1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2025; 22:181-191. [PMID: 38908461 PMCID: PMC11662089 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Xu K, Zhuang XX, Shi XW. Overexpression of SCN5A overcomes ABC transporter-mediated multidrug resistance in acute myeloid leukemia through promoting apoptosis. Expert Rev Hematol 2024; 17:87-94. [PMID: 38230679 DOI: 10.1080/17474086.2024.2305363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis. RESEARCH DESIGN AND METHODS The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group. RT-qPCR was used to detect the mRNA expression level of SCN5A; MTT assay to assess the survival rate and proliferation level of cells; flow cytometry to determine the apoptosis level; and western blot to check the levels of SCN5A, P-glycoprotein (P-gp), MDR protein 1 (MRP1), MDR gene 1 (MDR1), breast cancer resistance protein (BCRP), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) proteins in cells. RESULTS SCN5A expressed lowly in drug-resistant AML tissues and cells. Up-regulation of SCN5A inhibited MDR in HL-60 cells, enhanced the chemosensitivity of HL-60/ADR, and increased the apoptosis levels of HL-60 and HL-60/ADR cells. However, over-expression of SCN5A inhibited the expression of MDR-related proteins. CONCLUSIONS SCN5A may overcome ABC transporter-mediated MDR in AML through enhancing the apoptosis and inhibiting the expression of MDR proteins.
Collapse
MESH Headings
- Humans
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/pharmacology
- Drug Resistance, Neoplasm/genetics
- Neoplasm Proteins/genetics
- Drug Resistance, Multiple/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Apoptosis/genetics
- NAV1.5 Voltage-Gated Sodium Channel/genetics
Collapse
Affiliation(s)
- Kun Xu
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xian-Xu Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Wei Shi
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Folcher A, Gordienko D, Iamshanova O, Bokhobza A, Shapovalov G, Kannancheri‐Puthooru D, Mariot P, Allart L, Desruelles E, Spriet C, Diez R, Oullier T, Marionneau‐Lambot S, Brisson L, Geraci S, Impheng H, Lehen'kyi V, Haustrate A, Mihalache A, Gosset P, Chadet S, Retif S, Laube M, Sobilo J, Lerondel S, Villari G, Serini G, Pla AF, Roger S, Fromont‐Hankard G, Djamgoz M, Clezardin P, Monteil A, Prevarskaya N. NALCN-mediated sodium influx confers metastatic prostate cancer cell invasiveness. EMBO J 2023; 42:e112198. [PMID: 37278161 PMCID: PMC10308360 DOI: 10.15252/embj.2022112198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.
Collapse
Affiliation(s)
- Antoine Folcher
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Dmitri Gordienko
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Alexandre Bokhobza
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - George Shapovalov
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Dheeraj Kannancheri‐Puthooru
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Pascal Mariot
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Laurent Allart
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Emilie Desruelles
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Corentin Spriet
- TISBio, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS, UMR 8576Université de LilleLilleFrance
| | - Raquel Diez
- Cell Physiology Research Group, Department of PhysiologyUniversity of ExtremaduraCáceresSpain
| | | | | | - Lucie Brisson
- Inserm UMR1069, Nutrition Croissance et CancerUniversity of ToursToursFrance
| | - Sandra Geraci
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm UMR 1033 LYOSLyonFrance
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical scienceNaresuan UniversityPhitsanulokThailand
| | - V'yacheslav Lehen'kyi
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Aurélien Haustrate
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| | - Adriana Mihalache
- Service d'Anatomie et de Cytologie PathologiquesGroupement des Hôpitaux de l'Université Catholique de LilleLilleFrance
| | - Pierre Gosset
- Service d'Anatomie et de Cytologie PathologiquesGroupement des Hôpitaux de l'Université Catholique de LilleLilleFrance
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology, InflammationUniversity of ToursToursFrance
| | - Stéphanie Retif
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Maryline Laube
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Julien Sobilo
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Stéphanie Lerondel
- PHENOMIN‐TAAM, CNRS UPS44, Centre d'Imagerie du Petit Animal (CIPA), 3B rue de la FérollerieOrléansFrance
| | - Giulia Villari
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly
- Candiolo Cancer Institute – Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)CandioloItaly
| | - Guido Serini
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly
- Candiolo Cancer Institute – Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)CandioloItaly
| | | | - Sébastien Roger
- EA4245 Transplantation, Immunology, InflammationUniversity of ToursToursFrance
| | - Gaelle Fromont‐Hankard
- Inserm UMR1069, Nutrition Croissance et CancerUniversity of ToursToursFrance
- Department of PathologyCHRU de ToursToursFrance
| | - Mustafa Djamgoz
- Department of Life SciencesImperial College LondonLondonUK
- Biotechnology Research CentreCyprus International UniversityMersinTürkiye
| | - Philippe Clezardin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm UMR 1033 LYOSLyonFrance
| | - Arnaud Monteil
- LabEx “Ion Channel Science and Therapeutics”, IGF, CNRS, INSERMUniversity of MontpellierMontpellierFrance
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, GIS ONCO LilleUniversity of LilleLilleFrance
| |
Collapse
|
4
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ramírez A, Ogonaga-Borja I, Acosta B, Chiliquinga AJ, de la Garza J, Gariglio P, Ocádiz-Delgado R, Bañuelos C, Camacho J. Ion Channels and Personalized Medicine in Gynecological Cancers. Pharmaceuticals (Basel) 2023; 16:800. [PMID: 37375748 DOI: 10.3390/ph16060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted therapy against cancer plays a key role in delivering safer and more efficient treatments. In the last decades, ion channels have been studied for their participation in oncogenic processes because their aberrant expression and/or function have been associated with different types of malignancies, including ovarian, cervical, and endometrial cancer. The altered expression or function of several ion channels have been associated with tumor aggressiveness, increased proliferation, migration, invasion, and metastasis of cancer cells and with poor prognosis in gynecological cancer patients. Most ion channels are integral membrane proteins easily accessible by drugs. Interestingly, a plethora of ion channel blockers have demonstrated anticancer activity. Consequently, some ion channels have been proposed as oncogenes, cancer, and prognostic biomarkers, as well as therapeutic targets in gynecological cancers. Here, we review the association of ion channels with the properties of cancer cells in these tumors, which makes them very promising candidates to be exploited in personalized medicine. The detailed analysis of the expression pattern and function of ion channels could help to improve the clinical outcomes in gynecological cancer patients.
