1
|
Cibulková I, Řehořová V, Wilhelm M, Soukupová H, Hajer J, Duška F, Daňková H, Cahová M. Evaluating Bacterial Viability in Faecal Microbiota Transplantation: A Comparative Analysis of In Vitro Cultivation and Membrane Integrity Methods. J Clin Lab Anal 2024; 38:e25105. [PMID: 39360586 PMCID: PMC11520942 DOI: 10.1002/jcla.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is a developing therapy for disorders related to gut dysbiosis. Despite its growing application, standardised protocols for FMT filtrate preparation and quality assessment remain undeveloped. The viability of bacteria in the filtrate is crucial for FMT's efficacy and for validating protocol execution. We compared two methods-in vitro cultivation and membrane integrity assessment-for their accuracy, reproducibility and clinical applicability in measuring bacterial viability in frozen FMT stool filtrate. METHODS Bacterial viability in stool filtrate was evaluated using (i) membrane integrity through fluorescent DNA staining with SYTO9 and propidium iodide, followed by flow cytometry and (ii) culturable bacteria counts (colony-forming units, CFU) under aerobic or anaerobic conditions. RESULTS Using different types of samples (pure bacterial culture, stool of germ-free and conventionally bred mice, native and heat-treated human stool), we refined the bacterial DNA staining protocol integrated with flow cytometry for assessment of bacterial viability in frozen human stool samples. Both the membrane integrity-based and cultivation-based methods exhibited significant variability in bacterial viability across different FMT filtrates, without correlation. The cultivation-based method showed a mean coefficient of variance of 30.3%, ranging from 7.4% to 60.1%. Conversely, the membrane integrity approach yielded more reproducible results, with a mean coefficient of variance for viable cells of 6.4% ranging from 0.2% to 18.2%. CONCLUSION Bacterial viability assessment in stool filtrate using the membrane integrity method offers robust and precise data, making it a suitable option for faecal material evaluation in FMT. In contrast, the cultivation-dependent methods produce inconsistent outcomes.
Collapse
Affiliation(s)
- Ivana Cibulková
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Veronika Řehořová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Marek Wilhelm
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Hana Soukupová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of MicrobiologyKralovske Vinohrady University HospitalPragueCzech Republic
| | - Jan Hajer
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - František Duška
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Helena Daňková
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Monika Cahová
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
2
|
Sipos D, Varga A, Kappéter Á, Halda-Kiss B, Kása P, Pál S, Kocsis B, Péterfi Z. Encapsulation protocol for fecal microbiota transplantation. Front Cell Infect Microbiol 2024; 14:1424376. [PMID: 38988813 PMCID: PMC11233434 DOI: 10.3389/fcimb.2024.1424376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Clostridioides difficile infections (CDI) continue to pose a challenge for clinicians. Fecal microbiota transplantation (FMT) is an effective treatment option in CDI. Furthermore, recent and ongoing studies suggest potential benefits of FMT in other diseases as well. Methods We would like to present a novel protocol for encapsulation of lyophilized fecal material. Our method provides with better compliance as well as improved flexibility, storage and safety. Results FMT was conducted in 28 patients with an overall success rate of 82,14% using apsules containing lyophilized stool. 16 of patients were given capsules with lessened bacteria counts. The success rate in this group was 93,75%. Discussion The results highlight the still unanswered questions about the mechanism of action and contribute to a wider use of FMT in the clinical praxis and in research.
Collapse
Affiliation(s)
- Dávid Sipos
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Ágnes Kappéter
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Bernadett Halda-Kiss
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Péter Kása
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Zoltán Péterfi
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| |
Collapse
|
3
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
4
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. J Hosp Infect 2024; 148:189-219. [PMID: 38609760 DOI: 10.1016/j.jhin.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- B H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - B Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - M N Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - A Bak
- Healthcare Infection Society, London, UK
| | - C A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK; School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - D J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - N T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norfolk and Norwich University Hospital, Norwich, UK
| | - J P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - N Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - B Marsh
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - G Kontkowski
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK; C.diff support, London, UK
| | - S E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - A L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - C Settle
- South Tyneside and Sunderland NHS Foundation Trust, South Shields, UK
| | - J J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - T H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - S D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK.
