiome, is a prevalent and dangerous cause of infectious diarrhea. Antimicrobial therapy for CDI is typically effective for acute symptoms, but up to one third of patients later experience recurrent CDI. Fecal-derived microbiota transplantation (FMT) can ameliorate the underlying dysbiosis and is highly effective for recurrent CDI. Traditional methods of FMT are limited by patient discomfort, risk and inefficient procedures. Many individuals with recurrent CDI have extensive comorbidities and advanced age. Widespread use of FMT requires strategies that are non-invasive, scalable and applicable across healthcare settings. METHODS A method to facilitate microbiota transfer was developed. Fecal samples were collected and screened for potential pathogens. Bacteria were purified, concentrated, cryopreserved and formulated into multi-layered capsules. Capsules were administered to patients with recurrent CDI, who were then monitored for 90 days. RESULTS Thirteen women and six men with recurrent CDI were provided with microbiota transfer with orally administered capsules. The procedure was well tolerated. Thirteen individuals responded to a single course. Four patients were cured after a second course. There were 2 failures. The cumulative clinical cure rate of 89% is similar to the rates achieved with reported fecal-derived transplantation procedures. CONCLUSIONS Recurrent CDI represents a profound dysbiosis and a debilitating chronic disease. Stable cure can be achieved by restoring the gut microbiome with an effective, well-tolerated oral capsule treatment. This strategy of microbiota transfer can be widely applied and is particularly appropriate for frail patients.
Collapse
|
15
|
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121:91-119. [PMID: 24388214 DOI: 10.1016/b978-0-12-800100-4.00003-9] [Citation(s) in RCA: 1583] [Impact Index Per Article: 143.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is now an abundance of evidence to show that short-chain fatty acids (SCFAs) play an important role in the maintenance of health and the development of disease. SCFAs are a subset of fatty acids that are produced by the gut microbiota during the fermentation of partially and nondigestible polysaccharides. The highest levels of SCFAs are found in the proximal colon, where they are used locally by enterocytes or transported across the gut epithelium into the bloodstream. Two major SCFA signaling mechanisms have been identified, inhibition of histone deacetylases (HDACs) and activation of G-protein-coupled receptors (GPCRs). Since HDACs regulate gene expression, inhibition of HDACs has a vast array of downstream consequences. Our understanding of SCFA-mediated inhibition of HDACs is still in its infancy. GPCRs, particularly GPR43, GPR41, and GPR109A, have been identified as receptors for SCFAs. Studies have implicated a major role for these GPCRs in the regulation of metabolism, inflammation, and disease. SCFAs have been shown to alter chemotaxis and phagocytosis; induce reactive oxygen species (ROS); change cell proliferation and function; have anti-inflammatory, antitumorigenic, and antimicrobial effects; and alter gut integrity. These findings highlight the role of SCFAs as a major player in maintenance of gut and immune homeostasis. Given the vast effects of SCFAs, and that their levels are regulated by diet, they provide a new basis to explain the increased prevalence of inflammatory disease in Westernized countries, as highlighted in this chapter.
Collapse
Affiliation(s)
- Jian Tan
- Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Craig McKenzie
- Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Maria Potamitis
- Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Alison N Thorburn
- Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Department of Immunology, Monash University, Clayton, Victoria, Australia.
| | - Laurence Macia
- Department of Immunology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Faecal microbiota transplantation (FMT) has undergone dramatic progression over the past year and continues to evolve as knowledge of the gastrointestinal microbiota (GiMb) develops. This review summarizes therapeutic advances in FMT, latest FMT therapies and presents the potential of FMT therapeutics in other gastrointestinal and extra-intestinal conditions. RECENT FINDINGS The GiMb is now known to have a central role in the pathogenesis of many diseases. The success of FMT in curing Clostridium difficile infection (CDI) is well established and preliminary findings in other gastrointestinal conditions are promising. Published data from over 500 CDI cases suggest that FMT is generally well tolerated with minimal side effects. The commercial potential of FMT is being explored with several products under development, including frozen GiMb extract, which has been shown highly effective in treating relapsing CDI. Such products will likely become more available in coming years and revolutionize the availability and method of delivery of GiMb. SUMMARY Recent literature unequivocally supports the use of FMT in treating relapsing CDI. Trials are underway to determine the therapeutic potential of FMT in other conditions, particularly inflammatory bowel disease. Therapeutic FMT is a dynamic field with new and emerging indications along with ongoing developments in optimal mode of administration.
Collapse
|
17
|
Dai C, Zheng CQ, Jiang M, Ma XY, Jiang LJ. Probiotics and irritable bowel syndrome. World J Gastroenterol 2013; 19:5973-5980. [PMID: 24106397 PMCID: PMC3785618 DOI: 10.3748/wjg.v19.i36.5973] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is common gastrointestinal problems. It is characterized by abdominal pain or discomfort, and is associated with changes in stool frequency and/or consistency. The etiopathogenesis of IBS may be multifactorial, as is the pathophysiology, which is attributed to alterations in gastrointestinal motility, visceral hypersensitivity, intestinal microbiota, gut epithelium and immune function, dysfunction of the brain-gut axis or certain psychosocial factors. Current therapeutic strategies are often unsatisfactory. There is now increasing evidence linking alterations in the gastrointestinal microbiota and IBS. Probiotics are living organisms which, when ingested in certain numbers, exert health benefits beyond inherent basic nutrition. Probiotics have numerous positive effects in the gastrointestinal tract. Recently, many studies have suggested that probiotics are effective in the treatment of IBS. The mechanisms of probiotics in IBS are very complex. The purpose of this review is to summarize the evidence and mechanisms for the use of probiotics in the treatment of IBS.
Collapse
|
18
|
News in Brief. Expert Rev Anti Infect Ther 2013. [DOI: 10.1586/14787210.2013.842053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Kim BS, Jeon YS, Chun J. Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr 2013; 16:71-9. [PMID: 24010110 PMCID: PMC3760697 DOI: 10.5223/pghn.2013.16.2.71] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 12/11/2022] Open
Abstract
The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.
Collapse
Affiliation(s)
- Bong-Soo Kim
- Chunlab Inc., Seoul National University, Seoul, Korea
| | - Yoon-Seong Jeon
- Chunlab Inc., Seoul National University, Seoul, Korea
- Interdisciplinary Graduate Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Jongsik Chun
- Chunlab Inc., Seoul National University, Seoul, Korea
- Interdisciplinary Graduate Program in Bioinformatics, Seoul National University, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|