Collapse
Affiliation(s)
- Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana 22390, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Av. 17 de Julio 5-21, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Av. 17 de Julio 5-21, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Andrea Jazmín Chiliquinga
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Av. 17 de Julio 5-21, Ibarra 100105, Ecuador
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de Mexico14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| |
Collapse
|
6
|
Erdogan MA, Yuca E, Ashour A, Gurbuz N, Sencan S, Ozpolat B. SCN5A promotes the growth and lung metastasis of triple-negative breast cancer through EF2-kinase signaling. Life Sci 2023; 313:121282. [PMID: 36526045 DOI: 10.1016/j.lfs.2022.121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mumin Alper Erdogan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Erkan Yuca
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sevide Sencan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Nanomedicine, Innovative Cancer Therapeutics, Dr. Marr and Roy Neil Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
8
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
9
|
Ngum NM, Aziz MYA, Latif ML, Wall RJ, Duce IR, Mellor IR. Non-canonical endogenous expression of voltage-gated sodium channel NaV1.7 subtype by the TE671 rhabdomyosarcoma cell line. J Physiol 2022; 600:2499-2513. [PMID: 35413129 PMCID: PMC9325523 DOI: 10.1113/jp283055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract The human TE671 cell line was originally used as a model of medulloblastoma but has since been reassigned as rhabdomyosarcoma. Despite the characterised endogenous expression of voltage‐sensitive sodium currents in these cells, the specific voltage‐gated sodium channel (VGSC) subtype underlying these currents remains unknown. To profile the VGSC subtype in undifferentiated TE671 cells, endpoint and quantitative reverse transcription–PCR (qRT‐PCR), western blot and whole‐cell patch clamp electrophysiology were performed. qRT‐PCR profiling revealed that expression of the SCN9A gene was ∼215‐fold greater than the SCN4A gene and over 400‐fold greater than any of the other VGSC genes, while western blot confirmed that the dominant SCN9A RNA was translated to a protein with a molecular mass of ∼250 kDa. Elicited sodium currents had a mean amplitude of 2.6 ± 0.7 nA with activation and fast inactivation V50 values of −31.9 ± 1.1 and −69.6 ± 1.0 mV, respectively. The currents were completely and reversibly blocked by tetrodotoxin at concentrations greater than 100 nm (IC50 = 22.3 nm). They were also very susceptible to the NaV1.7 specific blockers Huwentoxin‐IV and Protoxin‐II with IC50 values of 14.6 nm and 0.8 nm, respectively, characteristic of those previously determined for NaV1.7. Combined, the results revealed the non‐canonical and highly dominant expression of NaV1.7 in the human TE671 rhabdomyosarcoma cell line. We show that the TE671 cell line is an easy to maintain and cost‐effective model for the study of NaV1.7, a major target for the development of analgesic drugs and more generally for the study of pain. Key points
Undifferentiated TE671 cells produce a voltage‐sensitive sodium current when depolarised. The voltage‐gated sodium channel isoform expressed in undifferentiated TE671 cells was previously unknown.
Through qRT‐PCR, western blot and toxin pharmacology, it is shown that undifferentiated TE671 cells dominantly (>99.5%) express the NaV1.7 isoform that is strongly associated with pain.
The TE671 cell line is, therefore, a very easy to maintain and cost‐effective model to study NaV1.7‐targeting drugs.
Collapse
Affiliation(s)
- Neville M Ngum
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Muhammad Y A Aziz
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - M Liaque Latif
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard J Wall
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian R Duce
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
10
|
Wang P, Wadsworth PA, Dvorak NM, Singh AK, Chen H, Liu Z, Zhou R, Holthauzen LMF, Zhou J, Laezza F. Design, Synthesis, and Pharmacological Evaluation of Analogues Derived from the PLEV Tetrapeptide as Protein-Protein Interaction Modulators of Voltage-Gated Sodium Channel 1.6. J Med Chem 2020; 63:11522-11547. [PMID: 33054193 DOI: 10.1021/acs.jmedchem.0c00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The voltage-gated Na+ (Nav) channel is the molecular determinant of excitability. Disruption of protein-protein interactions (PPIs) between Nav1.6 and fibroblast growth factor 14 (FGF14) leads to impaired excitability of neurons in clinically relevant brain areas associated with channelopathies. Here, we designed, synthesized, and pharmacologically characterized new peptidomimetics based on a PLEV tetrapeptide scaffold derived from the FGF14:Nav1.6 PPI interface. Addition of an N-terminal 1-adamantanecarbonyl pharmacophore significantly improved peptidomimetic inhibitory potency. Surface plasmon resonance studies revealed that while this moiety was sufficient to confer binding to FGF14, altering the C-terminal moiety from methoxy (21a) to π bond-containing (23a and 23b) or cycloalkane substituents (23e) abrogated the binding to Nav1.6. Whole-cell patch-clamp electrophysiology subsequently revealed that 21a had functionally relevant interactions with both the C-terminal tail of Nav1.6 and FGF14. Collectively, these findings support that 21a (PW0564) may serve as a promising lead to develop target-selective neurotherapeutics by modulating protein-channel interactions.
Collapse
|
11
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
12
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
13
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Xu X, Dai Y, Feng L, Zhang H, Hu Y, Xu L, Zhu X, Jiang Y. Knockdown of Nav1.5 inhibits cell proliferation, migration and invasion via Wnt/β-catenin signaling pathway in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:527-535. [PMID: 32400862 DOI: 10.1093/abbs/gmaa021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of malignant oral cancer that has a high recurrence rate. Voltage-gated sodium channel Nav1.5 was reported to be highly up-regulated in various types of cancers. However, the regulatory mechanism of Nav1.5 in cancers including OSCC still remains elusive. In this study, Nav1.5 was found to be highly expressed in OSCC tissues and cells. Through the analysis of clinical characteristics of patients, we found that the expression level of Nav1.5 was closely related to neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, tumor-node-metastasis stage, and lymph node metastasis. Moreover, we found that Nav1.5 mainly located on the cell membrane as well as cytoplasm and knockdown of Nav1.5 promoted cell apoptosis and decreased proliferation in OSCC. Transwell assay results showed that knockdown of Nav1.5 effectively suppressed the migration and invasion in OSCC. In addition, knockdown of Nav1.5 was found to inhibit the protein and mRNA expression levels of β-catenin, cyclin D1, and c-Myc in the Wnt/β-catenin signaling pathway. In summary, these results indicated that Nav1.5 may be involved in the progression of OSCC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Xu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yongzheng Dai
- Hefei School of Stomatology, Anhui Medical University, Hefei 230001, China
- Department of General Dentistry, Hefei Stomatological Hospital, Hefei 230001, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongli Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yukun Hu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Le Xu
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xinwei Zhu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Binhu Clinical Division, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei 230601, China
| | - Yong Jiang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
15
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
16
|
Yang M, James AD, Suman R, Kasprowicz R, Nelson M, O'Toole PJ, Brackenbury WJ. Voltage-dependent activation of Rac1 by Na v 1.5 channels promotes cell migration. J Cell Physiol 2020; 235:3950-3972. [PMID: 31612502 PMCID: PMC6973152 DOI: 10.1002/jcp.29290] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.