| | - H R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
5
|
Soukupova H, Rehorova V, Cibulkova I, Duska F. Assessment of Faecal Microbiota Transplant Stability in Deep-Freeze Conditions: A 12-Month Ex Vivo Viability Analysis. J Clin Lab Anal 2024; 38:e25023. [PMID: 38544348 PMCID: PMC11033324 DOI: 10.1002/jcla.25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is an established treatment for Clostridioides difficile infection and is under investigation for other conditions. The availability of suitable donors and the logistics of fresh stool preparation present challenges, making frozen, biobanked stools an attractive alternative. AIMS This study aimed to evaluate the long-term viability of bacterial populations in faecal samples stored at -80°C for up to 12 months, supporting the feasibility of using frozen grafts for FMT. METHODS Fifteen faecal samples from nine healthy donors were processed, mixed with cryoprotectants and stored at -80°C. Samples were assessed at baseline and after 3, 6 and 12 months using quantitative culturing methods to determine the concentration of live bacteria. RESULTS Quantitative analysis showed no significant decrease in bacterial viability over the 12-month period for both aerobic and anaerobic cultures (p = 0.09). At all timepoints, the coefficients of variability in colony-forming unit (CFU) counts were greater between samples (102 ± 21% and 100 ± 13% for aerobic and anaerobic cultures, respectively) than the variability between measurements of the same sample (30 ± 22% and 30 ± 19%). CONCLUSIONS The study confirmed that faecal microbiota can be preserved with high viability in deep-freeze storage for up to a year, making allogenic FMT from biobanked samples a viable and safer option for patients. However, a multidonor approach may be beneficial to mitigate the risk of viability loss in any single donor sample.
Collapse
Affiliation(s)
- Hana Soukupova
- Department of Microbiology, The Third Faculty of MedicineCharles University and Kralovske Vinohrady University HospitalPragueCzech Republic
| | - Veronika Rehorova
- Department of Anaesthesia and Intensive Care Medicine, The Third Faculty of MedicineCharles University and Kralovske Vinohrady University HospitalPragueCzech Republic
| | - Ivana Cibulkova
- Division of Gastroenterology, Department of MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Frantisek Duska
- Department of Anaesthesia and Intensive Care Medicine, The Third Faculty of MedicineCharles University and Kralovske Vinohrady University HospitalPragueCzech Republic
| |
Collapse
|
6
|
Kappéter Á, Sipos D, Varga A, Vigvári S, Halda-Kiss B, Péterfi Z. Migraine as a Disease Associated with Dysbiosis and Possible Therapy with Fecal Microbiota Transplantation. Microorganisms 2023; 11:2083. [PMID: 37630643 PMCID: PMC10458656 DOI: 10.3390/microorganisms11082083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a painful neurological condition characterized by severe pain on one or both sides of the head. It may be linked to changes in the gut microbiota, which are influenced by antibiotic use and other factors. Dysbiosis, which develops and persists as a result of earlier antibiotic therapy, changes the composition of the intestinal flora, and can lead to the development of various diseases such as metabolic disorders, obesity, hematological malignancies, neurological or behavioral disorders, and migraine. Metabolites produced by the gut microbiome have been shown to influence the gut-brain axis. The use of probiotics as a dietary supplement may reduce the number and severity of migraine episodes. Dietary strategies can affect the course of migraines and are a valuable tool for improving migraine management. With fecal microbiota transplantation, gut microbial restoration is more effective and more durable. Changes after fecal microbiota transplantation were studied in detail, and many data help us to interpret the successful interventions. The microbiological alteration of the gut microflora can lead to normalization of the inflammatory mediators, the serotonin pathway, and influence the frequency and intensity of migraine pain.