Collapse
Affiliation(s)
- Ming Yang
- Department of BiologyUniversity of YorkYorkUK
| | - Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Rakesh Suman
- Phase Focus Ltd, Electric WorksSheffield Digital CampusSheffieldUK
| | | | - Michaela Nelson
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Peter J. O'Toole
- Bioscience Technology Facility, Department of BiologyUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
17
|
Wang X, Li T. Postoperative pain pathophysiology and treatment strategies after CRS + HIPEC for peritoneal cancer. World J Surg Oncol 2020; 18:62. [PMID: 32234062 PMCID: PMC7110707 DOI: 10.1186/s12957-020-01842-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment choice for peritoneal cancer. However, patients commonly suffer from severe postoperative pain. The pathophysiology of postoperative pain is considered to be from both nociceptive and neuropathic origins. Main body The recent advances on the etiology of postoperative pain after CRS + HIPEC treatment were described, and the treatment strategy and outcomes were summarized. Conclusion Conventional analgesics could provide short-term symptomatic relief. Thoracic epidural analgesia combined with opioids administration could be an effective treatment choice. In addition, a transversus abdominis plane block could also be an alternative option, although further studies should be performed.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China.
| |
Collapse
|
18
|
Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, Nicolini G. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 2020; 28:115300. [PMID: 31937477 DOI: 10.1016/j.bmc.2019.115300] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
The imidazobenzoxazin-5-thione MV1035, synthesized as a new sodium channel blocker, has been tested on tumoral cells that differ for origin and for expressed NaV pool (U87-MG, H460 and A549). In this paper we focus on the effect of MV1035 in reducing U87 glioblastoma cell line migration and invasiveness. Since the effect of this compound on U87-MG cells seemed not dependent on its sodium channel blocking capability, alternative off-target interaction for MV1035 have been identified using SPILLO-PBSS software. This software performs a structure-based in silico screening on a proteome-wide scale, that allows to identify off-target interactions. Among the top-ranked off-targets of MV1035, we focused on the RNA demethylase ALKBH5 enzyme, known for playing a key role in cancer. In order to prove the effect of MV1035 on ALKBH5 in vitro coincubation of MV1035 and ALKBH5 has been performed demonstrating a consequent increase of N6-methyladenosine (m6A) RNA. To further validate the pathway involving ALKBH5 inhibition by MV1035 in U87-MG reduced migration and invasiveness, we evaluated CD73 as possible downstream protein. CD73 is an extrinsic protein involved in the generation of adenosine and is overexpressed in several tumors including glioblastoma. We have demonstrated that treating U87-MG with MV1035, CD73 protein expression was reduced without altering CD73 transcription. Our results show that MV1035 is able to significantly reduce U87 cell line migration and invasiveness inhibiting ALKBH5, an RNA demethylase that can be considered an interesting target in fighting glioblastoma aggressiveness. Our data encourage to further investigate the MV1035 inhibitory effect on glioblastoma.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy.
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy; SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Giacomo Cislaghi
- SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Mariarosaria Miloso
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Valentina Zuliani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| |
Collapse
|
19
|
Gradek F, Lopez-Charcas O, Chadet S, Poisson L, Ouldamer L, Goupille C, Jourdan ML, Chevalier S, Moussata D, Besson P, Roger S. Sodium Channel Na v1.5 Controls Epithelial-to-Mesenchymal Transition and Invasiveness in Breast Cancer Cells Through its Regulation by the Salt-Inducible Kinase-1. Sci Rep 2019; 9:18652. [PMID: 31819138 PMCID: PMC6901527 DOI: 10.1038/s41598-019-55197-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of epithelial polarity and gain in invasiveness by carcinoma cells are critical events in the aggressive progression of cancers and depend on phenotypic transition programs such as the epithelial-to-mesenchymal transition (EMT). Many studies have reported the aberrant expression of voltage-gated sodium channels (NaV) in carcinomas and specifically the NaV1.5 isoform, encoded by the SCN5A gene, in breast cancer. NaV1.5 activity, through an entry of sodium ions, in breast cancer cells is associated with increased invasiveness, but its participation to the EMT has to be clarified. In this study, we show that reducing the expression of NaV1.5 in highly aggressive human MDA-MB-231 breast cancer cells reverted the mesenchymal phenotype, reduced cancer cell invasiveness and the expression of the EMT-promoting transcription factor SNAI1. The heterologous expression of NaV1.5 in weakly invasive MCF-7 breast cancer cells induced their expression of both SNAI1 and ZEB1 and increased their invasive capacities. In MCF-7 cells the stimulation with the EMT-activator signal TGF-β1 increased the expression of SCN5A. Moreover, the reduction of the salt-inducible kinase 1 (SIK1) expression promoted NaV1.5-dependent invasiveness and expression of EMT-associated transcription factor SNAI1. Altogether, these results indicated a prominent role of SIK1 in regulating NaV1.5-dependent EMT and invasiveness.
Collapse
Affiliation(s)
- Frédéric Gradek
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Lobna Ouldamer
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Caroline Goupille
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Marie-Lise Jourdan
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Stéphan Chevalier
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
20
|
Piggott BJ, Peters CJ, He Y, Huang X, Younger S, Jan LY, Jan YN. Paralytic, the Drosophila voltage-gated sodium channel, regulates proliferation of neural progenitors. Genes Dev 2019; 33:1739-1750. [PMID: 31753914 PMCID: PMC6942049 DOI: 10.1101/gad.330597.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
Proliferating cells, typically considered "nonexcitable," nevertheless, exhibit regulation by bioelectric signals. Notably, voltage-gated sodium channels (VGSC) that are crucial for neuronal excitability are also found in progenitors and up-regulated in cancer. Here, we identify a role for VGSC in proliferation of Drosophila neuroblast (NB) lineages within the central nervous system. Loss of paralytic (para), the sole gene that encodes Drosophila VGSC, reduces neuroblast progeny cell number. The type II neuroblast lineages, featuring a population of transit-amplifying intermediate neural progenitors (INP) similar to that found in the developing human cortex, are particularly sensitive to para manipulation. Following a series of asymmetric divisions, INPs normally exit the cell cycle through a final symmetric division. Our data suggests that loss of Para induces apoptosis in this population, whereas overexpression leads to an increase in INPs and overall neuroblast progeny cell numbers. These effects are cell autonomous and depend on Para channel activity. Reduction of Para expression not only affects normal NB development, but also strongly suppresses brain tumor mass, implicating a role for Para in cancer progression. To our knowledge, our studies are the first to identify a role for VGSC in neural progenitor proliferation. Elucidating the contribution of VGSC in proliferation will advance our understanding of bioelectric signaling within development and disease states.
Collapse
Affiliation(s)
- Beverly J Piggott
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Christian J Peters
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Ye He
- Neuroscience Initiative, Advanced Science Research Center, the Graduate Center, City University of New York, New York 10031, New York
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Susan Younger
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Lily Yeh Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| |
Collapse
|
21
|
Balach MM, Casale CH, Campetelli AN. Erythrocyte plasma membrane potential: past and current methods for its measurement. Biophys Rev 2019; 11:995-1005. [PMID: 31741171 DOI: 10.1007/s12551-019-00603-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane functions both as a natural insulator and a diffusion barrier to the movement of ions. A wide variety of proteins transport and pump ions to generate concentration gradients that result in voltage differences, while ion channels allow ions to move across the membrane down those gradients. Plasma membrane potential is the difference in voltage between the inside and the outside of a biological cell, and it ranges from ~- 3 to ~- 90 mV. Most of the most significant discoveries in this field have been made in excitable cells, such as nerve and muscle cells. Nevertheless, special attention has been paid to some events controlled by changes in membrane potential in non-excitable cells. The origins of several blood disorders, for instance, are related to disturbances at the level of plasma membrane in erythrocytes, the structurally simplest red blood cells. The high simplicity of erythrocytes, in particular, made them perfect candidates for the electrophysiological studies that laid the foundations for understanding the generation, maintenance, and roles of membrane potential. This article summarizes the methodologies that have been used during the past decades to determine Δψ in red blood cells, from seminal microelectrodes, through the use of nuclear magnetic resonance or lipophilic radioactive ions to quantify intra and extracellular ions, to continuously renewed fluorescent potentiometric dyes. We have attempted to highlight the advantages and disadvantages of each methodology, as well as to provide a description of the technical aspects involved.
Collapse
Affiliation(s)
- Melisa M Balach
- INBIAS-CONICET, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina
| | - Cesar H Casale
- INBIAS-CONICET, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina
| | - Alexis N Campetelli
- INBIAS-CONICET, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina. .,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina.
| |
Collapse
|
22
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
23
|
Dewadas HD, Kamarulzaman NS, Yaacob NS, Che Has AT, Mokhtar NF. The role of HIF-1α, CBP and p300 in the regulation of Nav1.5 expression in breast cancer cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Liu J, Tan H, Yang W, Yao S, Hong L. The voltage-gated sodium channel Na v1.7 associated with endometrial cancer. J Cancer 2019; 10:4954-4960. [PMID: 31598168 PMCID: PMC6775510 DOI: 10.7150/jca.31544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Endometrial cancer is the most common gynecologic malignancy in women in the developed countries. Despite recent progress in functional characterization of voltage-gated sodium channel (Nav) in multiple cancers, very little was known about the expression of Nav in human endometrial cancer. The present study sought to determine the role of Nav and molecular nature of this channel in the endometrial cancer. Methods: PCR approach was introduced to determine expression level of Nav subunits in endometrial cancer specimens. Pharmacological agents were used to investigate Nav function in endometrial cancer cells. Flow cytometry were used to test cancer apoptosis, and invasion assays were applied to test tumor metastasis. Results: Transcriptional levels of the all Nav α and β subunits were determined by real time-PCR in endometrial cancer with pair tissues of carcinoma and adjacent nonneoplastic tissue, Nav1.7 was the most highly expressed Nav subtype in endometrial cancer tissues. Nav1.7 level was closely associated with tumor size, local lymph node metastasis, and 5-year and 10-year survival ratio. Inhibition of this channel by Nav1.7 blocker PF-05089771, promoted cancer apoptosis and attenuated cancer cell invasion. Conclusion: These results establish a relationship between voltage-gated sodium channel protein and endometrial cancer, and suggest that Nav1.7 is a potential prognostic biomarker and could serve as a novel therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Junxiu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wancai Yang
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liang Hong
- Institute of Precision Medicine, Jining Medical University, Jining, China
| |
Collapse
|
25
|
Aung T, Asam C, Haerteis S. Ion channels in sarcoma: pathophysiology and treatment options. Pflugers Arch 2019; 471:1163-1171. [PMID: 31377822 DOI: 10.1007/s00424-019-02299-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Sarcomas are characterized by aggressive growth and a high metastasis potentially leading in most cases to a lethal outcome. These malignant tumors of the connective tissue have a high heterogeneity with numerous genetic mutations resulting in more than 100 types of sarcoma that can be grouped into two main kinds: soft tissue sarcoma and bone sarcoma. Sarcomas are often diagnosed at late disease stage, whereas a guaranteed diagnosis of the sarcoma type is fundamental for successful therapy. However, there is no appropriate therapy available. Therefore, the need for new therapies, which prolong survival and improve quality of life, is high. In the last two decades, the role of ion channels in cancer has emerged. Ion channels seem to be an ideal target for anti-tumor therapies. However, different cancer types have their own altered ion channel pattern, and the knowledge about the tumor-associated ion channel expression is fundamental. Here, we focus on the role of different ion channels in sarcoma, their pathophysiology, and possible treatment options.