Collapse
Affiliation(s)
- Ágnes Kappéter
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Dávid Sipos
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pecs Clinical Centre, H7624 Pécs, Hungary;
| | - Szabolcs Vigvári
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Bernadett Halda-Kiss
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Zoltán Péterfi
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| |
Collapse
|
7
|
Varga A, Makszin L, Bufa A, Sipos D, Kása P, Pál S, Rosenstiel P, Sommer F, Kocsis B, Péterfi Z. Efficacy of lyophilised bacteria-rich faecal sediment and supernatant with reduced bacterial count for treating patients with Clostridioides difficile Infection - A novel method for capsule faecal microbiota transfer. Front Cell Infect Microbiol 2023; 13:1041384. [PMID: 36756616 PMCID: PMC9899802 DOI: 10.3389/fcimb.2023.1041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Background and aims Faecal microbiota transfer (FMT) has managed to earn its place in the Clostridioides difficile infection (CDI) guidelines by having comparable efficacy and recurrence rate of fidaxomicin. After more than 100 successful FMT administration through nasogastric tube, we started using hard gelatine capsules filled with lyophilised faecal sediment and supernatant. Our main question was whether uncoated capsules (containing faecal sediment or supernatant) are comparable to the widely used nasogastric tubes in CDI. We also investigated the effect of storage and time on the survival rate of bacteria in the samples. Methods We compared the efficacy of our capsules to other treatment options of CDI at the Department of Infectology at the University of Pécs (Hungary). For our study, stool was collected from a single donor. We treated 10 patients with relapsing CDI, 5 of them received supernatant, 5 received sediment. Donor samples were stored on 4 different temperatures and tested to determine the survival rates of bacteria. As pilot projects, we also assessed the changes of bacterial taxa, protein- and lipid compositions. Moreover, we selected 4 patients to compare their samples prior and after FMT by using microbiome (16S amplicon sequencing), protein, and lipid analyses. Results 4 out of the 5 patients who received supernatant became symptomless within 2 days after FMT. In the sediment group 3 out of 5 patients were cured from CDI. Comparing the supernatant to the sediment, we found significantly lower number of colony-forming units in the supernatant. We found that -80°C is the most suitable temperature to store the samples. The stool lipid profiles of recipients showed a more diverse composition after FMT, and changes in the stool protein profiles were observed as well. In the microbiome analysis, we observed an increase in the alpha diversity after FMT. Conclusions Our study of 10 patients showed good efficacy of lyophilised faecal supernatant using capsules. The single donor approach proved to be effective in our investigation. A significantly lower CFU number was sufficient for the effect, the separation can be achieved by widely available instruments. For storage temperature, -20°C was sufficient in our clinical practice.
Collapse
Affiliation(s)
- Adorján Varga
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs, Medical School, Pécs, Hungary.,Department of Medical Microbiology and Immunology, University of Pécs, Medical School, Pécs, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Dávid Sipos
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs, Medical School, Pécs, Hungary
| | - Péter Kása
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs, Faculty of Pharmacy, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs, Faculty of Pharmacy, Pécs, Hungary
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, University of Pécs, Medical School, Pécs, Hungary
| | - Zoltán Péterfi
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
8
|
Soveral LF, Korczaguin GG, Schmidt PS, Nunes IS, Fernandes C, Zárate-Bladés CR. Immunological mechanisms of fecal microbiota transplantation in recurrent Clostridioides difficile infection. World J Gastroenterol 2022; 28:4762-4772. [PMID: 36156924 PMCID: PMC9476857 DOI: 10.3748/wjg.v28.i33.4762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a successful method for treating recurrent Clostridioides difficile (C. difficile) infection (rCDI) with around 90% efficacy. Due to the relative simplicity of this approach, it is being widely used and currently, thousands of patients have been treated with FMT worldwide. Nonetheless, the mechanisms underlying its effects are just beginning to be understood. Data indicate that FMT effectiveness is due to a combination of microbiological direct mechanisms against C. difficile, but also through indirect mechanisms including the production of microbiota-derived metabolites as secondary bile acids and short chain fatty acids. Moreover, the modulation of the strong inflammatory response triggered by C. difficile after FMT seems to rely on a pivotal role of regulatory T cells, which would be responsible for the reduction of several cells and soluble inflammatory mediators, ensuing normalization of the intestinal mucosal immune system. In this minireview, we analyze recent advances in these immunological aspects associated with the efficacy of FMT.