Collapse
Affiliation(s)
- Thiha Aung
- Abteilung für Plastische, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Claudia Asam
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany
| | - Silke Haerteis
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
26
|
Zhang J, Mao W, Dai Y, Qian C, Dong Y, Chen Z, Meng L, Jiang Z, Huang T, Hu J, Luo P, Korner H, Jiang Y, Ying S. Voltage-gated sodium channel Nav1.5 promotes proliferation, migration and invasion of oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:562-570. [PMID: 31139826 DOI: 10.1093/abbs/gmz044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
The protein voltage-gated sodium channel Nav1.5 is highly upregulated in various types of cancer and, in general, promotes cancer cell invasiveness and metastatic progression. A previous study found that Nav1.5 was highly expressed in poorly differentiated oral squamous cell carcinoma (OSCC). However, whether Nav1.5 enhances invasiveness and metastasis of OSCC are still unknown. In this study, we found that Nav1.5 was highly expressed in OSCC cell lines compared with normal oral keratinocyte HOK cell line by using western blot analysis. CCK-8 assay results revealed that downregulation of Nav1.5 expression by its specific siRNA reduced proliferation of OSCC HSC-3 cells. Moreover, transwell assay results showed Nav1.5 knockdown significantly inhibited migration and invasion of HSC-3 cells. Meanwhile, qRT-PCR and western blot analysis results showed that epidermal growth factor (EGF) induced Nav1.5 expression in a time- and dose-dependent manner. In addition, EGF promoted proliferation, migration and invasion of HSC-3 cells. Importantly, the Nav1.5 inhibitor tetrodotoxin significantly inhibited the proliferation of HSC-3 cells and impeded the migration and invasion of HSC-3 cells. Furthermore, it was found that siRNA-mediated knockdown of Nav1.5 also lessened the proliferation of HSC-3 cells and blocked the migration and invasion of HSC-3 cells. Taken together, these results indicate that Nav1.5 is involved in the progression of OSCC and Nav1.5 promotes the proliferation, migration and invasion of OSCC cells.
Collapse
Affiliation(s)
- Jie Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weijia Mao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yongzheng Dai
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, China
| | - Chengwei Qian
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, China
| | - Yang Dong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhangming Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lei Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhe Jiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ting Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Panquan Luo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Heinrich Korner
- Menzies Institute for Medical Research, Hobart, Tasmania, Australia
| | - Yong Jiang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019; 80:160-174. [DOI: 10.1016/j.ceca.2019.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
28
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
29
|
Li Z, Jiang C, Yuan Y. TCGA based integrated genomic analyses of ceRNA network and novel subtypes revealing potential biomarkers for the prognosis and target therapy of tongue squamous cell carcinoma. PLoS One 2019; 14:e0216834. [PMID: 31141819 PMCID: PMC6541473 DOI: 10.1371/journal.pone.0216834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The study aimed to investigate the ceRNA network in biological development of Tongue Squamous Cell Carcinoma (TSCC) and to identify novel molecular subtypes of TSCC to screen potential biomarkers for target therapy and prognosis by using integrated genomic analysis based on The Cancer Genome Atlas (TCGA) database. MATERIAL AND METHODS Data on gene expressions were downloaded from TCGA and GEO database. Differentially expressed RNAs(DERNAs) were shown by DESeq2 package in R. Functional enrichment analysis of DEmRNAs was performed using clusterprofilers in R. PPI network was established by referring to String website. Survival analysis of DERNAs was carried out by survival package in R. Interactions among mRNAs, miRNAs and lncRNAs were obtained from Starbase v3.0 and used to construct ceRNA network. Consensus Cluster Plus package was applied to identify molecular subtypes. All key genes were validated by comparing them with GEO microarray data. Statistical analyses of clinical features among different subtypes were performed using SPSS 22.0. RESULTS A total of 2907 mRNAs (1366 up-regulated and 1541 down-regulated), 191miRNAs (98 up-regulated and 93 down-regulated) and 1831 lncRNAs (1151 up-regulated and 680 down-regulated) were identified from tumor and normal tissues. A ceRNA network was successfully constructed and 15 DEmRNAs, 1 DEmiRNA, 2 DElncRNAs associated with prognosis were employed. Furthermore, we firstly identified 2 molecular subtypes, basal and differentiated, and found that differentiated subtype consumed less alcohol and was related to a better overall survival. CONCLUSION The study constructed a ceRNA network and identified molecular subtypes of TSCC, and our findings provided a novel insight into this intractable cancer and potential therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Zaiye Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Yuan
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Wang J, Lu Z, Wu C, Li Y, Kong Y, Zhou R, Shi K, Guo J, Li N, Liu J, Song W, Wang H, Zhu M, Xu H. Evaluation of the anticancer and anti-metastasis effects of novel synthetic sodium channel blockers in prostate cancer cells in vitro and in vivo. Prostate 2019; 79:62-72. [PMID: 30242862 DOI: 10.1002/pros.23711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Voltage-gated sodium channels (VGSCs) are involved in several cellular processes related to cancer cell growth and metastasis, including adhesion, proliferation, apoptosis, migration, and invasion. We here in investigated the effects of S0154 and S0161, two novel synthetic sodium channel blockers (SCBs), on human prostate cancer cells (PC3, DU145, and LnCaP) and a prostate cancer xenograft model. METHODS The MTT assay was used to assess the anticancer effects of SCBs in PC3, DU145, and LnCaP cells. Sodium indicator and glucose uptake assays were used to determine the effects of S0154 and S0161 in PC3 cells. The impact of these SCBs on the proliferation, cell cycle, apoptosis, migration, and invasion of PC3 cells were determined using a CFDA-SE cell proliferation assay, cell cycle assay, annexin V-FITC apoptosis assay, transwell cell invasion assay, and wound-healing assay, respectively. The protein expression levels of Nav1.6, Nav1.7, CDK1, cyclin B1, MMP2, MMP9 in PC3 cells were analysis by Western blotting. The in vivo anticancer activity was evaluated using a PC3 xenograft model in nude mice. RESULTS S0154 and S0161 both showed anticancer and anti-metastatic effects against prostate cancer cells and significantly inhibited cell viability, with IC50 values in the range of 10.51-26.60 μmol/L (S0154) and 5.07-11.92 μmol/L (S0161). Both compounds also increased the intracellular level of sodium, inhibited the protein expression of two α subunits of VGSCs (Nav1.6 and Nav1.7), and caused G2/M phase cell cycle arrest, with no or minor effects on cell apoptosis. Concentrations of 5 and 10 μmol/L of S0154 and S0161 significantly decreased the glucose uptake of PC3 cells. The compounds also inhibited the proliferation of PC3 cells and decreased their invasion in transwell assays. Furthermore, S0161 exerted antitumor activity in an in vivo PC3 xenograft model in nude mice, inhibiting the growth of the tumors by about 51% compared to the control group. CONCLUSIONS These results suggest that S0154 and S0161 have anticancer and anti-metastasis effects in prostate cancer cells both in vitro and in vivo, supporting their further development as potential therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Zongliang Lu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Changpeng Wu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yanwu Li
- Pharmacy College, Chongqing Medical University, Chongqing, China
| | - Ya Kong
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Kun Shi
- Medical Service Office, Department of Logistic Support of Central Zone, Land force of Chinese People's Liberation Army, Shijiazhuang, China
| | - Jing Guo
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Na Li
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jie Liu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Wei Song
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - He Wang
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Mingxing Zhu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Hongxia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Discovery and evaluation of nNa v1.5 sodium channel blockers with potent cell invasion inhibitory activity in breast cancer cells. Bioorg Med Chem 2018; 26:2428-2436. [PMID: 29673714 DOI: 10.1016/j.bmc.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/25/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9 ± 6.6% at 1 μM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3 ± 4.5% at 1 μM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.
Collapse
|
32
|
Hercbergs A, Mousa SA, Davis PJ. Nonthyroidal Illness Syndrome and Thyroid Hormone Actions at Integrin αvβ3. J Clin Endocrinol Metab 2018; 103:1291-1295. [PMID: 29409047 DOI: 10.1210/jc.2017-01939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The nonthyroidal illness syndrome (NTIS) is a constellation of changes in circulating thyroid hormone levels that occur in euthyroid patients with acute or chronic systemic diseases. The changes that occur include a reduction in serum T3, an increase in serum rT3, and variable changes in circulating T4 levels. No consensus exists regarding therapeutic intervention for NTIS. METHODS We briefly review the published literature on the physiological actions of T4 and of rT3-hormones that until recently have been seen to have little or no bioactivity-and analyze the apparent significance of changes in circulating T4 and T3 encountered in the setting of NTIS in patients with cancer. In the case of T4, these actions may be initiated at a cancer or endothelial cell plasma membrane receptor on integrin αvβ3 or at the cytoskeleton. RESULTS This review examines possible therapeutic intervention in NTIS in patients with cancer in terms of T4 reduction and T3 support. Evidence also exists that rT3 may support cancer. CONCLUSIONS Prospective study is proposed of pharmacological reduction of normal or elevated T4 in cancer-associated NTIS. We also support investigation of normally circulating levels of T3 in such patients.
Collapse
Affiliation(s)
- Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
- Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
33
|
Han J, Liu Y, Jiang Q, Xiao R. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway. IUBMB Life 2017; 69:856-866. [PMID: 28945311 DOI: 10.1002/iub.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/02/2017] [Indexed: 11/12/2022]
Abstract
Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017.
Collapse
Affiliation(s)
- Jianmei Han
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| | - Yu Liu
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| | - Qi Jiang
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| |
Collapse
|
34
|
Rhana P, Trivelato RR, Beirão PSL, Cruz JS, Rodrigues ALP. Is there a role for voltage-gated Na+ channels in the aggressiveness of breast cancer? ACTA ACUST UNITED AC 2017; 50:e6011. [PMID: 28591378 PMCID: PMC5463531 DOI: 10.1590/1414-431x20176011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus, the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. Ion channels are known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently, voltage-gated Na+ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness. To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2+, have been proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to reduce aggressiveness and the disease progress.
Collapse
Affiliation(s)
- P Rhana
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil.,Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R R Trivelato
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| | - P S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - J S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A L P Rodrigues
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| |
Collapse
|
35
|
Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 227:39-58. [PMID: 28980039 DOI: 10.1007/978-3-319-56895-9_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.
Collapse
|
36
|
The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles. Sci Rep 2016; 6:35201. [PMID: 27731412 PMCID: PMC5059667 DOI: 10.1038/srep35201] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
The single cell-centred approach emphasises ion channels as specific proteins that determine individual properties, disregarding their contribution to multicellular outcomes. We simulate the interplay between genetic and bioelectrical signals in non-excitable cells from the local single-cell level to the long range multicellular ensemble. The single-cell genetic regulation is based on mean-field kinetic equations involving the mRNA and protein concentrations. The transcription rate factor is assumed to depend on the absolute value of the cell potential, which is dictated by the voltage-gated cell ion channels and the intercellular gap junctions. The interplay between genetic and electrical signals may allow translating single-cell states into multicellular states which provide spatio-temporal information. The model results have clear implications for biological processes: (i) bioelectric signals can override slightly different genetic pre-patterns; (ii) ensembles of cells initially at the same potential can undergo an electrical regionalisation because of persistent genetic differences between adjacent spatial regions; and (iii) shifts in the normal cell electrical balance could trigger significant changes in the genetic regulation.
Collapse
|
37
|
Iamshanova O, Mariot P, Lehen'kyi V, Prevarskaya N. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:765-777. [PMID: 27660079 PMCID: PMC5045488 DOI: 10.1007/s00249-016-1173-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/23/2016] [Accepted: 09/02/2016] [Indexed: 10/25/2022]
Abstract
Sodium (Na+) ions are known to regulate many signaling pathways involved in both physiological and pathological conditions. In particular, alterations in intracellular concentrations of Na+ and corresponding changes in membrane potential are known to be major actors of cancer progression to metastatic phenotype. Though the functionality of Na+ channels and the corresponding Na+ currents can be investigated using the patch-clamp technique, the latter is rather invasive and a technically difficult method to study intracellular Na+ transients compared to Na+ fluorescence imaging. Despite the fact that Na+ signaling is considered an important controller of cancer progression, only few data using Na+ imaging approaches are available so far, suggesting the persisting challenge within the scientific community. In this study, we describe in detail the approach for application of Na+ imaging technique to measure intracellular Na+ variations in human prostate cancer cells. Accordingly, we used three Na+-specific fluorescent dyes-Na+-binding benzofuran isophthalate (SBFI), CoroNa™ Green (Corona) and Asante NaTRIUM Green-2 (ANG-2). These dyes have been assessed for optimal loading conditions, dissociation constant and working range after different calibration methods, and intracellular Na+ sensitivity, in order to determine which probe can be considered as the most reliable to visualize Na+ fluctuations in vitro.