Collapse
Affiliation(s)
- Lucas F Soveral
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Gabriela G Korczaguin
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Pedro S Schmidt
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Isabel S Nunes
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Camilo Fernandes
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
- Division of Infectious Diseases, Hospital Nereu Ramos, Florianopolis 88025-301, Brazil
| | - Carlos R Zárate-Bladés
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| |
Collapse
|
9
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Haindl R, Totzauer L, Kulozik U. Preservation by lyophilization of a human intestinal microbiota: influence of the cultivation pH on the drying outcome and re‐establishment ability. Microb Biotechnol 2022; 15:886-900. [PMID: 35124900 PMCID: PMC8913864 DOI: 10.1111/1751-7915.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Regina Haindl
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Lisa Totzauer
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| |
Collapse
|
11
|
Varga A, Kocsis B, Sipos D, Kása P, Vigvári S, Pál S, Dembrovszky F, Farkas K, Péterfi Z. How to Apply FMT More Effectively, Conveniently and Flexible - A Comparison of FMT Methods. Front Cell Infect Microbiol 2021; 11:657320. [PMID: 34150673 PMCID: PMC8213398 DOI: 10.3389/fcimb.2021.657320] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Metronidazol and vancomycin were long the two best options against Clostridioides (formerly Clostridium) difficile infections (CDI). Now, the cost of new drugs such as fidaxomicin directs us towards alternative treatment options, such as faecal microbiota transplant (FMT). Its effectiveness is similar to fidaxomicin. There are questions regarding its safety, but the biggest challenges are prejudice and inconvenience. Most protocols refer to FMT applied in the form of a solution. We investigated different modalities of FMT. Methods Instead of using nasoenteric tubes or colonoscopy, we place frozen or lyophilised stool in non-coated, size “00”, hard gelatine capsules or enterosolvent, size “0” capsules. Results We found that non-coated, size “00”, hard gelatine capsules are appropriate for conducting FMT. Capsules containing lyophilised supernatant with a low number of bacteria have been proven to be non-inferior to other FMT modalities. The primary cure rate in the supernatant group was 93.75%, and 66.67% in the sediment group. The overall cure rate was 82.14%. Depending on the protocol, 4–7 capsules are sufficient per patient. Capsules can be stored for up to one year at -20°C. Conclusions FMT is a feasible alternative to antibiotic treatments in CDI. Our method makes the process flexible and less inconvenient to patients. Long storage time allows a consistent supply of capsules, while small volume and formulation make the procedure tolerable.
Collapse
Affiliation(s)
- Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Dávid Sipos
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Péter Kása
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Szabolcs Vigvári
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Kornélia Farkas
- Institute of Bioanalysis, University of Pécs Medical School, Pécs, Hungary
| | - Zoltán Péterfi
- 1stDepartment of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| |
Collapse
|
12
|
Haindl R, Engel J, Kulozik U. Establishment of an In Vitro System of the Human Intestinal Microbiota: Effect of Cultivation Conditions and Influence of Three Donor Stool Samples. Microorganisms 2021; 9:1049. [PMID: 34068085 PMCID: PMC8152740 DOI: 10.3390/microorganisms9051049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an alternative method for the treatment of gastrointestinal diseases with a high recovery rate. Disadvantages are ethical concerns, high donor requirements and the low storability of stool samples. The cultivation of an in vitro microbiota in a continuous bioreactor was established as an alternative to FMT to overcome these problems. In this study, the influence of the system parameters and donor stool characteristics was investigated. Each continuous colonic fermentation system was inoculated with feces from three different donors until a stable state was established. The influence of the fermentation conditions on the system's behavior regarding cell count, metabolic activity, short-chain fatty acid profile and microbiota composition as well as richness and diversity was assessed. Cultivation conditions were found to affect the microbial system: the number of cells and the production of short-chain fatty acids increased. The abundance of Actinobacteria and Firmicutes decreased, Bacteroidetes increased, while Proteobacteria and Verrucomicrobia remained largely unaffected. Diversity in the in vitro system decreased, but richness was unaffected. The cultivation of stool from different donors revealed that the performance of the created in vitro system was similar and comparable, but unique characteristics of the composition of the original stool remained.
Collapse
Affiliation(s)
- Regina Haindl
- Chair of Food and Bioprocess Engineering, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany; (J.E.); (U.K.)
| | | | | |
Collapse
|