Collapse
Affiliation(s)
- Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, 59656, Villeneuve d'Ascq, France
| | - Pascal Mariot
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, 59656, Villeneuve d'Ascq, France
| | - V'yacheslav Lehen'kyi
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, 59656, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, 59656, Villeneuve d'Ascq, France.
| |
Collapse
|
38
|
Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U. Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep 2016; 4:4/2/e12681. [PMID: 26811054 PMCID: PMC4760386 DOI: 10.14814/phy2.12681] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The contribution of human atrial fibroblasts to cardiac physiology and pathophysiology is poorly understood. Fibroblasts may contribute to arrhythmogenesis through fibrosis, or by directly altering electrical activity in cardiomyocytes. The objective of our study was to uncover phenotypic differences between cells from patients in sinus rhythm (SR) and chronic atrial fibrillation (AF), with special emphasis on electrophysiological properties. We isolated fibroblasts from human right atrial tissue for patch-clamp experiments, proliferation, migration, and differentiation assays, and gene expression profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This was associated with a higher number of AF fibroblasts expressing functional Nav1.5 channels. Strikingly Na(+) currents were considerably larger in AF cells. Blocking Na(+) channels in culture with tetrodotoxin did not affect proliferation, migration, or differentiation in neither SR nor AF cells. While freshly isolated fibroblasts showed mostly weak rectifier currents, fibroblasts in culture developed outward rectifier K(+) currents of similar amplitude between the SR and AF groups. Adding the K(+) channel blockers tetraethylammonium and 4-aminopyridin in culture reduced current amplitude and inhibited proliferation in the SR group only. Analysis of gene expression revealed significant differences between SR and AF in genes encoding for ion channels, collagen, growth factors, connexins, and cadherins. In conclusion, this study shows that under AF conditions atrial fibroblasts undergo phenotypic changes that are revealed in culture. Future experiments should be performed in situ to understand the nature of those changes and whether they affect cardiac electrical activity.
Collapse
Affiliation(s)
- Claire Poulet
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Stephan Künzel
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Edgar Büttner
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Diana Lindner
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
39
|
Fairhurst C, Martin F, Watt I, Doran T, Bland M, Brackenbury WJ. Sodium channel-inhibiting drugs and cancer survival: protocol for a cohort study using the CPRD primary care database. BMJ Open 2016; 6:e011661. [PMID: 27601493 PMCID: PMC5020752 DOI: 10.1136/bmjopen-2016-011661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Voltage-gated sodium channel (VGSC)-inhibiting drugs are commonly used to treat epilepsy and cardiac arrhythmia. VGSCs are also widely expressed in various cancers, including those of the breast, bowel and prostate. A number of VGSC-inhibiting drugs have been shown to inhibit cancer cell proliferation, invasion, tumour growth and metastasis in preclinical models, suggesting that VGSCs may be novel molecular targets for cancer treatment. Surprisingly, we previously found that prior exposure to VGSC-inhibiting drugs may be associated with reduced overall survival in patients with cancer, but we were unable to control for the cause of death or indication for prescription. The purpose of the present study is to interrogate a different database to further investigate the relationship between VGSC-inhibiting drugs and cancer-specific survival. METHODS AND ANALYSIS A cohort study using primary care data from the Clinical Practice Research Datalink database will include patients with diagnosis of breast, bowel and prostate cancer (13 000). The primary outcome will be cancer-specific survival from the date of cancer diagnosis. Cox proportional hazards regression will be used to compare survival of patients taking VGSC-inhibiting drugs (including antiepileptic drugs and class I antiarrhythmic agents) with patients with cancer not taking these drugs, adjusting for cancer type, age and sex. Drug exposure will be treated as a time-varying covariate to account for potential immortal time bias. Various sensitivity and secondary analyses will be performed. ETHICS AND DISSEMINATION The project has been reviewed and approved by the University of York Ethical Review Process. Results will be presented at an international conference and published in open access peer-reviewed journals according to the STROBE and RECORD guidelines.
Collapse
Affiliation(s)
| | - Fabiola Martin
- Hull York Medical School, York, UK
- Department of Biology, University of York, York, UK
| | - Ian Watt
- Department of Health Sciences, University of York, York, UK
- Hull York Medical School, York, UK
| | - Tim Doran
- Department of Health Sciences, University of York, York, UK
| | - Martin Bland
- Department of Health Sciences, University of York, York, UK
| | | |
Collapse
|
40
|
Xia J, Huang N, Huang H, Sun L, Dong S, Su J, Zhang J, Wang L, Lin L, Shi M, Bin J, Liao Y, Li N, Liao W. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer 2016; 139:2553-69. [PMID: 27529686 DOI: 10.1002/ijc.30381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Voltage-gated sodium channels (VGSCs), which are aberrantly expressed in several human cancers, affect cancer cell behavior; however, their role in gastric cancer (GC) and the link between these channels and tumorigenic signaling remain unclear. The aims of this study were to determine the clinicopathological significance and role of the VGSC Nav 1.7 in GC progression and to investigate the associated mechanisms. Here, we report that the SCN9A gene encoding Nav 1.7 was the most abundantly expressed VGSC subtype in GC tissue samples and two GC cell lines (BGC-823 and MKN-28 cells). SCN9A expression levels were also frequently found to be elevated in GC samples compared to nonmalignant tissues by real-time PCR. In the 319 GC specimens evaluated by immunohistochemistry, Nav 1.7 expression was correlated with prognosis, and transporter Na(+) /H(+) exchanger-1 (NHE1) and oncoprotein metastasis-associated in colon cancer-1 (MACC1) expression. Nav 1.7 suppression resulted in reduced voltage-gated sodium currents, decreased NHE1 expression, increased extracellular pH and decreased intracellular pH, and ultimately, reduced invasion and proliferation rates of GC cells and growth of GC xenografts in nude mice. Nav 1.7 inhibition led to reduced MACC1 expression, while MACC1 inhibition resulted in reduced NHE1 expression in vitro and in vivo. Mechanistically, the suppression of Nav 1.7 decreased NF-κB p65 nuclear translocation via p38 activation, thus reducing MACC1 expression. Downregulation of MACC1 decreased c-Jun phosphorylation and subsequently reduced NHE1 expression, whereas the addition of hepatocyte growth factor (HGF), a c-Met physiological ligand, reversed the effect. These results indicate that Nav 1.7 promotes GC progression through MACC1-mediated upregulation of NHE1. Therefore, Nav 1.7 is a potential prognostic marker and/or therapeutic target for GC.
Collapse
Affiliation(s)
- Jianling Xia
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxiang Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoting Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinyu Su
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nailin Li
- Karolinska Institute, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm, 17176, Sweden
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
41
|
Winters JJ, Isom LL. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits. CURRENT TOPICS IN MEMBRANES 2016; 78:315-51. [PMID: 27586289 DOI: 10.1016/bs.ctm.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development.
Collapse
Affiliation(s)
- J J Winters
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States
| | - L L Isom
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
42
|
Abstract
Voltage-gated sodium channels (VGSCs), composed of a pore-forming α subunit and up to two associated β subunits, are critical for the initiation of the action potential (AP) in excitable tissues. Building on the monumental discovery and description of sodium current in 1952, intrepid researchers described the voltage-dependent gating mechanism, selectivity of the channel, and general structure of the VGSC channel. Recently, crystal structures of bacterial VGSC α subunits have confirmed many of these studies and provided new insights into VGSC function. VGSC β subunits, first cloned in 1992, modulate sodium current but also have nonconducting roles as cell-adhesion molecules and function in neurite outgrowth and neuronal pathfinding. Mutations in VGSC α and β genes are associated with diseases caused by dysfunction of excitable tissues such as epilepsy. Because of the multigenic and drug-resistant nature of some of these diseases, induced pluripotent stem cells and other novel approaches are being used to screen for new drugs and further understand how mutations in VGSC genes contribute to pathophysiology.
Collapse
|
43
|
Yu L, Toriseva M, Tuomala M, Seikkula H, Elo T, Tuomela J, Kallajoki M, Mirtti T, Taimen P, Boström PJ, Alanen K, Nurmi M, Nees M, Härkönen P. Increased expression of fibroblast growth factor 13 in prostate cancer is associated with shortened time to biochemical recurrence after radical prostatectomy. Int J Cancer 2016; 139:140-52. [DOI: 10.1002/ijc.30048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Yu
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | - Mervi Toriseva
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | - Miikka Tuomala
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | - Heikki Seikkula
- Department of Urology; Turku University Hospital; Turku Finland
| | - Teresa Elo
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Johanna Tuomela
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| | | | - Tuomas Mirtti
- Department of Pathology; Helsinki University Hospital (HUSLAB) and Institute for Molecular Medicine Finland (FIMM), University of Helsinki; Helsinki Finland
| | - Pekka Taimen
- Department of Pathology; University of Turku; Turku Finland
| | | | - Kalle Alanen
- Department of Pathology; University of Turku; Turku Finland
| | - Martti Nurmi
- Department of Pathology; University of Turku; Turku Finland
| | - Matthias Nees
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
- Turku Centre for Biotechnology; University of Turku; Turku Finland
| | - Pirkko Härkönen
- Department of Cell Biology and Anatomy; Institute of Biomedicine, University of Turku; Turku Finland
| |
Collapse
|
44
|
Pappalardo LW, Black JA, Waxman SG. Sodium channels in astroglia and microglia. Glia 2016; 64:1628-45. [PMID: 26919466 DOI: 10.1002/glia.22967] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are required for electrogenesis in excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons, cardiac, and skeletal muscle cells. Cells that have not traditionally been considered to be excitable (nonexcitable cells), including glial cells, also express sodium channels in physiological conditions as well as in pathological conditions. These channels contribute to multiple functional roles that are seemingly unrelated to the generation of action potentials. Here, we discuss the dynamics of sodium channel expression in astrocytes and microglia, and review evidence for noncanonical roles in effector functions of these cells including phagocytosis, migration, proliferation, ionic homeostasis, and secretion of chemokines/cytokines. We also examine possible mechanisms by which sodium channels contribute to the activity of glial cells, with an eye toward therapeutic implications for central nervous system disease. GLIA 2016;64:1628-1645.
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
45
|
Cervera J, Alcaraz A, Mafe S. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics. Sci Rep 2016; 6:20403. [PMID: 26841954 PMCID: PMC4740742 DOI: 10.1038/srep20403] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Antonio Alcaraz
- Dept. de Física, Laboratori de Biofísica Molecular, Universitat “Jaume I”, E-12080 Castelló, Spain
| | - Salvador Mafe
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
46
|
Luiz AP, Wood JN. Sodium Channels in Pain and Cancer: New Therapeutic Opportunities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:153-78. [PMID: 26920012 DOI: 10.1016/bs.apha.2015.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Voltage-gated sodium channels (VGSCs) underpin electrical activity in the nervous system through action potential propagation. First predicted by the modeling studies of Hodgkin and Huxley, they were subsequently identified at the molecular level by groups led by Catterall and Numa. VGSC dysfunction has long been linked to neuronal and cardiac disorders with some nonselective sodium channel blockers in current use in the clinic. The lack of selectivity means that side effect issues are a major impediment to the use of broad spectrum sodium channel blockers. Nine different sodium channels are known to exist, and selective blockers are now being developed. The potential utility of these drugs to target diseases ranging from migraine, multiple sclerosis, muscle, and immune system disorders, to cancer and pain is being explored. Four channels are potential targets for pain disorders. This conclusion comes from mouse knockout studies and human mutations that prove the involvement of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in the development and maintenance of acute and chronic pain. In this chapter, we present a short overview of the possible role of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in human pain and the emerging and unexpected role of sodium channels in cancer pathogenesis.
Collapse
Affiliation(s)
- Ana Paula Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.
| |
Collapse
|
47
|
Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, Mancini F, Iannetti GD, Bogdanov YD, Santana-Varela S, Millet Q, Baskozos G, MacAllister R, Cox JJ, Zhao J, Wood JN. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 2015; 6:8967. [PMID: 26634308 PMCID: PMC4686868 DOI: 10.1038/ncomms9967] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids.
Collapse
Affiliation(s)
- Michael S. Minett
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Vanessa Pereira
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Shafaq Sikandar
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Ayako Matsuyama
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Stéphane Lolignier
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Flavia Mancini
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gian D. Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Yury D. Bogdanov
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Giorgios Baskozos
- Institute of Structural and Molecular Biology, UCL, London WC1E 6BT, UK
| | | | - James J. Cox
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| | - John N. Wood
- Molecular Nociception Group, WIBR, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|